4、选修4-4第二讲_参数方程(曲线的参数方程)
人教版高中数学选修4-4课件:2.1曲线的参数方程 第二课时.2

林老师网络编辑整理
29
【解析】(1)选D.xy=1,x取非零实数,而A,B,C中的x的
范围不符合要求.
(2)①把y=sinθ代入方程,得到 于是x2=4(1-sin2θ)=4cos2θ,
x2 sin2 1, 4
林老师网络编辑整理
30
即x=±2|cosθ|,由于θ具有任意性,sinθ与cosθ的
t
2,(t为参数)化为普通方程为________.
【解析】消去y参 2数t 方程 x 中t2,的参数t,
得到普通方程为y2=4x. y 2t
答案:y2=4x
林老师网络编辑整理
7
【知识探究】 探究点 参数方程和普通方程的互化 1.同一曲线的参数方程是否唯一? 提示:求曲线的参数方程,关键是灵活确定参数,由于参 数不同,同一曲线的参数方程也会有差异,但是一定要 注意等价性.
(θ为参数)
x 2cos,
y 1 2பைடு நூலகம்in
林老师网络编辑整理
5
【解析】选D.圆x2+(y+1)2=2的圆心坐标为C(0,-1),半
径为
2
,所以它的参数方程为 x
2cos,
(θ为参
数).
y 1 2sin,
林老师网络编辑整理
6
2.参数方程
x
(为参数) .
(1)3x+4y=3cosθ+4sinθ+4=4+5sin(θ+φ),
其中 tan 且34φ, 的终边过点(4,3).
因为-5≤5sin(θ+φ)≤5,所以-1≤4+5sin(θ+φ)≤9,
所以3x+4y的最大值为9,最小值为-1.
2014-2015学年高中数学(人教版选修4-4)配套课件第二讲 2.2 2.2.2 双曲线的参数方程

1.已知动点 M 和定点 A(5,0),B(-5,0).
x2 y2 - =1 (1)若||MA|-|MB||=8,则 M 的轨迹方程是__________________ ; 16 9 x 2 y2 - =1(x<0) (2)若|MA|-|MB|=8,则 M 的轨迹方程是____________________ ; 16 2 9 2 栏 x y 目 - =1(x>0) (3)若|MB|-|MA|=8,则 M 的轨迹方程是____________________ . 链 16 9
2 2
x=2sec α, ∴参数方程为 (α 为参数). y=2tan α
变式 训练
x= 3tan θ, 1.已知双曲线的参数方程为 (θ 为参数), y=sec θ
则它的两条渐近线所成的锐角是________.
栏 目 链 接
答案:60°
题型2
第二讲 参数方程
2.2 圆锥曲线的参数方程
2.2.2 双曲线的参数方程
栏 目 链 接
1.理解双曲线参数方程的概念。
2.能选取适当的参数,求简单曲线的参数方程。
3.掌握参数方程化为普通方程的 几种基本方法。
栏 栏 目 目 链 链 接 接
4.利用双曲线的参数方程求确定最值和轨迹问题。
栏 目 链 接
栏 目 链 接
变式 训练
2.已知定点 A(0,4)和双曲线 x2-4y2=16 上的动点 B, 点 P 分有向线段 AB 的比为 1∶3,则利用双曲线的参数方 程可求得点 P 的轨迹普通方程是_______________.
栏 目 链 接
答案:x2-4(y-3)2=1
x2 y2 - =1 的参数方程为________. 16 9
人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ
即
(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.
人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程

x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1
α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=
第十二章 坐标系与参数方程[选修4-4]第二节 参数方程
![第十二章 坐标系与参数方程[选修4-4]第二节 参数方程](https://img.taocdn.com/s3/m/a11e7411ff00bed5b9f31dd5.png)
距离是________.
解析:直线方程可化为 x-y+1=0,圆的方程可化为(x -1)2+y2=1.由点到直线的距离公式可得,圆心 C(1,0)到 |2| 直线 l 的距离为 2 2= 2. 1 +-1
答案: 2
x=1+3t, 5.(2012· 湖南十二校联考)若直线的参数方程为 y=2- 3t
解析:由 y=t-1,得 t=y+1,代入 x=3t+2,得 x =3y+5, 即 x-3y-5=0.
答案:x-3y-5=0
x=5cos θ, 2.(教材习题改编)曲线 y=3sin θ
(θ 为参数)的左焦点
的坐标是________.
x2 y2 解析:化为普通方程为 + =1,故左焦点为(-4,0). 25 9
x=2t+2a, y=-t
(t 为参数),曲线
x=2cos θ, C2: y=2+2sin θ
(θ 为
参数).若曲线 C1,C2 有公共点,则实数 a 的取值范围 是________.
解析:将曲线 C1,C2 的参数方程化为普通方程, 得 C1:x+2y-2a=0,C2:x2+(y-2)2=4. 因为曲线 C1 与 C2 有公共点, |4-2a| 所以圆心到直线的距离 ≤2, 5 解得 2- 5≤a≤2+ 5.
[自主解答] =16.
由圆C的参数方程可得其标准方程为x2+y2
π 因为直线l过点P(2,2),倾斜角α= ,所以直线l的参数 3 π x=2+tcos3, 方程为 y=2+tsinπ, 3 1 x=2+2t, 即 y=2+ 3t 2
(t为参数).
1 x=2+2t, 把直线l的参数方程 y=2+ 3t 2
去参数;
(2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方 法从整体上消去参数. 2.将参数方程化为普通方程时,要注意防止变量x和y
人教版高数选修4-4第2讲:参数方程(学生版)

参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t=⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝ ⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则yx 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
选修4-4 第2讲 参数方程

例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程

3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|
则
2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 2, 2
练习、将下列参数方程化为普通方程:
x 2 3 cos (1) y 3 sin
(1) (x-2)2+y2=9
x sin (2) y cos2
x=t+1/t
(3)
y=t2+1/t2
(2) y=1- 2x2(- 1≤x≤1) 步骤:(1)消参; (2)求定义域。 (3) x2- y=2(x≥2或x≤- 2)
A(2,7); B(1/3, 2/3) 3
C(1/2, 1/2)
D(1,0)
x 1 2t 已知曲线C的参数方程是 y at 2 (t为参数,a R)点M(5,4)
该曲线上. (1)求常数a; (2)求曲线C的普通方程
(1)由题意可知: 1+2t=5,at2=4;a=1,t=2;
x=100t=1000,
t=10,
y=gt2/2=10×102/2=500m.
练习
x 1 t 2 与x轴的交点坐标是( B ) 1、曲线 y 4t 3(t为参数)
A(1,4); B (25/16, 0)
C(1, -3)
D(±25/16, 0)
x sin (为参数)所表示的曲线上一点的坐标是( D ) 2、方程 y cos
( x 3)2 ( y 4)2 4
上的一点,求 PA PB 的最大值和最小值以及对应P点的 坐标.
x 3 2 cos y 4 2 sin
2 2
2
2
PA PB
(4 2 cos )2 (4 2 sin )2 (2 2 cos )2 (4 2 sin )2
练习: 曲线y=x2的一种参数方程是(
2 x t A、 4 y t
).
x t D、 2 y t
x sin t B、 2 y sin t
x t C、 y t
解: 在y=x2中,x∈R,
y≥0,
在A、B、C中,x, y的范围都发生了变化, 因而与 y=x2不等价; 而在D中, x, y范围与y=x2中x, y的范围相同, 代入y=x2后满足该方程,
其中参数θ的几何意义是OM0绕点O逆时针旋转到 OM的位置时,OM0转过的角度 y 圆心为O1 (a, b) , 半径为r 的圆的参数方程 x a r cos (为参数) y b r sin
b
v O
P r y x
a
x
一般地,同一条曲线,可以选取不同的变数为参数, 另外,要注明参数及参数的取值范围。
例2 求参数方程
x | cos sin |, 2 2 (0 2 ) y 1 (1 sin ) 2
表示( B ) (A)双曲线的一支, 这支过点(1, 1/2); (B)抛物线的一部分, 这部分过(1, 1/2); (C)双曲线的一支, 这支过点(–1, 1/2); (D)抛物线的一部分, 这部分过(–1, 1/2).
曲线的参数方程和普通方程是曲线方程的不同形式. 把参数方程化为普通方程: 一般地, 可以通过消去参数而从参数方程得到普通 方程; 在参数方程与普通方程的互化中,必须使x,y的取 值范围保持一致,否则,互化就是不等价的.
例1、把下列参数方程化为普通方程,并说明它们 各表示什么曲线?
x= sin cos x= t 1 (1) (t为参数) (2) ( 为参数). y 1 sin 2 y 1 2 t
上的点是 ( B )
D (1, 3)
参数方程求法: (1)建立直角坐标系, 设曲线上任一点P坐标为; (2)选取适当的参数; (3)根据已知条件和图形的几何性质, 物理意义, 建 立点P坐标与参数的函数式; (4)证明这个参数方程就是所由于的曲线的方程 .
圆的参数方程
圆心为原点半径为r 的圆的参数方程. x r cos ( 为参数 ) y r sin
5、由方程x y 4tx 2ty 5t 4 0( t为
2 2 2
参数)所表示的一族圆的圆心 轨迹是 D
A 一个定点 B 一个椭圆 C 一条抛物线 D 一条直线
x sin 2 5下列在曲线 y cos sin (为参数) 3 1 1 ( , 2) ( , ) C (2, 3) A 2 B 4 2
解: (1)由 x t 1 1
得 t x 1 代入 y 1 2 t
得到 y 2 x 3( x 1) 这是以(1,1)为端点的一条射线;
( 2) x si n cos 2 si n (
4
)
所以x
2, 2
把 x sin cos平方后减去y 1 sin2
例1 如图,圆O的半径为2,P是圆上的动点,Q(6,0) 是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周 运动时,求点M的轨迹的参数方程。 y P 解:设点M的坐标是(x, y), M xOP Q o x 则点P的坐标是(2cosθ,2sinθ). 由中点坐标公式可得
2 cos 6 2sin x 3 cos , y sin 2 2
60 8(3 cos 4 sin )
60 40sin( )
参数方程和普通方程的互化
x 3 cos , 在例1中,由参数方程 y sin . ( 为参数)
直接判断点M的轨迹是什么并不方便,
把它化为我们熟悉的普通方程,有 cosθ=x-3, sinθ=y; 于是(x-3)2+y2=1, 轨迹是什么就很清楚了
x 3t 已知曲线C的参数方程是 y 2 t 2 1 (为参数)
这个方程无解,所以点M2不在曲线C上.
解得t=2, a=9 所以,a=9.
练习:一架救援飞机以100m/s的速度作水平直线 飞行.在离灾区指定目标1000m时投放救援物资(不计空 气阻力,重力加速 g=10m/s)问此时飞机的飞行高度约是 多少?(精确到1m)
普通方程化为参数方程:
普通方程化为参数方程需要引入参数:
如:直线 l 的普通方程是 2x-y+2=0,可以化为参数方程: x t (t为参数) y 2t 2
一般地, 如果知道变量x, y中的一个与参数t的关系,例 如x=f(t),把它代入普通方程,求出另一个变量与参数t的 关系y=g(t),那么:
x f (t ) y g( t )
就是曲线的参数方程。 在参数方程与普通方程的互化中,必须使x, y的取 值范围保持一致
x2 y2 1 的参数方程: 例3 求椭圆 9 4
(1)设 x 3cos , 为参数;
(2)设 y 2t , t 为参数.
为什么两个参数方程合起来才是椭圆的参数方程?
例1:
(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系; (2)已知点M3(6,a)在曲线C上,求a的值。 解:(1)把点M1的坐标(0,1)代入方程组,解得t=0,所 以M1在曲线上.
5 3t 把点M2的坐标(5,4)代入方程组,得到 4 2t 2 1
6 3t (2)因为点M3(6,a)在曲线C上,所以a 2t 2 1
x 1 ( 2 )t 2
代入第二个方程得: y=(x-1)2/4
4 动点M作等速直线运动, 它在x轴和y轴方向的速 度分别为5和12 , 运动开始时位于点P(1,2), 求点M的轨迹 参数方程.
解:设动点M (x,y) 运动时间为t,依题意,得
x 1 5t y 2 12t
从而D是曲线y=x2的一种参数方程.
在参数方程与普通方程的互化中,必须使x,y 的取值范围保持一致。否则,互化就是不等价的.
所以S 3x y 3(1 2cos ) (2 2sin ) 5 6cos 2sin 5 2 10 cos( ) 1 (tan ) 3
Smax 5 2 10, Smin 5 2 10
例3 已知A(―1,0)、B(1,0),P为圆
因此,点M的轨迹的参数方程是
x 3 cos , ( 为参数) y sin .
例2 已知x、y满足( x 1)2 ( y 2)2 4 ,求 S 3 x y 的最大值和最小值.
x 1 2cos , ( 为参数) 解:由已知圆的参数方程为 y 2 2sin .
第二讲:参平面直角坐标系中,如果曲线上任意一 点的坐标 x,y 都是某个变数 t 的函数
x f (t ), y g (t ).
并且对于 t 的每一个允许值,由方程组所确定的点 M(x, y) 都在这条曲线上, 那么方程组就叫做这条曲线的参数方程,联系变数 x, y 的变数 t 叫做参变数,简称参数。 相对于参数方程而言,直接给出点的坐标间关系的 方程叫做普通方程。 参数是联系变数x, y的桥梁,可以是一个有物理意义 或几何意义的变数,也可以是没有明显实际意义的变数。