弹塑性力学应力分析

合集下载

弹性与塑性力学基础 第1章 应力分析

弹性与塑性力学基础 第1章 应力分析


1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院

06_压力容器应力分析_厚壁圆筒弹塑性应力分析

06_压力容器应力分析_厚壁圆筒弹塑性应力分析

2.3 厚壁圆筒应力分析
2.3.2 弹塑性应力
因为“弹性筒”内壁面同时也是“塑性筒”的外 壁面,所以在交界面上( r=Rc ),也满足 Mises 条件
r R
c
r r R
c
2 s 3
联立上述三式,得到弹、塑性区界面压力pc的另一表达 式如下
pc
s R R
2.3.4 提高屈服承载能力的措施
(2)高压厚壁筒提高屈服承载能力的措施
2.3 厚壁圆筒应力分析
2.3.4 提高屈服承载能力的措施
下图为经过自增强处理后,单层厚壁筒中的应力 分布情况。自增强法最早出现于20世纪初,首先应用 于炮筒的制造。目前已经应用于石油化工中的高压及 超高压容器、超高压管道、超高压压缩机气缸等。
残余应力的计算是依据“卸载定理”的,参见教 材。该部分须掌握残余应力的分布图。
2.3 厚壁圆筒应力分析
2.3.2 弹塑性应力
2.3 厚壁圆筒应力分析
(1)爆破过程 OA:弹性变形 AB:进入屈服 BC:屈服并强化 CD:爆破 pc:塑性垮塌压力, 工程上称为爆破 压力。
2.3.3 屈服压力和爆破压力
2.3 厚壁圆筒应力分析
(2)理想弹塑性材料
2.3.2 弹塑性应力
对于理想弹塑性材料,忽略材料的硬化阶段,同 时认为材料的屈服极限为常数。
2.3 厚壁圆筒应力分析
(3)塑性失效准则
2.3.2 弹塑性应力
筒体为理想弹塑性材料,当屈服区扩展至外壁 面,使筒体整体屈服,此时承受的内压力为筒体承 受的最高极限载荷。 (4)屈服条件 当材料从弹性阶段进入理想塑性阶段时,应满 足一定的条件,以此来判定材料是否进入屈服阶段, 此条件称为“屈服条件”(屈服失效判据)。 常用的屈服条件有:Tresca屈服条件和Mises 屈服条件。

厚壁圆筒__弹塑性力学知识

厚壁圆筒__弹塑性力学知识

2. 弹塑性阶段: (1) 弹性区:r r b
(1 )a 2 pe u E (b 2 a 2 ) b2 r (1 2 )r
a2 pe 1 2 2 b
ss

内半径为r ,外半径为b,在 r = r 处承受内压的厚壁筒
sq r
r rb
sq
p
r
sq r
a p
b
sq r
r b2 p a2 1 2 s s 1 l n 2 2 a b a r 2 2 2 s r a p b s 1 2 2 2 2 2 b b a r
通解:
s r C1 C2 r 2
s q C1 C2 r 2
一、弹性分析
2. 解答
通解:
s r C1 C2 r 2
s q C1 C2 r 2
er
1 1 C1 1 C 2 r 2 E 1 1 C1 1 C 2 r 2 eq E 1 1 C1r 1 C 2 r 1 u E 1 2 2 C1 2 a p b p2 1 2 b a a 2b 2 p2 p1 C2 2 2 b a
u
e
rr
u
p
rr
(1 ) r 2s s 2 2 C b ( 1 2 ) r 2 Eb 2


(1 ) r 2s s 2 2 u b ( 1 2 ) r 2 Eb 2 r


=1/2
3 r 2s s u 4 Er ul ue b2 2 a
弹性极限状态:
a p1

弹塑性力学名词解释

弹塑性力学名词解释

弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。

2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。

一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。

3.体积力:作用在物体每一点的外力。

比如每一点都有的重力。

4.面力:作用在物体表面的外力。

比如水给大坝表面的压力。

5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。

物体表面的任一点的应力和该点的面力是相同的大小和方向。

6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。

直角坐标下的方程形式上简单,其它坐标的复杂些。

7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。

8.位移:分析一点:一点变形前后的位置差值。

变形体研究的位移是该点空间位置的连续函数。

9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。

直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。

10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。

直角坐标下的方程形式上简单,其它坐标的复杂些。

11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。

12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。

13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。

工程弹塑性力学---平面应力应变问题的直角坐标解

工程弹塑性力学---平面应力应变问题的直角坐标解

第六章平面问题的直角坐标解知识点平面应变问题应力表示的变形协调方程应力函数应力函数与双调和方程平面问题应力解法逆解法简支梁问题矩形梁的级数解法平面应力问题平面应力问题的近似性应力分量与应力函数应力函数与面力边界条件应力函数性质悬臂梁问题楔形体问题一、内容介绍对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。

这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。

本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。

弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。

本章学习的困难是应力函数的确定。

虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。

这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。

二、重点1、平面应变问题;2、平面应力问题;3、应力函数表达的平面问题基本方程;4、应力函数的性质;5、典型平面问题的求解。

§6.1 平面应变问题学习思路:对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。

平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。

这种弹性体的位移将发生在横截面内,可以简化为二维问题。

根据平面应变问题定义,可以确定问题的基本未知量和基本方程。

对于应力解法,基本方程简化为平衡微分方程和变形协调方程。

学习要点:1、平面应变问题;2、基本物理量;3、基本方程;4、应力表示的变形协调方程1、平面应变问题部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。

塑性力学-应力状态

塑性力学-应力状态
( x v )l xy m xz n 0 yx l ( y v )m yz n 0 zx l zy m ( z v )n 0
几何关系
l m n 1
2 2 2
l,m,n不能同时为零 ,因此前式为包括三个未知量
应力强度 或广义剪应力
i
3 2
0
1
1 2 2
( 1 2 )2 ( 2 3 )2 ( 3 1 )2 3J 2 ( x y )2 ( y z )2 ( z x ) 2 6( xy yz zx )
2 2 2
0 为平均应力或静
水压力,只引起物 体体积的变化,i 或0只引起物体形 状的变化, 与应 力状态有关。
应力偏量分量、主应力用应力强度、 平均应力与应力状态状态角表示
应力偏量 主应力
s1+s2+s3 = 0
1+2+3 = 30
应力星圆
应力星圆是以距原点O为0的一点为圆心,以
塑性力学
第1章 应力分析
1. 应力状态
2. 三维应力状态分析
3. 三维应力状态的主应力
4. 最大剪应力
5. 等倾面上的正应力和剪应力 6. 应力罗德参数与应力罗德角 7. 应力张量的分解 8. 平衡微分方程
1-1 应力状态
1. 外力
体力、面力
(1) 体力 —— 弹性体内单位体积上所受的外力
Q —— 体力分布集度 F lim (矢量) V 0 V F Xi Yj Zk
八面体上 的正应力 与剪应力
p 0 0
称为应力状态的特征角,cos 为应力形式指数 。

应力分析(Stress Analysis)

应力分析(Stress Analysis)

推导原理: 静力平衡条件: 静力矩平衡条件:
X 0, Y 0, Z 0
M
x
0, M y 0, M z 0
2 1 f ( x ) 1 f ( x) 泰勒级数展开: f ( x dx) f ( x) ...... 2 1! x 2! x
2 2 P 总应力 8 8 8 八面体上的正应力与塑性变形无关,剪应力与塑性变形有 关。

八面体应力的求解思路:
ij (i, j x, y, z) 1, 2 , 3 8 , 8
I1, I 2
因为
2 2 8 ( I1 3I 2 ) 3
ij ij m
' ij
(i,j=x,y,z)
为柯氏符号。
1 其中 m ( x y z ) 即平均应力, 3

' x xy xz x xy xz 1 0 0 . . ' 0 1 0 y yz y yz m ' . . . . z z 0 0 1
' ' ' ' ' ' I1' x y z 1 2 3 0
' ' ' ' ' ' I2 1 2 2 3 3 1' (体现变形体形状改变的程度)
' ' ' ' I3 1 2 3 const
§1.4 应力平衡微分方程
直角坐标下的应力平衡微分方程* ij 0 i
讨论:1. 等效的实质? 是(弹性)应变能等效(相当于)。 2. 什么与什么等效? 复杂应力状态(二维和三维)与简单应力状态(一维)等效 3. 如何等效? 等效公式(注意:等效应力是标量,没有作用面)。 4. 等效的意义? 屈服的判别、变形能的计算、简化问题的分析等。

工程塑性力学(第二章)应变分析、应力分析和屈服条件

工程塑性力学(第二章)应变分析、应力分析和屈服条件


σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ 31 σ 32 σ 33
定义了一个量 Σ ,表征该点的应力状态,在坐标系 Oxyz 中。如果变换到另一个 坐标系 Ox ′y′z′
σ′ τ′ x xy τ ′ xz τ′ σ ′y τ ′yz yx τ′ τ′ σ′ zx zy z
仍然表征同一应力状态,仍为 Σ 。在数学上,在坐标变换时,服从一定坐标变换 式的 9 个数所定义的量叫做二阶张量。此二阶张量称为应力张量:
I1 = σ 1 + σ 2 + σ 3 I 2 = −(σ 1σ 2 + σ 2σ 3 + σ 3σ 1 ) I 3 = σ 1σ 2σ 3
(2-11)
应力偏量 S ij 也是一种应力状态,同样也有不变量。进行类似的推导(或将
I1、I 2、I 3 式中的 σ x 、 σ y 和 σ z 分别用 s x 、 s y 和 sz 代替)即得应力偏量的三个不
2 J2 。 3
(2)等效应 2 + (σ 2 − σ 3 ) 2 + (σ 3 − σ 1 ) 2 2 1 2 2 2 = (σ x − σ y ) 2 + (σ y − σ z ) 2 + (σ z − σ x ) 2 + 6(τ xy + τ yz + τ zx ) (2-17) 2 = 3J 2
s xy = τ xy , s yz = τ yz , s zx = τ zx ,……
(2-4)
则应力偏张量:
⎡σ x − σ m τ xy τ xz ⎤ ⎡ s x s xy s xz ⎤ ⎢ ⎥ ⎢ ⎥ σ y −σm τ yz ⎥ = ⎢ s yx s y s yz ⎥ = S ij = σ ij − σ mδ ij (2-5) ⎢ τ yx ⎢ τ zx ⎢ ⎥ τ zy σz −σm⎥ ⎣ ⎦ ⎣ s zx s zy s z ⎦ 应力球张量表示各向均值应力状态,即静水压力情况。由于静水压力不影响 屈服,所以塑性变形只与应力偏量有关,因此在塑性力学中应力偏量的研究很重 要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解之 将 联立
代入
解之
将 联立
代入
解之
将 联立
代入
解之
二. 最大和最小应力
3 z
3
设一点的主应力及其主方向已知,现以 三主方向取Oxyz坐标,如图所示 设任一斜截面N,其方向余弦为l1、l2、l3 2
则由斜截面正应力公式 及
1x
N
12
N
O
y2
1
主应力单元体
3
求极值
解之 同理,将
xxyy ( x 12))22 x2x2yy
xxyy ( y 12))22 x2x2yy
ll33((21) 0
设 为第一主方向与x轴的夹角
则由三角函数关系可得
例2-2 已知弹性体内部某点的 应力状态为
a 0 a
ij
0
a
0
a 0
a 0 a
求主应力和主方向。
解:不变量的计算
代入特征方程
C zx pz
yx
xy
xz
x
zy yz
N
pN y
设斜截面上全应力为:
O y
yz
x
zy
xz xy zx
yzp y
B
y
沿坐标的分量为:
px
A
z
x
简写为:
设四面体斜面的面积为:
则三个直面的面积为:
简写为:
考虑四面体微元的平衡
X 0 Y 0
pxdSN xdSx yxdSy zxdSz 0 pydSN xydSx ydSy zydSz 0
将 向外法线和斜面分解为 和 。


将Cauchy定理代入:
展开整理得:
z
pz
N
x
px
N N
pN py
y

可求得:
特例:平面应力状态斜截面应力公式
xy yx y
x
N y
py
px N
x
N
材料力学中斜截面应力公式为
原因?
0 1 2
例2-1
物体中一点的应力张量为
1
2
0
MPa
,
求作用在过此
仍视 为外法线的坐标面为
将该斜截面的全应力分量
投影即得

坐标系下的斜截面
分别向
方向
同理
所以 此系二阶张量的本质特征
数学上将满足上式的一组量称为二阶张量,即决定一点应力 状态的9个应力分量 是一个二阶张量,称为应力张量
§2-3 应力状态的主应力和主方向
一. 应力状态的主应力和主方向
定义:1. 当 P 点的某一斜截面上的切应力为零时,则该斜截面
为什么称为不变量?
求解特征方程得主应力,并按从大到小排序
分别将
回代
(取两式)
联立
求解,得三组方向余弦。即

一定为实根(可证明),分别称为第一、第二和
第三主应力。

一定相互垂直(可证明),分别称为第一、第
二和第三主方向。
◆ 若取

坐标轴

与坐标选取无关
特例1:平面应力状态主应力及主方向
代入特征方程 解方程(若按大小排序其解为)
xyl1 ( y )l2 zyl3 0
xzl1 yzl2 ( z )l3 0
主平面方程

x yx
zx

xy y zy 0
xz
yz z
展开整理,并考虑

称之为P点应力状态的特征方程或主应力方程
其中
也称为体积应力,习惯上用 表示。
分别称之为P点应力状态的第一、第二和第三不变量
z
pz
Z 0
pzdSN xzdSx yzdSy zdSz 0
p jdSN ijdSi 0
所以 p j ijli 即
p jdSN ijlidSN px xl1 yxl2 zxl3 py xyl1 yl2 zyl3
yx xy
x
O y yz zy
xz zx
x px
z
pz xzl1 yzl2 zl3

pi jil j
Cauchy定理
N
pN py
y
● 已知一点应力状态,可求过该点任意斜截面上的全应力在三 个(正交)坐标上作用的面力为 px , py , pz
则Cauchy公式表明了边界外力(面力)与该点应力的关系 ——应力边界条件
上的正应力称为 P点的一个主应力。
2. 该斜截面称为P点的一个应力主面(主平面)。
3. 主平面法线方向称为P点一个应力主向,或称主方向。
由定义,在主平面上
则全应力
将其向三个坐标投影
xl1 yxl2 zxl3 l1
由Cauchy公式 ( x )l1 yxl2 zxl3 0
xyl1 yl2 zyl3 l2 xzl1 yzl2 zl3 l3
2 0 1
点的平面 x 3y z 1上的法向和切向应力。
解: 平面外法向的方向余弦
l1
1
12 32 12
1 11
p1 1 jl j
5 11
3
3
l2
12 32 12
11
l3
1
12 32 12
1 11
p2 2 jl j
7 11
p3 3 jl j
3 11
N ijlil j 1 jl1l j 2 jl2l j 3 jl3l j 11l1l1 12l1l2 13l1l3
第二章 应力分析
§2-1 斜截面上的应力 §2-2 应力状态的坐标变换 §2-3 应力状态的主应力和主方向 §2-4 应力张量的分解 §2-5 平衡微分方程 §2-6 应力边界条件
§2-1 斜截面上的应力
z
已知物体在任一点O的六个应力分量 ij , 求经
z
过O点的任一斜截面上的应力
令平面ABC的外法线为N,其方向余弦为
21l2l1 22l2l2 23l2l3 31l3l1 32l3l2 33l3l3
0 3 2 3 18 0 2 0 1 29 11 11 11 11 11 11 11
N
px2
py2
pz2
2 N
25 49 9 292 6 2
11 11 11 121 11
§2-2 应力状态的坐标变换

回代
((xyxxyl1xl(12(1))2x1xy()()lll111l((1(33y(2y1))))2y1yyxy)x2)xll1lllll22l223223(((((33(((222111)))))
0
0 0 0 0
联立
解之
l1(ll311)((21) 0 l2(3) 0 l3l(l232)((21) 1
已知一点的应力状态在 Oxyz 坐标系下的应力 张量为 ij,则该点在Oxyz坐标系下(旋转)的应
力张量 ij 有什么关系?
设两坐标系三轴的方向余弦为 定义为
z z z
z
zx xz x
xz x
zy
zy yz
yz
xy
xy
yx
yx
y y y
x
y
x
x
若视 为外法线的坐标面为 则
同理
坐标系下的斜截面
相关文档
最新文档