化学选修三第二章第二节分子的立体构型
人教化学选修3第二章第二节分子的立体构型(共23张PPT)

员、计时员、发言员
• 时间:5分钟 • 约定:“ 蓝矾苦矾,蓝色晶体”停止实
验,倒数五个数,归位并且安静。
实验探究2:CuSO4+NH3·H2O
化学
天蓝色 溶液
蓝色 沉淀
深蓝色 溶液
Cu 2+ +2NH3 . H2O
Cu(OH)2 + 4NH3 . H2O
蓝色沉淀
探究2 除实水验外探究,[是2—否2]有(其取实他验电[2子-1给]所予得硫体酸?铜溶
液1/3实验)根据现象分析溶液成分的变化并说 明你的推断依据,记录现象和写出相关的离子 方程式,找出配位键,配体?
• 任务: • (1)7人小组合作完成实验 • (2)将实验现象记录于小卡上,顺时针
交流,实验报告,实验最快小组把结果写 在大板卡上。
叶绿素结构示意图
化学
高二选修3 物质结构与性质
第二章第二节 分子的立体构型 ——配合物理论简介
化学
授课人:杨远贞
目标 化学
什么是配位键?
配位键属于 哪一类化学键?
探究1 为什么CuSO4 •5H2O晶体是蓝 色而无水CuSO4 是白色?
实验探究[2—1] 向盛有固体样品的试管中,分别加1/3试管
水溶解固体,观察实验现象并填写下表
固体
C白uS色O4
Cu绿Cl色2•2H2O
深Cu褐Br色2
NaCl
白色
K白2S色O4
KBr
白色
溶液
颜色
无色离子:
什么离子
呈天蓝色:
探究1 为什么CuSO4 •5H2O晶体是蓝 色而无水CuSO4 是白色?
• 任务: • (1)7人小组合作完成实验 • (2)将实验现象以表格的形式记录于小
人教版高中化学选修3--2.2分子的立体结构-课件品质课件PPT

用中心原子的价电子对数预测分子的立体结构:
价电子对n VSEPR模型
例
n=2
直线形
CO2、 CS2
n=3
平面三角形 CH2O、BF3
n=4
正四面体形
CH4、 CCl4
n=5
三角双锥形
PCl5
n=6
正八面体形
SCl6
思考并填写下列表格:
中心原
代表物 子价电
子对数
中心原子 孤对电子 对数
VSEPR模型
型,下列说法正确的(C )
• A.若n=2,则分子的立体构型为V形 • B.若n=3,则分子的立体构型为三角锥形 • C.若n=4,则分子的立体构型为正四面体形 • D.以上说法都不正确
课堂练习
• 4.美国著名化学家鲍林(L.Pauling, 1901—1994)教授具有独特的化学想象力: 只要给他物质的分子式,他就能通过“毛
CO2 2 0
直线形
CH2O 3 0
平面三角形
C2H4 3
0
平面三角形
SO42- 4
0
四面体形
H2O 4 2
四面体形
NH3 4 1
平面三角形
中心原子价 中心原子孤 电子对数 对电子对数
2
0
4
0
2
0
4
1
3
1
3
0
中心原子上存在孤对电子的分子: • 先由价层电子对数得互斥模型, • 然后略去孤对电子占有的空间, • 分子的立体结构。
• 分子中的价层电子对(孤对电子和σ键电子)
由于斥力作用而趋向尽可能彼此远离以减小斥力, 分子尽可能采取对称的空间构型,电子对之间的夹 角越大,排斥力越小。
人教版化学选修三第二章第二节分子的立体构型(共87张PPT)

2020/7/27
正八面
体形
SF6
正方形 XeF4
24
价电子对的排斥力
1、如果ABn型分子中有双键或叁键,价电子互斥理论仍适用, 把双键或叁键看成一对电子。
2、价层电子对相互排斥作用的大小取决于电子对之间的夹 角和电子的成键情况,一般规律如下:
1).电子对的夹角越小,排斥力越大 2).由于成键电子对受到两个核的吸引,电子云比较密紧,
数
4
3
2
孤电子对 VSEPR模 分子的立体
数
型及名称 构型及名称
H
0
正四面体
H
C
H
正四面H体
1
四面体
N
H
H
H 三角锥形
2
四面体
O
H H
V形 20
应用反馈
化学式
H2S BF3 NH2-
中心原子
孤对电子 数
σ键电子 对数
VSEPR模型
2
2
四面体
0
3 平面三角形
2
2
四面体
空间构型
V形 平面三角形
V形
课本P39思考与交流
2020/7/27
18
孤电子对数的计算 =½(a-xb)
分子或 中心原 a
x
b
离子 子
H2O
O
6
1
2
SO2
S
6
2
2
NH4+
N
5-1=4
4
1
CO32- C
4+2=6 3
2
中心原子 上的孤电 子对数
2
1
0
0
4.价层电子对互斥模型即VSEPR模型应用
高中化学 第2章第2节 分子的立体构型 新人教版选修3

节
分
子
的
课堂互动讲练
立
体
构
型
知能优化训练
课前自主学案
一、形形色色的分子 分子的立体构型:两个以上原子构成的分子中 的原子的空间关系问题。 1.三原子分子的立体构型有直线形和V形两种。 如:
化学 式
电子式
结构式
键角
分子的 立体模
型
立体构 型
CO2
__18_0_°__
直__线__形__ _
H2O
_1_0_5_°__ _
化学 式
电子式
结构式
键角
分子的 立体模
型
立体构 型
Байду номын сангаас
CH4
_1_0_9_°_2_8_′_ _
_正__体_四__形__面___
CCl4
_1_0_9_°__2_8′_ _
_正__体__四__形_面___
思考感悟 1.五原子分子都是正四面体结构吗? 【提示】 不是,如CH3Cl、CH2Cl2、CHCl3等, 虽为四面体结构,但由于碳原子所连的四个原子 不相同,四个原子电子间的排斥力不同,使四个 键的键角不再相等,所以并不是正四面体结构。
杂化类型 sp
sp2
sp3
参于杂化 1个s轨道 1个s轨道 1个s轨道
的原子轨 和
和
和
道及数目 1个p轨道 2个p轨道 3个p轨道
杂化轨道
2
的数目 ______
3 ______
4 ______
2.杂化轨道类型与分子空间构型的关系
杂化类型 sp
sp2
sp3
杂化轨道 间的夹角
180° ______
120° 109°28′ ______ _________
人教化学选修3第二章第二节分子的立体构型(共18张PPT)

▪ 化形成键;如果有一个双键,则有一个键,用去一 个P轨道形成SP2杂化;例如:C2H4
▪ 如果全部是单键,一般来说采取SP3杂化;例如:CH4
3、根据中心原子的VSEPR模型判定
VSEPR模型 直线型
平面三角形 四面体
杂化理论简介
观察几张我们熟悉的 有机分子结构图,你知道 它们是怎么成键的吗??
乙烯
苯
乙炔
请大家看书P39思考:
1、画出碳原子的核外电子排布图;
2、碳原子只有2个未成对电子,如何 与氢原子形成CH4,而不是CH2?
C:2s22p2
2p
2s
为了解释此问题,美国化学家鲍林提出了杂 化轨道理论
杂化轨道理论
4
109。28′
'
正四面体
BF3 BCl3 CH 4 NH3
H2O
SiCl4 PH 3
H 2S
三角形
3
四面体 三角锥 V型
4
判断分子或离子中心原子杂化的方法:
1、依据中心原子的价层电子对
价层电子对数 中心原子杂化类型
实例
2
SP
BeCl2
3
SP2
BF3
4
SP3
CH4
2、看中心原子有没有形成双键或者三键
乙烯中碳以sp2 杂化,C=C中一
个σ和一个π
乙炔中碳以sp杂 化,C=C中一个
σ和两个π
本节要求:
1、了解几种常见的杂化方式; 2、会用不同方法判断分子或者离子中 心原子的杂化方式; 3、会用杂化轨道理论解释某些物质成 键情况;
课后思考:
人教版高中化学选修三第二章第二节分子的立体结构 课件(共19张PPT)

思考
↑↓
↑↓
1s 2s
↑↑
2p
根据碳原子的核外电子排布图,思考为什么碳原子与
氢原子结合形成CH4,而不是CH2 ?
↑↓碳原子的一个2S电子受外界影响跃迁到2P空轨道 上,使碳原子具有四个单电子,因此碳原子与氢原子 结合生成CH4。
思考
如果C原子就以1个2S轨道和3个2P轨道上的单电子,
D.H2O
B ❖ 2.下列分子中的中心原子杂化轨道的类型相同的是( )
❖ A.CO2与SO2
B.CH4与NH3
❖ C.BeCl2与BF3
D.C2H2与C2H4
❖ 3.ClO-、ClO2-、ClO3-、ClO4-中Cl都是以sp3杂化轨道与 O原子成键的,试推测下列微粒的立体结构
直线形
V形 三角锥形 正四面体
强调:杂化前后轨道数目不变。即杂化轨道数=参与杂化的轨道数目 如:1个s,1个p形成2个完全相同的sp杂化轨道,
1个s,2个p形成3个完全相同的sp2杂化轨道, 1个s,3个p形成4个完全相同的sp3杂化轨道, 杂化后轨道伸展方向、形状发生改变。
2说明:
(1)只有能量相近的原子轨道才能杂化。 (2)杂化轨道数目和参与杂化的原子轨道数目相等,杂 化轨道能量相同。
例题
❖ 例:有关乙炔分子中的化学键描述不正确的是( )
❖ A.两个碳原子采用sp杂化方式
B
❖ B.两个碳原子采用sp2杂化方式
❖ C.每个碳原子都有两个未杂化的2p轨道形成π键
❖ D.两个碳原子形成两个π键
返回
C ❖ 1.下列分子中心原子是sp2杂化的是 ( )
❖ A.PBr3
B.CH4
C.BF3
化学选修3第二章第二节分子的立体构型

3个sp2杂化轨 4个sp3杂化轨 道 道
1200 1090 28’
1800
空 间 构 型
实 例
直 线形
平面三角形
四面体形 CH4 , H2O
BeCl2 CO2 C2H2 BF3 , C2H4
杂化轨道只用于形成σ键或者用来容纳孤对电子,剩 余的p轨道可以形成π键
1、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是 因为( C ) A.两种分子的中心原子杂化轨道类型不同,NH3为sp2杂化, 而CH4是sp3杂化 B.NH3分子中N原子形成3个杂化轨道,CH4分子中C原子形 成4个杂化轨道 C.NH3分子中有未成键的孤电子对,它对成键电子的排斥 作用较强 D.氨气分子中氮原子电负性强于甲烷分子中的碳原子 2、用价层电子对互斥理论预测H2S和BF3的立体结构,两个 结论都正确的是( D )
sp2杂化轨道的形成过程
120° z z z z
y x x
y x
y x
y
sp2杂化轨道由1个s轨道和2个p轨道杂化而得到三个sp2杂化轨道。 三个杂化轨道在空间分布是在同一平面上,互成120º 例如:C2H4
C2H4(sp2杂化)
sp杂化轨道的形成过程
z
z
180°
z
z
y x x
y x
y x
y
sp杂化轨道由1个s轨道和1个p轨道杂化而得到两个sp杂化轨道。 两个杂化轨道在空间分布呈直线型,互成180º 例如:C2H2
4、下列分子或离子中,不含有孤对电子的是( D ) A、H2O B、H3O+ C、NH3 D、NH4+
5、以下分子或离子的结构为正四面体,且键角为 109°28′ 的是( B ) ①CH4 ②NH4+ ③CH3Cl ④P4 ⑤SO42A、①②③ B、①②④ C、①②⑤ D、①④⑤
人教版选修三:第二章第二节《分子的立体构型》课件(人教版选修3)

测分子体结构: 红外光谱仪→吸收峰→分析。
同为三原子分子,CO2 和 H2O 分子的空间结 构却不同,什么原因?
直线形
V形
同为四原子分子,CH2O与 NH3 分子的的空 间结构也不同,什么原因?
平面三角形
三角锥形
二、价层电子对互斥理论(VSEPR) 二、价层电子对互斥理论(VSEPR) 1、VSEPR理论要点:
例:
1 中心原子上的孤电子对数= 2 1 中心原子上的孤电子对数= 2
NH3
(5-3×1)=1
(6-2×1)=2
H 2O BF3
练习
1 中心原子上的孤电子对数= 2
(3-3×1)=0
1 中心原子上的孤电子对数= 2
(a-xb)
(4-4×1)=0 (4-2×2)=0
练习
1 中心原子上的孤电子对数= 2 1 中心原子上的孤电子对数= 2
Eg: CH3+ 孤对电子数=(4-1-3*1)/2=0 CH3孤对电子数=(4+1-3*1)/2=1
1 中心原子上的孤电子对数= 2
x为与中心原子结合的原子数 b为与中心原子结合的原子最多能接受的电子数 (氢为1,其他为“8-价电子数”)
(a-xb)
a为中心原子的价电子数(阴、阳离子还要分别加、减离子的电荷数)
小结:
中心原子
价层电子对互斥模型
中心原子 分子 代表物 结合的原子数 类型 CO2 2 3 4 2 3 AB2 空间构型 直线形
无孤对电子 CH2O CH4 H2O NH3
AB3 平面三角形 AB4 AB2 AB3 正四面体 V形 三角锥形
有孤对电子
问题:按照价键理论,C的价态应为多少?
一个C原子可以和几个氢原子结合形成分子?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品教育-可编辑-选修三第二章第2节 分子的立体构型 第2节 分子的立体构型一、常见分子的空间构型1.双原子分子都是直线形,如:HCl 、NO 、O 2、N 2 等。
2.三原子分子有直线形,如CO 2、CS 2等;还有“V ”形,如H 2O 、H 2S 、SO 2等。
3.四原子分子有平面三角形,如BF 3、BCl 3、CH 2O 等; 有三角锥形,如NH 3、PH 3等; 也有正四面体,如P 4。
4.五原子分子有正四面体,如CH 4、CCl 4等,也有不规则四面体,如CH 3Cl 、CH 2Cl 2、CHCl 3。
另外乙烯分子和苯分子都是平面形分子。
二、价层电子对互斥理论(Valance Shell Electron Pair Repulsion Theory )简称VSEPR 适用AD m 型分子1、理论模型分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。
2、用价层电子对互斥理论推断分子或离子的空间构型的一般步骤: (1)确定中心原子A 价层电子对数目 法1.经验总结中心原子的价层电子对数=21(中心离子价电子数+配对原子提供电子总数) 对于AB m 型分子(A 为中心原子,B 为配位原子),计算方法如下:n =中心原子的价电子数+每个配位原子提供的价电子数×m 2注意:①氧族元素的氧做中心时:价电子数为 6, 如 H 2O ,H 2S ;做配体时:提供电子数为 0,如在 CO 2中。
②如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。
如PO -34中P 原子价层电子数5+(0×4)+3 = 8;NH +4 中N 原子的价层电子数5+(1×4)-1 = 8。
③结果为单电子时视作有一个电子对。
例:IF 5 价层电子对数为21[7+(5×1)] = 6对 正八面体(初步判断) N H +4 价层电子对数为21[5+(4×1)-1] = 4对 正四面体 PO -34 价层电子对数为21[5+(0×4)+3] = 4对 正四面体 NO 2 价层电子对数为21[5+0] = 2.5−→−3对 平面三角形 法2. 确定中心原子A 价层电子对数目-----普遍规则中心原子A 价层电子对数目=成键电子对数+孤对电子数 (VP = BP + LP ) VP 是价层电子对,BP 是成键电子对(BOND ),LP 是孤对电子对(LONE PAIR ) VP = BP + LP =与中心原子成键的原子数+中心原子的孤对电子对数LP精品教育-可编辑-=配位原子数+LPLp =21(中心原子价电子数—配位原子未成对电子数之和) IF 5 Lp =21[7-(5×1)] = 1构型由八面体−→−四方锥NH +4Lp =21[(5-1)-(4×1)] = 0 正四面体 PO -34Lp =21[(5+3)-(4×2)] = 0 正四面体 SO -24Lp =21[(6+2)-(4×2)] = 0 正四面体 NO 2 Lp =21[5-(2×2)] =21−→− 1 构型由三角形−→−V 形 SO -23 Lp =21[(6+2)-(3×2)] = 1 构型由四面体−→−三角锥法3:由Lewis 结构式或结构式直接写出,双键、三键都是1对电子P ClClCl ClClP Cl Cl ClP ClClCl Cl +Cl P Cl ClClClCl-Cl Cl ClCl +Cl P Cl Cl Cl Cl Cl -VP: 5 4 4 6 4(2)价层电子对数目 2 3 4 5 6 价层电子对构型 直线形 三角形 四面体 三角双锥 八面体精品教育-可编辑-(3)分子空间构型确定价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。
当中心原子无孤对电子时,两者的构型一致; 电子对数 目 中心原子杂化类型 电子对的空间构型 成键电子对数 孤电子 对 数 电子对的 排列方式 分子的空间构型实 例2 sp 直 线 2 0 直 线 BeCl 2CO 23sp 2三角形3三角形 BF 3SO 3 2 1V —形 SnBr 2 PbCl 2 4sp3四面体4四面体CH 4 CCl 4 3 1三角锥NH 3 PCl 3 2 2V —形H 2O①AD m 型分子的空间构型总是采取A 的价层电子对相互斥力最小的那种几何构型; ②分子构型与价层电子对数有关(包括成键电子对和孤电子对); ③分子中若有重键(双、叁键)均视为一个电子对; ④电子对的斥力顺序:孤电子对-孤电子对>孤电子对-键对>键对-键对由于三键、双键比单键包含的电子数多,所以其斥力大小次序为三键>双键>单键。
叁键与叁键>叁数与双键>双键与双键>双键与单键>单与单键。
4、价层电子对斥力作用对键角影响的定性解释由于键合电子对受到左右两端带正电原子核的吸引,而孤对电子对只受到一端原子核吸引,相比之下,孤对电子对较“胖”,占据较大的空间,而键合电子对较“瘦”,占据较小的空间。
这样就解释了斥力大小的顺序:孤电子对-孤电子对>孤电子对-键电子对>键电子对-键电子对。
如:CH 4、NH 3、H 2O 中的键角∠HAH 分别为109.5°、107.3°、104.5°。
类似地,重键较单键占据较大的空间,故有斥力大小的顺序:t-t>t-d>d-d>d-s>s-s(t-叁键,d-双键,s-单键)又如,SO 2Cl 2分子属AX 4L 0=AY 4,因S=O 键是双键,S-Cl 键是单键,据顺序有:∠OSO>109°28''''∠ClSCl<∠OSCl<109°28''''。
此外,键的极性对键角也有影响。
中心原子电负性较大,成键电子对将偏向中心原子,成键电子对之间斥力增大,键角增大,如:NH 3、PH 3、AsH 3分子中的键角(∠HAH)依次为107°、93.08°、91.8°;配位原子电负性较大,成键电子对将偏离中心原子,成键电子对之间斥力减小,键角减小,如:H 2O 、OF 2分精品教育-可编辑-子中的键角(AOA)依次为104.5°、102°。
据此,可解释下列键角变化:NO 2+、NO 2、NO 2-键角(∠ONO)依次为180°、134.3°、115.4°。
二、价层电子对互斥理论1940年 Sidgwick 提出价层电子对互斥理论, 用以判断分子的几何构型. 分子 ABn 中, A 为中心, B 为配体, B 均与A 有键联关系. 本节讨论的 AB n 型分子中, A 为主族元素的原子. 1. 理论要点AB n 型分子的几何构型取决于中心 A 的价层中电子对的排斥作用. 分子的构型总是采取电子对排斥力平衡的形式.1) 中心价层电子对总数和对数a)中心原子价层电子 总数等于中心 A 的价电子数(s + p)加上配体在成键过程中提供的电子数, 如 CCl 4 4 + 1×4 = 8 b)氧族元素的氧族做中心时: 价电子数为 6, 如 H 2O, H 2S;做配体时:提供电子数为 0, 如在 CO 2中. c)处理离子体系时, 要加减离子价d)总数除以 2 ,得电子对数: 总数为奇数时,对数进 1,例如:总数为 9,对数为 52) 电子对和电子对空间构型的关系 电子对相互排斥,在空间达到平衡取向.3) 分子的几何构型与电子对构型的关系若配体数和电子对数相一致,各电子对均为成键电对,考虑分子构型时,只考虑原子 A ,B 的位置,不考虑电子、对电子等。
以上三种情况中,孤对电子只有一种位置考虑。
孤对电子的位置若有两种或两种以上的位置可供考虑,则要选择斥力易于平衡位置,而斥力大小和两种因素有关: a)角度小,电对距离近,斥力大;b)角度相同时,孤对——孤对的斥力最大。
因为负电集中,孤对-成键斥力次之,而成键电对-成键电对之间斥力最小,因有配体原子核去分散电对的负电性。
于是,要避免的是斥力大的情况在 90°的方向上。
90 °的分布 :孤对-孤对 0 0 1 孤对-成键 6 4 3 成键-成键 0 2 2 乙种稳定,称 “T”字型精品教育-可编辑-则分子构型和电子对构型一致。
配体数不可能大于电子对数. 当配体数少于电子对数时,一部分电子对成为成键电对,另一部分电子成为孤对电子,确定出孤对电子的位置,分子构型才能确定。
电子对数 配体数 孤电对数 电对构型 分子构型例1. 利用价层电子对互斥理论判断下列分子和离子的几何构型(总数、对数、电子对构型和分子构型): AlCl 3 H 2S SO 32- NH 4+ NO 2 IF 3解题思路:根据价层电子对互斥理论, 计算单电子个数, 价层电子对数, 孤对电子对数, 进而判断分子的构型(注意:必须考虑离子的价态!)电子对构型是十分重要的结构因素,要注意!价层电子对数和配体数是否相等也是十分重要的。
2. 影响键角的因素 1) 孤对电子的影响孤对电子的负电集中,可以排斥其余成键电对,使键角变小,NH 3 4对 电对构型四面体,分子构型三角锥。
键角 HNH 为107°,这是由于孤对电子对 N -H 成键电 对的排斥,使109°28′变小, 成为107°。
2) 中心电负性的影响键角依次减小,如何解释?3. 多重键的处理某配体(非VIA 族)与中心之间有双键和三键时,价层电子对数减 1 或 2 。
如乙烯 H 2C=CH 2 以左碳为中心电子总数 4 + x + 2 = 8 , 4对, 减 1,3 对,为三配体,呈平面三角形:不提供共用电子, 是因为O, S 等可通过键, 反馈键或大键, 将提供的电子又重新得回; 另外, 端基氧或硫, 形成的双键, 要求减去一对价电子, 也得到同样结果.非端基氧或硫, 要将O或S的价电子计入其中, 如在H2CO3中, C为中心, 价电子为4(C) + 2X1(O) = 6, 价电对= 3, 电子对构型和分子构型一致, 为三面体:3) 配体电负性的影响中心相同,配体电负性大时,电对距离中心远,键角可以小些,故有:-可编辑-精品教育【练习】1.用价层电子对互斥理论预测H2S和BF3的立体结构,两个结论都正确的是( )A.直线形;三角锥形B.V形;三角锥形C.直线形;平面三角形D.V形;平面三角形2.下列分子中的中心原子杂化轨道的类型相同的是( )A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H4与C2H23.(1)某校化学课外活动小组的同学对AB3型分子或离子的空间构型提出了两种看法,你认为是哪两种?若两个A—B键均是极性键且极性相同,它们分子的极性是怎样的?举例说明。