专题四:幂函数-X

合集下载

幂函数PPT教学课件

幂函数PPT教学课件

盖罐 (明代)
罐平口直颈,长圆 腹,底微向里凹。肩 部有六瓣柿蒂纹。盖 面中心有“周氏俊造” 阳文篆字款。
印花小碟(明代)
小碟同时出土两件, 形制大小及纹饰完全一致, 唯颜色各异,一件朱泥制 成,呈赭色,一件紫泥制 成,呈深褐色。胎极薄, 厚度为0.1cm。底内凸。 制造工艺简练,先用手工 捏塑成形,底部指纹清晰 可见,然后模印花卉。出 土于扬州城北公社卜西大 队马庄小队。
紫砂原料,是颗粒较粗的陶土,它和景德镇、龙泉窑的 瓷土同属于高岭----石英----云母类型。但含铁、硅量较高。 从颜色上分主要有三种:一种呈紫红色和浅紫色,称作“紫 砂泥”,肉眼可见含有云母微粒,烧成后呈紫黑色或紫棕色; 一种呈灰白色或灰绿色,称作“绿泥”,烧成后呈浅灰色或 灰黄色,;还有一种呈红色,称作“红泥”,烧成后为灰黑 色。利用这些陶土烧制出的器皿就是紫砂器。
试比较m、n、p的大小。
6 6
m
4
np
m4 pn
2
2
-4
-2
-2
-4
2
4
6
-4
-2
-2
-4
2
4
6
p2 p3
例三 已知幂函数—y —x—2 —2—( p—,Z)
在—(—0,——内) y随x的增大而减
小,且在定义域内图象关于y轴
对称,求p的值及相应的幂函数。
• 解:由题意可得 • ∴ -1<p<3
1 p2 p 3 0
石榴形小杯 (清代)
泥质紫褐色中闪 点点金星,俗称“桂 花砂”。器形为半爿 石榴,树枝形杯把, 底部雕塑枝叶,杯把 旁塑一蓓蕾。整个造 型稳重协调。在蓓蕾 与树枝中间藏有阳文 篆书“陈鸣远”三字 印。

专题幂函数以及函数的应用(解析版)

专题幂函数以及函数的应用(解析版)

专题10 幂函数以及函数的应用【考点预测】 考点一、幂函数概念形如y x α=的函数,叫做幂函数,其中α为常数. 考点诠释:幂函数必须是形如y x α=的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:4223,1,(2)y x y x y x ==+=-等都不是幂函数.考点二、幂函数的图象及性质 1.作出下列函数的图象:(1)y x =;(2)12y x =;(3)2y x =;(4)1y x -=;(5)3y x =.考点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,)+∞都有定义,并且图象都过点()1,1;(2)0α>时,幂函数的图象通过原点,并且在区间[0,)+∞上是增函数.特别地,当1α>时,幂函数的图象下凸;当01α<<时,幂函数的图象上凸;(3)0α<时,幂函数的图象在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,)+∞或[0,)+∞,作图已完成; 若在(0)-∞,或0]-∞(,上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()a f x x =. 4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 考点三、解决实际应用问题的步骤: 第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x ,函数为y ,并用x 表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果. 第四步:再转译为具体问题作出解答.【典型例题】例1.(2022·全国·高一单元测试)已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围. 【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.例2.(2022·全国·高一单元测试)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为2,求实数m 的值.【解析】(1)因为2()(33)af x a a x =-+为幂函数,所以2331a a -+=,解得2a =或1a = 因为()f x 为偶函数,所以2a =,故()f x 的解析式2()f x x =;(2)由(1)知()()2213g x x m x =+--,对称轴为122mx -=,开口向上,当1212m-≤即12m ≥-时,()()max 3362g x g m ==+=,即16m =-; 当1212m ->即12m <-时,()()max 1122g x g m =-=--=,即32m =-; 综上所述:16m =-或32m =-.例3.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大?【解析】(1)当产量小于或等于50万盒时,20020018010020300y x x x =---=-, 当产量大于50万盒时,222002006035001403700y x x x x x =----=-+-, 故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时,2050300700y ≤⨯-=; 当50x >时,21403700y x x =-+-, 当140702x ==时,21403700y x x =-+-取到最大值,为1200.因为7001200<,所以当产量为70万盒时,该企业所获利润最大.例4.(2022·全国·高一课时练习)如图,某日的钱塘江观测信息如下:2017年⨯月⨯日,天气:阴;能见度:1.8千米;11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地;12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数:21(125s t bt c b =++,c 是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02(30)125v v t =+-,0v 是加速前的速度) 【解析】(1)11:40到12:10的时间是30分钟,则(30,0)B ,即30m =, 潮头从甲地到乙地的速度120.430=(千米/分钟). (2)因潮头的速度为0.4千米/分钟,则到11:59时,潮头已前进190.47.6⨯=(千米), 此时潮头离乙地127.6 4.4-=(千米),设小红出发x 分钟与潮头相遇, 于是得0.40.48 4.4x x +=,解得5x =, 所以小红5分钟后与潮头相遇.(3)把(30,0),(55,15)C 代入21125s t bt c =++,得221303001251555515125b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩,解得225b =-,245c =-, 因此21224125255s t t =--,又00.4v =,则22(30)1255v t =-+, 当潮头的速度达到单车最高速度0.48千米/分,即0.48v =时,22(30)0.481255t -+=,解得35t =,则当35t =时,21224111252555s t t =--=, 即从35t =分钟(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头,设小红离乙地的距离为1s ,则1s 与时间t 的函数关系式为10.48(35)s t h t =+≥, 当35t =时,1115s s ==,解得:735h =-,因此有11273255s t =-,最后潮头与小红相距1.8千米,即1 1.8s s -=时,有212241273 1.8125255255t t t ---+=, 解得150t =,220t =(舍去),于是有50t =,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时0.48560.4⨯=(分钟), 因此共需要时间为6503026+-=(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.例5.(2022·全国·高一课时练习)已知幂函数()()2253mf x m m x =-+的定义域为全体实数R.(1)求()f x 的解析式;(2)若()31f x x k >+-在[]1,1-上恒成立,求实数k 的取值范围.【解析】(1)∵()f x 是幂函数,∴22531m m -+=,∴12m =或2.当12m =时,()12f x x =,此时不满足()f x 的定义域为全体实数R , ∴m =2,∴()2f x x =.(2)()31f x x k >+-即2310x x k -+->,要使此不等式在[]1,1-上恒成立,令()231g x x x k =-+-,只需使函数()231g x x x k =-+-在[]1,1-上的最小值大于0.∵()231g x x x k =-+-图象的对称轴为32x =,故()g x 在[]1,1-上单调递减, ∴()()min 11g x g k ==--, 由10k -->,得1k <-, ∴实数k 的取值范围是(,1)-∞-.【过关测试】 一、单选题1.(2022·全国·高一单元测试)若函数()f x x α=的图象经过点19,3⎛⎫ ⎪⎝⎭,则19f ⎛⎫= ⎪⎝⎭( )A .13B .3C .9D .8【答案】B【解析】由题意知()193f =,所以193α=,即2133α-=, 所以12α=-,所以()12f x x -=,所以1211399f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.故选:B2.(2022·全国·高一课时练习)已知432a =,254b =,1325c =,236d =,则( ) A .b a d c <<< B .b c a d <<< C .c d b a <<< D .b a c d <<<【答案】D 【解析】由题得4133216a ==,2155416b ==,1325c =,2133636d ==,因为函数13y x =在R 上单调递增,所以a c d <<.又因为指数函数16x y =在R 上单调递增,所以b a <.故选:D .3.(2022·全国·高一课时练习)已知幂函数()a f x x 的图象过点(9,3),则函数1()()1f x y f x -=+在区间[1,9]上的值域为( ) A .[-1,0] B .1[,0]2-C .[0,2]D .3[,1]2-【答案】B【解析】解法一:因为幂函数()a f x x 的图象过点()9,3 ,所以93=a ,可得12a =,所以()f x x =1()12(1)1()1111f x x x y f x x x x ---+===++++.因为19x ≤≤,所以214x ≤≤,故11,021y x ⎡⎤=∈-⎢⎥+⎣⎦.因此,函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .解法二:因为幂函数()a f x x 的图象过点(9,3),所以93a =,可得12a =, 所以()f x x =[1,9]x ∈,所以()[1,3]f x ∈.因为y =1()()1f x f x -+,所以1()1y f x y -=+,所以1131y y -≤≤+,解得102y -≤≤,即函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .4.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则( )A .m n 、是奇数且1mn< B .m 是偶数,n 是奇数,且1m n> C .m 是偶数,n 是奇数,且1m n< D .m n 、是偶数,且1m n> 【答案】C【解析】函数n m nm y x x =y 轴对称,故n 为奇数,m 为偶数, 在第一象限内,函数是凸函数,故1mn<, 故选:C.5.(2022·全国·高一期中)幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( ) A .27 B .9C .19D .127【答案】A【解析】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-, 当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A.6.(2022·全国·高一课时练习)向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .7.(2022·全国·高一单元测试)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位60030x x ⎛⎫+- ⎪⎝⎭元(试剂的总产量为x 单位,50200x ≤≤),则要使生产每单位试剂的成本最低,试剂总产量应为( )A .60单位B .70单位C .80单位D .90单位【答案】D【解析】设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元, 职工的工资总额为750020x +元,后续保养总费用为60030x x x ⎛⎫+- ⎪⎝⎭元, 则250750020306008100810040240220x x x x y x x x x x+++-+==++≥⋅=, 当且仅当8100x x=,即90x =时取等号, 满足50200x ≤≤,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位. 故选:D .8.(2022·全国·高一课时练习)给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x x ()1f x x =.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是( ) A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A 二、多选题9.(2022·全国·高一课时练习)幂函数()()22657mf x m m x--=+在()0,∞+上是增函数,则以下说法正确的是( ) A .3m =B .函数()f x 在(),0∞-上单调递增C .函数()f x 是偶函数D .函数()f x 的图象关于原点对称 【答案】ABD【解析】因为幂函数()()22657m f x m m x--=+在()0,∞+上是增函数,所以2257160m m m ⎧-+=⎨->⎩,解得3m =,所以()3f x x =,所以()()()33f x x x f x -=-=-=-,故()3f x x =为奇函数,函数图象关于原点对称,所以()f x 在(),0∞-上单调递增; 故选:ABD10.(2022·全国·高一课时练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润()p x (单位:万元)与每月投入的研发经费x (单位:万元)有关.已知每月投入的研发经费不高于16万元,且21()6205p x x x =-+-,利润率()p x y x =.现在已投入研发经费9万元,则下列判断正确的是( ) A .此时获得最大利润率B .再投入6万元研发经费才能获得最大利润C .再投入1万元研发经费可获得最大利润率D .再投入1万元研发经费才能获得最大利润 【答案】BC【解析】当16x ≤时,2211()620(15)2555p x x x x =-+-=--+,故当15x =时,获得最大利润,为()1525p =,故B 正确,D 错误;()12012012066262555p x y x x x x x x x ⎛⎫==-+-=-++≤-⋅= ⎪⎝⎭, 当且仅当1205x x=,即10x =时取等号,此时研发利润率取得最大值2,故C 正确,A 错误.故选:BC.11.(2022·全国·高一课时练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y 1(千元)、乙厂的总费用y 2(千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的总费用y 1与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用y 2与证书数量x 之间的函数关系式为21542y x =+ 【答案】ABCD【解析】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A 正确; 设甲厂的费用1y 与证书数量x 满足的函数关系式为y kx b =+,代入点(0,1),(6,4),可得164b k b =⎧⎨+=⎩,解得0.5,1k b ==,所以甲厂的费用1y 与证书数量x 满足的函数关系式为10.51y x =+,故B 正确; 当印制证书数量不超过2千个时,乙厂的印刷费平均每个为32 1.5÷=元,故C 正确; 设当2x >时,设2y 与x 之间的函数关系式为y mx n =+代入点(2,3),(6,4),可得2364m n m n +=⎧⎨+=⎩,解得15,42k b ==,所以当2x >时,2y 与x 之间的函数关系式为21542y x =+,故D 正确.故选:ABCD.12.(2022·全国·高一课时练习)若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数” B .若()1f x x x=+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【答案】ABD【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确;对于B :由对勾函数的性质可知:()1f x x x=+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x =+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x=+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x=+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x ay x a x x==+-+在(]0,2上为减函数,由对勾函数的单调性可知,2a ≥,则4a ≥,综上4a =.故D 正确. 故选:ABD . 三、填空题13.(2022·全国·高一单元测试)已知1114,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,若函数()af x x =在()0,+∞上单调递减,且为偶函数,则=a ______. 【答案】4-【解析】由题知:0a <, 所以a 的值可能为4-,1-,12-.当4a =-时,()()1440f x x x x -==≠为偶函数,符合题意.当1a =-时,()()110-==≠f x x x x为奇函数,不符合题意. 当12a =-时,()12f x x x-==,定义域为()0,+∞,则()f x 为非奇非偶函数,不符合题意.综上,4a =-. 故答案为:4-14.(2022·全国·高一课时练习)已知幂函数()2232(1)m m f x m x -+=-在()0+∞,上单调递增,则()f x 的解析式是_____.【答案】()2f x x =【解析】()f x 是幂函数,211m ∴-=,解得2m =或0m =,若2m =,则()0f x x =,在()0+∞,上不单调递减,不满足条件; 若0m =,则()2f x x =,在()0+∞,上单调递增,满足条件; 即()2f x x =. 故答案为:()2f x x =15.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N 粒.则红豆和白豆共有________粒. 【答案】58【解析】设红豆有x 粒,白豆有y 粒, 由第一轮结果可知:1042x y -=,整理可得:220x y =-; 由第二轮结果可知:2yx n =-,整理可得:22y x n =-; 当17n =时,由220234x y y x =-⎧⎨=-⎩得:883743x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当18n =时,由220236x y y x =-⎧⎨=-⎩得:923763x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当19n =时,由220238x y y x =-⎧⎨=-⎩得:3226x y =⎧⎨=⎩,322658x y ∴+=+=,即红豆和白豆共有58粒. 故答案为:58.16.(2022·全国·高一期中)已知幂函数()223()p p f x x p N --*=∈ 的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp a a -<+,则a 的取值范围是_____.【答案】14a <<【解析】幂函数()()223*p p f x xp N --=∈在()0+∞,上是减函数, 2230p p ∴--<,解得13p -<<,*p N ∈,1p ∴=或2.当1p =时,()4f x x -=为偶函数满足条件,当2p =时,()3f x x -=为奇函数不满足条件,则不等式等价为233(1)(33)ppa a -<+,即()11233(1)33a a -<+,()13f x x =在R 上为增函数, 2133a a ∴-<+,解得:14a <<.故答案为:14a <<. 四、解答题17.(2022·全国·高一课时练习)比较下列各组数的大小: (1)()32--,()32.5--; (2)788--,7819⎛⎫- ⎪⎝⎭; (3)3412⎛⎫ ⎪⎝⎭,3415⎛⎫ ⎪⎝⎭,1412⎛⎫ ⎪⎝⎭.【解析】(1)因为幂函数3y x -=在(),0∞-上单调递减,且2 2.5->-,所以()()332 2.5---<-. (2)因为幂函数78y x =在[)0,∞+上为增函数,且7788188-⎛⎫-=- ⎪⎝⎭,1189>,所以77881189⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以77881189⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以7788189-⎛⎫-<- ⎪⎝⎭.(3)41341128⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,3144115125⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,11112582<<,因为幂函数14y x =在()0,∞+上单调递增,所以331444111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.(2022·全国·高一单元测试)已知函数()f x x =()2g x x =-.(1)求方程()()f x g x =的解集;(2)定义:{},max ,,a a b a b b a b ≥⎧=⎨<⎩.已知定义在[)0,∞+上的函数{}()max (),()h x f x g x =,求函数()h x 的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数()h x 的简图,并根据图象写出函数()h x 的单调区间和最小值. 【解析】(12x x =-,得2540x x -+=且0x ≥,解得11x =,24x =;所以方程()()f x g x =的解集为{1,4}(2)由已知得()2,01,2,14222,4x x x x x h x x x x x x x x -≤<⎧⎧-⎪⎪==≤≤⎨⎨-<-⎪⎪⎩->⎩. (3)函数()h x 的图象如图实线所示:函数()h x 的单调递减区间是[]0,1,单调递增区间是()1,+∞,其最小值为1.19.(2022·天津市第九十五中学益中学校高一期末)已知幂函数()a g x x =的图像经过点(22,,函数2(4)()1g x af x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数a 的值;(2)判断函数f (x )在区间(-1,1)上的单调性,并用的数单调性定义证明【解析】(1)由条件可知22a=12a =,即()12g x x x ==,()42g =,因为()221x a f x x +=+是奇函数,所以()00f a ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以2a =成立; (2)由(1)可知()221xf x x =+, 在区间()1,1-上任意取值12,x x ,且12x x <, ()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<, 即()()12f x f x <,所以函数在区间()1,1-上单调递增.20.(2022·全国·高一课时练习)几名大学毕业生合作开设3D 打印店,生产并销售某种3D 产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其他固定支出20000元.假设该产品的月销售量t (件)与销售价格x (元/件)(*x ∈N )之间满足如下关系:①当3460x ≤≤时,()()2510050t x a x =-++;②当6076x ≤≤时,()1007600t x x =-+.记该店月利润为M (元),月利润=月销售总额-月总成本.(1)求M 关于销售价格x 的函数关系式;(2)求该打印店的最大月利润及此时产品的销售价格.【解析】(1)当60x =时,()260510050100607600a -++=-⨯+,解得2a =.∴()()()()()2**220100003420000,3460,,10076003420000,6076,x x x x x N M x x x x x N ⎧--+--≤≤∈⎪=⎨-+--≤≤∈⎪⎩即()32*2*24810680360000,3460,,10011000278400,6076,x x x x x N M x x x x x N ⎧-++-≤≤∈=⎨-+-≤≤∈⎩(2)当3460x ≤≤,x ∈R 时,设()3224810680360000g x x x x =-++-,则()()26161780g x x x '=---.令()0g x '=,解得182461x =-,()28246150,51x =+, 当3450x ≤≤时,()0g x '>,()g x 单调递增; 当5160x ≤≤时,()0g x '<,()g x 单调递减.∵*x ∈N ,()5044000M =,()5144226M =,()M x 的最大值为44226.当6076x ≤≤时,()()21001102784M x x x =-+-单调递减,故此时()M x 的最大值为()6021600M =.综上所述,当51x =时,()M x 有最大值44226.∴该打印店的最大月利润为44226元,此时产品的销售价格为51元/件. 21.(2022·全国·高一课时练习)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为1,求实数m 的值. 【解析】(1)因为()f x 为幂函数所以233112a a a a -+===,得或 因为()f x 为偶函数所以2a = 故()f x 的解析式2()f x x =.(2)由(1)知()()2213g x x m x =+--,当1212m-≤即12m ≥-时,()()max 3361g x g m ==+=,即13m =- 当1212m ->即12m <-时,()()max 1121g x g m =-=--=即1m =- 综上所述:13m =-或1m =-22.(2022·全国·高一课时练习)已知幂函数()()()22tf x t t x t R -=+∈,且()f x 在区间()0,∞+上单调递减.(1)求()f x 的解析式及定义域; (2)设函数()()()221g x f x f x =-⎡⎤⎣⎦⎡⎤⎣⎦,求证:()g x 在()0,∞+上单调递减.【解析】(1)因为幂函数()()()22t f x t t x t R -=+∈,()f x 在区间()0,+∞上单调递减,所以221+=t t ,解得1t =-或12t =, 所以()12f x x -=,定义域为()0,+∞.(2)由(1)知函数()()()()2222110--=-=-≠⎡⎤⎣⎦⎡⎤⎣⎦g x f x x x x f x ,设120x x >>,则()()()222222211212212222121211------=--+=-+x x g x g x x x x x x x x x因为120x x >>,所以2212x x >,222221210,0-<>x x x x ,所以()()120g x g x -<,即()()12g x g x <, 所以()g x 在()0,+∞上单调递减.。

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件



D . p 为 偶 数 , q为奇 数且 < 0

典型例题
题型四:幂函数的图象、定点问题
【对点训练8】(2023·全国·高一假期作业)已知 ( ) = (2 − 1) + 1,则函数 = ( )的图象恒过的定点
的坐标为

【答案】 (1,2)
【解析】令 2 − 1 = 1 ,得 = 1, = 2 ,
故选:C.
2 ;⑤
= ,其中幂函
典型例题
题型二:求函数解析式
【例2】若 = 2 − 4 + 5 − + + 1 是幂函数,则 2 =
【答案】
1
4
2

− 4 + 5 = 1 ,解得 ቊ = 2 ,
【解析】由题意得 ቊ
= −1
+1=0
故 = −2 ,所以 2 = 2 −2 =
典型例题
题型二:求函数解析式
1
2
【对点训练3】已知 ∈ −2, −1, − , 2 ,若幂函数 = 为偶函数,且在(0,+∞)上单调递减,则
=

【答案】 -2
【解析】因为函数在 0, +∞ 上单调递减,所以 < 0 ,
当 = −2 时, = −2 是偶函数,成立
当 = −1 时, = −1 是奇函数,不成立,
1
1
当 = − 时, = − 2 的定义域是 0, +∞ ,不是偶
2
函数,故不成立,
综上, = −2.
故答案为:−2
典型例题
题型三:定义域、值域问题
4
【例3】(1)函数 = 5 的定义域是

幂函数的图像专题含答案

幂函数的图像专题含答案

幂函数的图像专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 幂函数f(x)=xα的图象必不经过平面直角坐标系中的第几象限( )A.一B.二C.三D.四2. 已知幂函数y=x n,y=x m,y=x p的图象如图,则()A.m>n>pB.m>p>nC.n>p>mD.p>n>m3. 函数y=|x−1|的图象是()A. B.C. D.4. 下列图象中幂函数y=x 32的大致形状的是()A. B.C. D.5. 已知幂函数y=x a,y=x b,y=x c的部分图象如下,则点(ab−b,c2−c)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6. 幂函数y=x a(α是常数)的图象()A.一定经过点(0, 0)B.一定经过点(1, 1)C.一定经过点(−1, 1)D.一定经过点(1, −1)7. 在直角坐标系xOy的第一象限内分别画出了函数y=x,y=√x,y=x2,y=x3,y=x−1的部分图象,则函数y=x4的图象通过的阴影区域是()A. B.C. D.8. 函数y=x 43的图象是()A. B. C. D.9. 下图为两幂函数y=xα和y=xβ的图象,其中α,β∈{−12, 12, 2, 3},则不可能的是()A. B. C. D.10. 下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.()(1)y=x32;(2)y=x13;(3)y=x23;(4)y=x−2;(5)y=x−3;(6)y=x−12.A.(1)↔(A),(2)↔(F),(3)↔(E),(4)↔(C),(5)↔(D),(6)↔(B)B.(1)↔(B),(2)↔(E),(3)↔(C),(4)↔(D),(5)↔(A),(6)↔(F)C.(1)↔(A),(2)↔(E),(3)↔(B),(4)↔(D),(5)↔(C),(6)↔(F)D.(1)↔(B),(2)↔(F),(3)↔(A),(4)↔(C),(5)↔(D),(6)↔(E)11. 如图,曲线是幂函数y=x n在第一象限的图象,已知n取2,3,12,−1四个值,则相应于曲线C1,C2,C3,C4的n依次为________.12. 已知幂函数f(x)=(m2−5m+7)x−m−1(m∈R)为偶函数.则m=________.13. 若幂函数f(x)=xα的图象经过点(3, 81),则实数α的值为________.14. 幂函数f(x)图象过点A(2,√2),则f(4)的值为________.15. 当α∈{12, 1, 3}幂函数y=xα的图象不可能经过的是第________象限(符合条件的要全填).16. 函数f(x)=(x−1)1m+1的图象恒过定点________.17. 如果幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,则m的值是________.18. 若y=x n的图象在x>1时,位于y=x的上方,则n的取值范围是________.19. 当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围________.20. 把函数y=x 12的图象上各点的横坐标扩大到原来的3倍,纵坐标也扩大到原来的3倍,所得图象的函数解析式是________.21. 画出y=x−12的函数图象.22. 画出y=x−12,y=x−13,y=x12,y=x13的图象.23. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称.(1)确定f(x)的解析式;(2)画出f(x)的图象.24. 已知幂函数f(x)=x9−3m(m∈N∗)的图象关于原点对称,且在R上函数值随x的增大而增大.(1)求f(x)表达式;(2)求满足f(a+1)+f(2a−3)<0的a的取值范围.25. 已知幂函数y=f(x)的图象经过点(8,m)和(9,3).(1)求实数m的值;(2)若函数g(x)=logaf(x) (a>0,a≠1)在区间[16,36]上的最大值比最小值大1,求实数a的值.26. 若点(√2, 2)在幂函数f(x)的图象上,点(2, 12)在幂函数g(x)的图象上,定义ℎ(x)={f(x),f(x)≤g(x)g(x),f(x)>g(x)求函数ℎ(x)的最大值及单调区间.27. 已知幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=q⋅√f(x)+2x(q>0),若g(x)≥0对任意x∈[1, +∞)恒成立,求实数q的取值范围.28. 已知幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,且关于y轴对称,求m的值.29. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.(1)求m的值;(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).30. a、b、c、m∈R+,a m=b m+c m,若长为a、b、c三线段能构成三角形,求m的取值范围.31. 已知函数f(x)=(m2+3m−3)x m为幂函数,且在区间(0,+∞)上单调递减.(1)求实数m的值;(2)请画出函数f(x)的草图.32. 已知幂函数f(x)=x m2−2m−3(m∈N∗)的图象关于y轴对称,且在(0, +∞)上是减函数.(1)求m的值;(2)求满足(1+a)−2m3<(1−2a)−2m3的a的取值范围.33. 已知函数y=x 2 3,(1)求定义域;(2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.参考答案与试题解析幂函数的图像专题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】幂函数的图像【解析】利用幂函数性质,直接求解即可.【解答】解:利用幂函数的性质即可得:当x>0时,xα不可能为负数,所以不经过第四象限.故选D.2.【答案】C【考点】幂函数的图像【解析】根据幂函数的图象特征:在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,结合图象即可得到答案.【解答】解:因为在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,所以由图象可得:n>p>m,故选:C.3.【答案】A【考点】幂函数的图像【解析】先根据函数的定义域排除B、C,然后根据函数的值域可排除D,从而得到正确的选项.【解答】解:根据函数的定义域为{x|x≠0}可知选项B,选项C不正确;根据函数y=|x−1|的值恒正可知选项D不正确.故选A.4.【答案】B【考点】幂函数的图像【解析】根据幂函数y=x 32性质,即可得出正确的选项.【解答】解:幂函数y=x 32的定义域是[0,+∞),可以排除CD选项;当x>1时,幂函数y=x 32的函数值大于y=x的函数值,故当x>1时,幂函数y=x 32的图象高于y=x的图象,故排除选项A.故选B.5.【答案】C【考点】幂函数的图像【解析】由幂函数的由幂函数的图像得,a>1,b<0,0<c<1,进而判断得结论.【解答】解:由幂函数的图象得,a>1,b<0,0<c<1,∴ ab−b=(a−1)b<0,c2−c=c(c−1)<0,∴ 点(ab−b,c2−c)在第三象限.故选C.6.【答案】B【考点】幂函数的图像【解析】利用幂函数的图象与性质及1α=1即可得出.【解答】解:取x=1,则y=1α=1,因此幂函数y=x a(α是常数)的图象一定经过(1, 1)点.故选B.7.【答案】B【考点】幂函数的图像【解析】根据幂函数的图象和性质判断函数y=x14的单调性和大小关系即可.【解答】解:当0<x<1时,函数y=x n为单调递减函数,所以x4<x3.排除A,D.当x>1时,函数y=x n为单调递增函数,所以x4>x3.排除C.故选B.8.【答案】A幂函数的图像【解析】本题要用函数的性质与图象性质的对应来确定正确的选项,故解题时要先考查函数y= x43性质,单调性奇偶性等,再观察四个选项特征,选出正确答案.【解答】解:研究函数y=x 43知,其是一个偶函数,且在(0, +∞)上增,在(−∞, 0)上减,由此可以排除C,D,又函数的指数43>1,故在(0, +∞)其递增的趋势越来越快,由此排除B,故A正确.故选A.9.【答案】B【考点】幂函数的图像【解析】根据所给的幂函数的α,β的值,逐个说明函数的图象所经过的象限,最后得到函数的图象情况,从而得出答案.【解答】解:α,β∈{−12, 12, 2, 3}时,幂函数y=xα和y=xβ的图象列举如下:则不可能的是:B.故选B.10.【答案】A【考点】幂函数的图像函数(1)的定义域为[0, +∞)且幂指数大于0故(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故(2)↔(F)观察答案知选A.【解答】解:函数(1)的定义域为[0, +∞)且幂指数大于0在第一象限单调递增故:(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故:(2)↔(F)函数(3)的定义域为R且为偶函数图象关于y轴对称且幂指数大于0小于1在第一象限单调递增且上凸;故(3)↔(E)函数(4)的定义域为(−∞, 0)∪(0, +∞)且为偶函数图象关于y轴对称且幂指数小于0在第一象限单调递减故:(4)↔(C)函数(5)的定义域为(−∞, 0)∪(0, +∞)且为奇函数图象关于原点对称且幂指数小于0在第一象限单调递减故:(5)↔(D)函数(6)的定义域为(0, +∞)且幂指数小于于0在第一象限单调递减故:(6)↔(B)故选A二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】3,2,1,−12【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:利用幂函数的图象与性质可得:相应于曲线C1,C2,C3,C4的n依次为3,2,1,−1.2,−1.故答案为:3,2,1212.【答案】3【考点】幂函数的图像【解析】根据幂函数的定义和函数奇偶性的性质进行求解建立.【解答】解:∵f(x)是幂函数,∴m2−5m+7=1,即m2−5m+6=0,解得m=2或m=3,若m=2,则f(x)=x−2−1=x−3为奇函数,不满足条件.若m=3,则f(x)=x−3−1=x−4为偶函数,满足条件.故m=3,故答案为:3.13.【答案】4【考点】幂函数的图像【解析】将点的坐标代入函数解析式,求出f(x),将x用100代替,求出值.【解答】解:∵幂函数f(x)=xα的图象经过点(3, 81),∴81=3α,解得α=4.故答案为:4.14.【答案】2【考点】幂函数的图像【解析】先由已知条件求幂函数的解析式,再求f(4)【解答】解:设幂函数f(x)=x a∵f(x)的图象过点(2, √2)∴2a=√2=212∴a=12∴f(x)=x12∴f(4)=412=2故答案为:215.【答案】二、四【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:当α=1时,y=x值经过第一、三象限和原点;时,y=√x值经过第一象限和原点;当α=12当α=3时,y=x3值经过第一、三象限和原点.综上可知:幂函数y=xα的图象不可能经过的是第二、四象限.故答案为:二、四.16.【答案】【解析】根据幂函数的性质即可得到结论.【解答】解:∵对所有的幂函数都过定点(1, 1),∴当x−1=1,即x=2时,f(2)=1+1=2,即函数f(x)=(x−1)1m+1的图象恒过定点(2, 2).故答案为:(2, 2).17.【答案】1【考点】幂函数的图像【解析】幂函数的图象不过原点,所以幂指数小于0,系数为1,求解即可.【解答】解:幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,所以{m 2−m−1≤0m2−3m+3=1解得m=1,符合题意.故答案为:118.【答案】n>1【考点】幂函数的图像【解析】幂函数图象恒过(1, 1)点,结合图象容易推出n的取值范围.【解答】解:由题意画出幂函数图象,如图在第一象限内的图象,显然n>1故答案为:n>119.【答案】【解析】直接利用幂函数的图象,结合已知条件,求出a的范围.【解答】解:根据幂函数的图象的特点,画出函数的图象,当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围是:(−∞, 1).故答案为:(−∞, 1).20.【答案】)12.y=3×(x3【考点】幂函数的图像【解析】,纵坐图象的变换体现在自变量和函数的变化,横坐标扩大到原来的3倍就是将x→x3标也扩大到原来的3倍就是将y→y,从而得解.3【解答】解:∵函数y=lg x图象横坐标扩大到原来的3倍∴得y=(x)123∵纵坐标也扩大到原来的3倍∴得y=3×(x)12.3)12.故填:y=3×(x3三、解答题(本题共计 13 小题,每题 10 分,共计130分)21.【答案】,所以定义域为(0, +∞),解:将函数化为y=√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:【考点】幂函数的图像【解析】研究函数的定义域,单调性,根据幂函数的性质判断.【解答】,所以定义域为(0, +∞),解:将函数化为y=1√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:22.【答案】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;【考点】幂函数的图像【解析】根据幂函数的图象与性质,在同一坐标系中画出这几个函数的图象即可.【解答】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;23.【答案】解:(1)∵幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称∴m2−2m−3≤0且m2−2m−3为偶数解得−1≤m≤3∴m=−1或m=0或m=1或m=2或m=3∴f(x)=x−4或f(x)=x0=1(x≠0)(2)【考点】幂函数的概念、解析式、定义域、值域【解析】(1)有幂函数的性质判断出幂函数的指数小于或等于0;指数为偶数.列出不等式求出m(2)借助幂函数的解析式画出幂函数的图象. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3(m ∈Z)的图象与x 轴,y 轴都无交点,且关于y 轴对称∴ m 2−2m −3≤0且m 2−2m −3为偶数 解得−1≤m ≤3∴ m =−1或m =0或m =1或m =2或m =3 ∴ f(x)=x −4或f(x)=x 0=1(x ≠0)(2)24.【答案】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3. (2)∵ f(a +1)+f(2a −3)<0,∴ f(a +1)<−f(2a −3). 又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23).【考点】函数单调性的性质函数解析式的求解及常用方法 幂函数的图像【解析】(1)函数在(0, +∞)上递增,可得9−3m >0,再由m ∈N ∗,且3m −9为奇数,可得m 的值,从而得到f(x)的解析式.(2)由题意可得不等式即f(a +1)<f(3−2a),根据函数在R 上递增,可得a +1<3−2a ,由此求得a 的范围.【解答】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3.又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23). 25.【答案】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.所以实数m =f(8)=812=2√2. (2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32.【考点】 幂函数的性质 幂函数的图像 对数函数的值域与最值【解析】 此题暂无解析 【解答】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.1(2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32. 26. 【答案】解:设f(x)=x α,因为点(√2,2)在幂函数f(x)的图象上, 所以(√2)α=2,解得α=2,所以f(x)=x 2. 设f(x)=x β,因为点(2,12)在幂函数g(x)的图象上, 所以(√2)β=12,解得β=−1,所以g(x)=x −1.在同一坐标系中画出函数f(x)=x 2和g(x)=x −1的图象,由题意及图,可知 ℎ(x)={x −1,x <0或x >1x 2,0<x ≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).【考点】幂函数的图像函数的单调性及单调区间分段函数的解析式求法及其图象的作法【解析】设f(x)=x n,g(x)=x m,代入点的坐标,解方程可得f(x),g(x)的解析式,再由定义,求得ℎ(x)的解析式,通过二次函数和反比例函数的性质,可得最大值和单调区间.【解答】解:设f(x)=xα,因为点(√2,2)在幂函数f(x)的图象上,所以(√2)α=2,解得α=2,所以f(x)=x2.设f(x)=xβ,因为点(2,12)在幂函数g(x)的图象上,所以(√2)β=12,解得β=−1,所以g(x)=x−1.在同一坐标系中画出函数f(x)=x2和g(x)=x−1的图象,由题意及图,可知ℎ(x)={x−1,x<0或x>1 x2,0<x≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).27.【答案】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.【考点】函数恒成立问题幂函数的概念、解析式、定义域、值域幂函数的图像幂函数图象及其与指数的关系【解析】(1)利用幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数,确定m的值,即可求函数f(x)的解析式;(2)分离参数,求最值,即可求实数q的取值范围.【解答】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.28.【答案】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,∴m2−2m−3是偶数,故m的值为±1或3.【考点】幂函数的实际应用幂函数的图像【解析】幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数或0,而图形关于y轴对称说明函数为偶函数.【解答】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,又∵m∈Z,∴m=0,1,2∵图象关于y轴对称∴m2−2m−3是偶数,故m的值为±1或3.29.【答案】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.【考点】幂函数的单调性、奇偶性及其应用幂函数的性质幂函数的图像幂函数的概念、解析式、定义域、值域【解析】(1)幂函数f(x)=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数,而图形关于y轴对称说明指数数为偶函数,由此求得整数m的值.(2)根据(1)中结论写出幂函数的解析式,画出函数y=f(x)的图象.【解答】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.30.【答案】解:根据题意,由a m=b m+c m,可得(ba )m+(ca)m=1,且a>b,a>c;设(ba )m=sin2θ;(ca)m=cos2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 【考点】同角三角函数基本关系的运用 幂函数的图像 【解析】根据题意,由a m =b m +c m 变形可得(b a )m +(ca )m =1,由常数1联系同角三角函数的平方关系,可以设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘),又由题意,可得b +c >a ,将b 、c 与a 的关系代入可得,a ⋅√sin 2θm+a ⋅√cos 2θm>a ;进而整理变形可得,√sin 2θm+√cos 2θm >1=sin 2θ+cos 2θ,结合幂函数的性质,分析可得答案.【解答】解:根据题意,由a m =b m +c m ,可得(ba)m +(ca)m =1,且a >b ,a >c ;设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 31.【答案】解:(1)由m 2+3m −3=1,得m =1或m =−4,①当m =1时,f(x)=x ,此时函数在区间(0,+∞)为增函数,不符合题意; ②当m =−4时,f(x)=x −4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m 的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:【考点】幂函数的单调性、奇偶性及其应用幂函数的图像幂函数的概念、解析式、定义域、值域【解析】此题暂无解析【解答】解:(1)由m2+3m−3=1,得m=1或m=−4,①当m=1时,f(x)=x,此时函数在区间(0,+∞)为增函数,不符合题意;②当m=−4时,f(x)=x−4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:32.【答案】解:(1)∵幂函数f(x)=x m2−2m−3在(0, +∞)上是减函数,∴m2−2m−3<0,解得−1<m<3,∵m∈N∗,∴m=1,或m=2.当m=1时,f(x)=x−4,其图象关于y轴对称,符合题意;当m=2时,f(x)=x−3是奇函数,不符合题意,∴m=1.(2)∵ m =1,∴ 满足(1+a)−2m3<(1−2a)−2m3的a 即满足(1+a)−23<(1−2a)−23. ∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2). 【考点】其他不等式的解法幂函数的单调性、奇偶性及其应用 幂函数的性质 幂函数的图像幂函数的概念、解析式、定义域、值域 【解析】(1)由幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数,知m 2−2m −3<0,由此能求出m .(2)由m =1,知满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.由此能求出a 的取值范围. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数, ∴ m 2−2m −3<0, 解得−1<m <3,∵ m ∈N ∗,∴ m =1,或m =2.当m =1时,f(x)=x −4,其图象关于y 轴对称, 符合题意;当m =2时,f(x)=x −3是奇函数,不符合题意, ∴ m =1.(2)∵ m =1, ∴ 满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2).33. 【答案】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为: 【考点】 幂函数的性质 幂函数的图像【解析】根据幂函数的性质分别求出函数的定义域和奇偶性. 【解答】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为:。

专题 幂、指数、对数函数(七大题型)(解析版)

专题  幂、指数、对数函数(七大题型)(解析版)

专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。

高一年级数学知识重点大全:幂函数的定义域和值域-2019年精选学习文档

高一年级数学知识重点大全:幂函数的定义域和值域聪明出于勤奋,天才在于积累。

尽快地掌握科学知识,迅速提高学习能力,接下来为大家提供了高一年级数学知识重点大全,希望大家能谨记呦!!高一年级数学知识重点大全:幂函数的定义域和值域当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x 为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

学好数学的学习方法:一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。

一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。

在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

二、定期重复巩固即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。

可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。

从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。

三、科学合理安排复习一般可以分为集中复习和分散复习。

实验证明,分散复习的效果优于集中复习,特殊情况除外。

分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。

2023年新高考数学一轮复习3-4 幂函数(真题测试)解析版

专题3.4 幂函数(真题测试)一、单选题1.(2021·福建·高三学业考试)函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y =,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.2.(2011·上海·高考真题(文))下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .2yxB .1y x -=C .2y xD .13y x =【答案】A 【解析】 【详解】试题分析:由偶函数定义知,仅A,C 为偶函数, C. 2yx 在区间(0,)+∞上单调递增函数,故选A .3.(2021·全国·高考真题(文))下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x D【分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x R 上的增函数,符合题意, 故选:D.4.(2011·陕西·高考真题(文))函数的图象是A .B .C .D .【答案】B 【解析】 【详解】试题分析:先找出函数图象上的特殊点(1,1),(8,2),(,),再判断函数的走向,结合图形,选出正确的答案.解:函数图象上的特殊点(1,1),故排除A ,D ; 由特殊点(8,2),(,),可排除C .故选B .5.(2007·山东·高考真题(理))设11,1,,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R 且为奇函数的所A .1,3B .1,1-C .1,3-D .1,1,3-【答案】A 【解析】 【详解】11,2αα=-=时,函数定义域不是R,不合题意; 1,3αα==时,函数y x α=的定义域为R 且为奇函数,合题意,故选A.6.(2019·全国·高考真题(理))若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .7.(2015·湖北·高考真题(理))设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .6【答案】B 【解析】【详解】因为[]x 表示不超过x 的最大整数.由得,由得,由得,所以,所以, 由得,所以,由得,与矛盾,故正整数n 的最大值是4.8.(2012·山东·高考真题(理))设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 A .当0a <时,12120,0x x y y +<+> B .当0a <时,12120,0x x y y +>+< C .当0a >时,12120,0x x y y +<+< D .当0a >时,12120,0x x y y +>+> 【答案】B 【解析】 【详解】令()()f x g x =,可得21ax b x =+. 设21(),F x y ax b x ==+ 根据题意()F x 与直线y ax b =+只有两个交点, 不妨设12x x <,结合图形可知,当0a >时如右图,y ax b =+与()F x 左支双曲线相切,与右支双曲线有一个交点,根据对称性可得12||>x x ,即120->>x x ,此时120x x +<, 21122111,0y y y y x x =>=-∴+>-,同理可得,当0a <时如左图,120x x +>,120y y +< 故选:B .二、多选题9.(2022·全国·高三专题练习)下列关于幂函数图象和性质的描述中,正确的是( ) A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种 【答案】AB 【解析】举反例结合幂函数的性质判断即可. 【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误. 故选:AB10.(2021·全国·高三专题练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数 B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数 D .当3α=时函数在其定义域上是增函数【答案】CD 【解析】 【分析】根据幂函数的性质对选项逐一分析,由此确定正确选项. 【详解】对于A 选项,1y x=,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误.对于C 选项,2yx ,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD11.(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ). A .函数()f x 的定义域为R B .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】 【分析】先利用待定系数法求出幂函数的解析式,写出函数的定义域、判定奇偶性,即判定选项A 错误、选项B 正确;设出切点坐标,利用导数的几何意义和过点P 求出切线方程,进而判定选项C 正确;平方作差比较大小,进而判定选项D 错误. 【详解】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =, 对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确;对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x ='0)y x x -,又因为切线过点1(0,)2P ,所以01)2x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+,即选项C 正确;对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=- ⎪⎝⎭⎝⎭212024x x +==-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .12.(2022·全国·模拟预测)已知实数0,0,a b c R >>∈,且1a b +=,则下列判断正确的是( ) A .2212a b +≥B .22ac bc <C .()2bb a a >- D .2111b a -<+ 【答案】AD 【解析】 【分析】利用均值不等式可判断A ;取0c 可判断B ;借助幂函数b y x =的单调性,结合0,1a b <<可判断C ;作差法可判断D 【详解】 由于0,0a b >>,由均值不等式114a b ab +=≥≤,当且仅当12a b ==时等号成立选项A ,22211()2121242a b a b ab ab +=+-=-≥-⨯=,当且仅当12a b ==时等号成立,故A 正确;选项B ,由于R c ∈,当0c 时,22ac bc =,故B 错误;选项C ,由于0,0a b >>,1a b +=,故01,122a a <<<-<,即2a a <-由于01b b y x <<∴=在(0,)+∞单调递增,故()2bb a a <-,故C 错误; 选项D ,2122111b b a a a ----=++,由于0,1220,10a b b a a <<∴--<+>,故21101b a --<+,2111b a -∴<+,故D 正确 故选:AD13.(2022·全国·模拟预测)若幂函数()25ay a a x =--的图像关于y 轴对称,则实数=a ______.【答案】2- 【解析】 【分析】根据幂函数的概念和性质计算即可 【详解】由幂函数可得251a a --=,解得3a =或2a =-,又因为函数图像关于y 轴对称,则a 为偶数,所以2a =-. 故答案为:2-14.(2020·江苏·高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____. 【答案】4- 【解析】 【分析】先求(8)f ,再根据奇函数求(8)f - 【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-15.(2014·上海·高考真题(理))若,则满足的取值范围是_____.【答案】(0,1) 【解析】 【详解】根据幂函数的性质,由于1223<,所以当01x <<时2132x x <,当1x >时,2132x x >,因此()0f x <的解集为(0,1). 16.(2022·北京房山·二模)已知函数()3,,.x x a f x x x a ≤⎧=⎨>⎩,若函数()f x 在R 上不是增函数,则a 的一个取值为___________.【答案】-2(答案不唯一,满足1a <-或01a <<即可) 【解析】作出y =x 和y =3x 的图象,数形结合即可得a 的范围,从而得到a 的可能取值. 【详解】y =x 和y =3x 的图象如图所示:∴当1a <-或01a <<时,y =3x 有部分函数值比y =x 的函数值小,故当1a <-或01a <<时,函数()f x 在R 上不是增函数. 故答案为:-2. 四、解答题17.(2022·全国·高三专题练习)幂函数()()22211mm m f xx m --=--在区间()0,∞+上是增函数,求实数m 的取值集合. 【答案】{}1- 【解析】 【分析】解方程211m m --=得到m 的值,再检验即得解. 【详解】解:由题得211m m --=,所以1m =-或2m =.当1m =-时,()2f x x =在()0,∞+上是增函数; 当2m =时,()1f x x -=在()0,∞+上不是增函数,舍去.故所求实数m 的取值集合为{}1-.18.(2020·全国·高三专题练习(理))已知幂函数()()22421mm f x m x -+=-在()0,∞+上单调递增,函数()2g x x k =-. (1)求m 的值;(2)当[]1,2x ∈时,记()(),f x g x 的值域分别为集合,A B ,若A B A ⋃=,求实数k 的取值范围.【答案】(1)0m =; (2)[]0,1. 【解析】 【分析】(1)根据幂函数定义和在第一象限内的单调性可构造方程组求得m ;(2)由一次函数和二次函数单调性可求得,A B ,由并集结果可构造不等式组求得结果. (1)()f x 为幂函数且在()0,∞+上单调递增,()2211420m m m ⎧-=⎪∴⎨-+>⎪⎩,解得:0m =;(2)由(1)知:()2f x x =,∴当[]1,2x ∈时,()[]1,4f x ∈,即[]1,4A =;当[]1,2x ∈时,()[]2,4g x k k ∈--,即[]2,4B k k =--;A B A =,2144k k -≥⎧∴⎨-≤⎩,解得:01k ≤≤,即实数k 的取值范围为[]0,1.19.(2021·新疆·乌鲁木齐市第二十中学高三阶段练习)已知函数23y x =(1)求定义域; (2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.【答案】(1)定义域为(),x ∈-∞+∞;(2)偶函数;(3)图像见解析,23y x =的单调增区间是[)0+∞,,单调减区间是(]0-∞,【分析】(1)将函数23y x =改写成y ,即可判断定义域;(2)令23()f x x =()f x -并判断与()f x 的关系即可确定函数的奇偶性;(3)根据23y x =的奇偶性补全图像,根据补全后的图像确定函数的单调区间;【详解】(1)23y x =R;(2)令23()y x f x =23()f x x =(()f x f x ∴-,且定义域关于坐标原点对称,∴函数23y x =为偶函数.(3)因为函数23y x =为偶函数,所以函数23y x =的图像关于y 轴对称, 根据23y x =第一象限的图像补全图像如图所示:根据图像可知,函数23y x =单调增区间是[)0+∞,,单调减区间是(]0-∞,. 20.(2021·福建·上杭一中高三阶段练习)已知幂函数()()225222k k f x m m x -=-+(k ∈Z )是偶函数,且在0,上单调递增.(1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围;【答案】(1)()2f x x =;(2)()1,1-.【解析】【分析】(1)根据幂函数,偶函数的定义以及题意可知,2221m m -+=,2520k k ->,即可求出,m k ,得到函数()f x(2)由偶函数的性质以及函数的单调性可得()()212f x f x -<-,即212x x -<-,即可解出.【详解】(1)∵2221m m -+=,∴1m =,∵2520k k ->, ∴()502k k <<∈Z ,即1k =或2, ∵()f x 在()0,∞+上单调递增,()f x 为偶函数,∴2k =,即()2f x x =.(2)∵()()()()212212f x f x f x f x -<-⇒-<- ∴212x x -<-,()()22212x x -<-,21x <,∴()1,1x ∈-,即x 的取值范围为()1,1-.21.(2022·全国·高三专题练习)已知幂函数()()3m f x x m N -*=∈的图象关于y 轴对称,且在()0,∞+上是减函数,求满足13233m m f a f a ⎛⎫⎛⎫+-<-- ⎪ ⎪⎝⎭⎝⎭的实数a 的取值范围. 【答案】21033a a ⎧<<⎨⎩且43a ⎫≠⎬⎭. 【解析】【分析】根据幂函数()f x 的图象关于y 轴对称,且在(0,)+∞上单调递减,可得30m -<且3m -为偶数,求得1m =,再利用函数2y x 在在0,上为减函数,由偶函数的性质可转化为28233a a +>-求解即可. 【详解】因为函数()f x 在0,上单调递减,所以30m -<,解得3m <. 因为m *∈N ,所以1m =或2.又函数()f x 的图象关于y 轴对称,所以3m -是偶数,而231-=-为奇数,132-=-为偶数,所以1m =,所以()2f x x -=,()f x 在,0上为增函数,在0,上为减函数,所以1113233f a f a ⎛⎫⎛⎫+-<-- ⎪ ⎪⎝⎭⎝⎭等价于28233a a +>-且8203a -≠, 解得21033a <<且43a ≠. 故实数a 的取值范围为21033a a ⎧<<⎨⎩且43a ⎫≠⎬⎭.. 22.(2021·全国·高三专题练习)已知幂函数()()23122233p p f x p p x--=-+,满足()()24f f <.(1)求函数()f x 的解析式. (2)若函数()()()2g x f x mf x =+,[]1,9x ∈,是否存在实数m 使得()g x 的最小值为0?(3)若函数()()3h x n f x =-+,是否存在实数(),a b a b >,使函数()h x 在[],a b 上的值域为[],a b ?若存在,求出实数n 的取值范围;若不存在,说明理由.【答案】(1)()f x =存在1m =-使得()g x 的最小值为0(3)存在,9,24⎛⎤-- ⎥⎝⎦【解析】【分析】(1)根据幂函数的定义结合()()24f f <即可得解;(2)由函数()()()2g x f x mf x =+,即()2g x =+令t =记()2k t t mt =+,分12m -≤,132m <-<,32m -≥三种情况讨论即可得出答案; (3)由函数()()3h x n f x n =-+=在定义域内为单调递减函数,若存在实数a ,b (a b <),使函数()h x 在[],a b 上的值域为[],a b ,则n b n a ⎧=⎪⎨=⎪⎩①②,消元可得1n a a =+=+令q =求出q 的范围,即可得解.(1)解:∵()f x 是幂函数,∴得2331p p -+=,解得:1p =或2p =,当1p =时,()1f x x =,不满足()()24f f <, 当2p =时,()f x ()()24f f <,∴故得2p =,函数()f x 的解析式为()f x =(2)解:由函数()()()2g x f x mf x =+,即()2g x =+令t =[]1,9x ∈,∴[]1,3t ∈,记()2k t t mt =+,其对称轴在2m t =-, ①当12m -≤,即2m ≥-时,则()()min 110k x k m ==+=,解得:1m =-; ②当132m <-<时,即62m -<<-,则()2min 024m m k x k ⎛⎫=-=-= ⎪⎝⎭,解得:0m =,不满足,舍去; ③当32m -≥时,即6m ≤-时,则()()min 3390k x k m ==+=,解得:3m =-,不满足,舍去; 综上所述,存在1m =-使得()g x 的最小值为0;(3)解:由函数()()3h x n f x n =-+=若存在实数a ,b (a b <),使函数()h x 在[],a b 上的值域为[],a b,则n b n a ⎧=⎪⎨⎪⎩①②, ②-()()33a b a b -=+-+22=-=,1=③,将③代入②得,1n a a ==+q = ∵a b <1=313b a +=++-1b a a =+->,112<,∴102q <≤, 得:2219224n q q q ⎛⎫=--=-- ⎪⎝⎭.故得实数n 的取值范围9,24⎛⎤-- ⎥⎝⎦.。

高考数学专题复习题:幂函数

高考数学专题复习题:幂函数一、单项选择题(共5小题)1.幂函数()f x x α=的图象过点1(,22,则()4f 等于( )2.若函数()22211mm y m m x −−=−−是幂函数,且在()0,x ∈+∞上是减函数,则实数m 的值为( )A.2B.-2C.1D.-13.已知幂函数()f x x α=的图象过点15,5⎛⎫ ⎪⎝⎭,则函数()(3)()g x x f x =−在区间1,13⎡⎤⎢⎥⎣⎦上的最小值是( )A.-1B.-2C.-4D.-84.已知a ===A.a b c << B.c b a << C.b c a << D.c a b <<5.已知幂函数()f x x α=的图象过点11,28⎛⎫ ⎪⎝⎭,且(2)(2)f a f a +<,则实数a 的取值范围是( )A.(,2)−∞B.(2,)+∞C.(2,2)−D.(2,)−+∞二、多项选择题(共2小题)6.若幂函数()()23231mm f x a x −+=−+,其中a ,m ∈R ,则下列说法正确的是( )A.a =−1m <<时,()()21f f > C.若4m =时,()y f x =关于y 轴对称 D.()f x 恒过定点()1,1−−8.已知112,1,,,1,2,322α⎧⎫∈−−−⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在()0,+∞上是严格减函数,则α取值的集合是________.9.函数32y x α=−的图象过定点________.四、解答题(共3小题)10.已知幂函数()()2157m f x m m x −=−+为偶函数. (1)求()f x 的解析式.(2)若()()34g x f x x =−+,求函数()g x 在区间[]1,2−上的值域.11.已知幂函数()23()69m f x m m x +=++在(0,)+∞上单调递减. (1)求实数m 的值.(2)若11(32)(4)m m a a −−−−−<+,求实数a 的取值范围.12.已知幂函数()m f x x =的图象过点()25,5. (1)求()4f 的值.(2)若()()132f a f a +>−,求实数a 的取值范围.。

高三数学一轮复习知识点专题2-4二次函数与幂函数

精品基础教育教学资料,仅供参考,需要可下载使用!专题2-4二次函数与幂函数【核心素养分析】1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3.培养学生逻辑推理、直观想象、数学运算的素养。

【重点知识梳理】 知识点一 幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 知识点二 二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质【特别提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【典型题分析】高频考点一 幂函数的图象与性质例1.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【答案】-1【解析】由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数, ∴α<0,取α=-1.【方法技巧】(1)幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.【变式探究】(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )A .-1B .0C .1D .2【答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.高频考点二 求二次函数的解析式例2.(2020·河北衡水中学调研) 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【答案】f (x )=-4x 2+4x +7.【解析】法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 2-2-3mm法三:(利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7. 【方法技巧】求二次函数解析式的策略 (1)已知三点坐标,选用一般式(2)已知顶点坐标、对称轴、最值,选用顶点式 (3)已知与x 轴两点坐标,选用零点式【变式探究】(2020·湖南湘潭二中模拟)已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【答案】19x 2+49x -59【解析】法一:(一般式)设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:(顶点式)设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.高频考点三 二次函数的图象及应用例3.(2020·吉林长春实验中学模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()【答案】A【解析】若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.【方法技巧】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【变式探究】(2020·河南商丘一中模拟)已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()A BC D【答案】D【解析】A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四:幂函数
幂函数
1)掌握5个幂函数的图像特点
2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数
3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a>0时过(0,0)
4)幂函数一定不经过第四象限 幂函数的图像:
y x =
2
y x = 3
y x = 12
y x =
1y x -=
定义域
奇偶性
在第Ⅰ象限单调增减性
定点(公共点)
例1.已知函数()()
253
1m f x m m x --=--,当 m
为何值时,()f x :
(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函
数;(5)是二次函数;
例2.比较大小:
(1)1
122
1.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.5
例3.已知幂函数2
23
m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,
求m 的值.
例4、设函数f (x )=x 3, (1)求它的反函数;
(2)分别求出f -
1(x )=f (x ),f -
1(x )>f (x ),f -
1(x )<f (x )的实数x 的范围.
例5、求函数y =5
2x +2x 5
1+4(x ≥-32)值域.
【同步练习】
1. 下列函数中不是幂函数的是( ) A.y x =
B.3y x = C.2y x = D.1y x -=
2. 下列函数在(),0-∞上为减函数的是( )
A.13
y x = B.2y x = C.3y x = D.2
y x -= 3. 下列幂函数中定义域为{}
0x x >的是( ) A.23y x = B.32
y x = C.23
y x -
= D.32
y x
-
=
4.函数y =(x 2
-2x )
2
1-的定义域是( )
A .{x |x ≠0或x ≠2}
B .(-∞,0) (2,+∞)
C .(-∞,0)] [2,+∞]
D .(0,2)
5.函数y =(1-x 2
)2
1的值域是( )
A .[0,+∞]
B .(0,1)
C .(0,1)
D .[0,1] 6.函数y =5
2x 的单调递减区间为( )
A .(-∞,1)
B .(-∞,0)
C .[0,+∞]
D .(-∞,+∞) 7.若a 2
1
<a
2
1-,则a 的取值范围是( )
A .a ≥1
B .a >0
C .1>a >0
D .1≥a ≥0
8.函数y =3
2)215(x x -+的定义域是 。

9.函数y =
2
21m m x
--在第二象限内单调递增,则m 的最大负整数是________.
10、讨论函数y =5
2x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.
11、比较下列各组中两个数的大小:
(1)5
3
5.1,5
37.1;(2)0.71.5
,0.61.5
;(3)3
2)2.1(--,3
2
)
25.1(-
-.
点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.
12.已知函数y =42215x x --. (1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.
规律总结
1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;
2.对于幂函数y =α
x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型.。

相关文档
最新文档