(完整版)专题13:幂函数知识点归纳

合集下载

幂函数知识总结

幂函数知识总结

幂函数知识总结幂函数知识总结幂函数复习y某(R)的函数称为幂函数,其中某是自变量,是一、幂函数定义:形如常数。

注意:幂函数与指数函数有何不同?【思考提示】本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置.观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0,图像过定点(0,0)(1,1),在区间(0,)上单调递增。

0,图像过定点(1,1),在区间(0,)上单调递减。

探究:整数m,n的奇偶与幂函数y某(m,nZ,且m,n互质)的定义域以及奇偶性有什么关系?结果:形如y某(m,nZ,且m,n互质)的幂函数的奇偶性(1)当m,n都为奇数时,f(某)为奇函数,图象关于原点对称;(2)当m为奇数n为偶数时,f(某)为偶函数,图象关于y轴对称;(3)当m为偶数n为奇数时,f(某)是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1,在第一象限为抛物线型(凹);指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸);指数等于0,在第一象限为水平的射线;指数小于0,在第一象限为双曲线型;四、规律方法总结:y某(0,1)的图像:1、幂函数mnmny某(q,p,qZ,p,q互质)p的图像:2、幂函数3、比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.题型一:幂函数解析式特征例1.下列函数是幂函数的是()A.y=某某B.y=3某C.y=某+1D.y=某m2m1y(mm1)某练习1:已知函数是幂函数,求此函数的解析式.2a9f(某)(a9a19)某练习2:若函数是幂函数,且图象不经过原点,求函数的解析式.题型二:幂函数性质例2:下列命题中正确的是()A.当0时,函数y某的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.幂函数的y某图象不可能在第四象限内3D.若幂函数y某为奇函数,则在定义域内是增函数练习3:如图,曲线c1,c2分别是函数y=某m和y=某n在第一象限的图象,那么一定有()A.n0yc1练习4:.(1)函数y=某的单调递减区间为()A.(-∞,1)B.(-∞,0)C.[0,+∞)D.(-∞,+∞)(2).函数y=某(3).幂函数的图象过点(2,4),则它的单调递增区间是.题型三:比较大小.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)2.3,2.4;(2)0.31,0.35;(3)(2),(3);(4)1.1,0.9..经典例题:例1、已知函数f(某)某2mm3(mZ)为偶函数,且f(3)f(5),求m的值,并确定f(某)的解析式.例2、若(m1)1(32m)1,试求实数m的取值范围.例3、若(m1)3(32m)3,试求实数m的取值范围.例4、若(m1)4(32m)4,试求实数m的取值范围.例5、函数y(m某4某m2)(m2m某1)的定义域是全体实数,求m的c20某34在区间上是减函数.13434取值范围。

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。

掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。

本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。

一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。

在幂函数中,x的指数是常数,y与x之间存在特定的关系。

二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。

当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。

2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。

3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。

三、幂函数的性质1. 定义域:所有实数。

2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。

3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。

4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。

5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。

四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。

在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。

例如,求解一个正方形的面积与边长之间的关系。

我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结高考数学知识点:幂函数知识点总结在高中数学课程中,幂函数是一个重要的知识点。

幂函数的数学表达式为f(x) = ax^n,其中a和n分别代表常数,x代表自变量。

幂函数具有许多特殊性质和应用,下面将对幂函数的相关知识点进行总结。

一、定义和性质1. 幂函数的定义:幂函数是指具有形如f(x) = ax^n的函数,其中a和n为实数常数,且a≠0。

2. 幂函数的图像:根据a和n的取值不同,幂函数的图像可以表现为增函数、减函数或恒函数。

3. 幂函数的对称性:当幂函数的幂指数n为正偶数时,函数图像关于y轴对称;当n为正奇数时,函数图像关于原点对称;当n为负数时,函数图像关于x轴对称。

二、基本性质和运算法则1. 幂函数的基本性质:a) 当n>0时,幂函数是增函数;当n<0时,幂函数是减函数。

b) 当a>1时,幂函数递增速度大于直线函数y=x;当0<a<1时,幂函数递增速度小于直线函数y=x。

c) 当n=1时,幂函数是一次函数;当n=0时,幂函数是常值函数。

2. 幂函数的运算法则:a) 幂函数相乘:f(x) = ax^m * bx^n = abx^(m+n)。

b) 幂函数相除:f(x) = (ax^m) / (bx^n) = (a/b)x^(m-n),其中b≠0。

c) 幂函数相乘的分配律:(a * b)x^n = a * bx^n,其中a和b为常数,n为指数。

d) 幂函数的复合:f(g(x)) = (ax^m)^n = a^n*x^(m*n),其中a、g(x)和n为常数。

三、幂函数的应用1. 函数图像:通过掌握幂函数图像的特点,我们可以辨认各类函数的图像特征,帮助解题。

2. 变化率计算:由于幂函数在不同区间具有不同的递增、递减性质,可以用来计算变化率,例如速度、增长率等。

3. 经济学应用:幂函数可以描述经济学中的一些指数关系,如价格与需求量的关系等。

幂函数知识点

幂函数知识点

幂函数知识点一、幂函数的定义形如$y = x^{\alpha}$($\alpha$为常数)的函数,称为幂函数。

其中$x$是自变量,$\alpha$是常数。

需要注意的是,幂函数的底数是自变量$x$,指数是常数$\alpha$,这是幂函数的重要特征。

例如,$y = x^2$,$y = x^{1/2}$,$y= x^{-1}$等都是幂函数。

二、幂函数的图像和性质1、当$\alpha > 0$时(1)$\alpha$为偶数时,幂函数的图像关于$y$轴对称。

例如,$y = x^2$的图像是一个开口向上的抛物线,顶点在原点。

(2)$\alpha$为奇数时,幂函数的图像关于原点对称。

比如,$y = x^3$的图像是经过原点的单调递增曲线。

2、当$\alpha < 0$时(1)幂函数的图像在第一、二象限,在第一象限内,函数值随$x$的增大而减小。

例如,$y = x^{-1}$的图像是双曲线,位于第一、三象限。

(2)当$x > 1$时,幂函数的图像在$y = x$的下方;当$0 < x <1$时,幂函数的图像在$y = x$的上方。

3、当$\alpha = 0$时$y = 1$($x \neq 0$),图像是一条平行于$x$轴的直线,去掉点$(0, 1)$。

三、幂函数的单调性1、当$\alpha > 0$时(1)若$\alpha > 1$,幂函数在$0, +\infty)$上单调递增。

(2)若$0 <\alpha <1$,幂函数在$0, +\infty)$上单调递增,但增长速度较慢。

2、当$\alpha < 0$时幂函数在$(0, +\infty)$上单调递减。

四、幂函数的奇偶性1、若$\alpha$为整数(1)当$\alpha$为偶数时,幂函数为偶函数。

(2)当$\alpha$为奇数时,幂函数为奇函数。

2、若$\alpha$为分数将其化为最简分数形式$\frac{p}{q}$($p$,$q$互质)(1)若$q$为偶数,幂函数是非奇非偶函数。

幂函数的性质知识点总结

幂函数的性质知识点总结

幂函数的性质知识点总结幂函数是一种常见的函数形式,其形式为$f(x)=x^a$,其中$a$为实数,$x$为正实数。

在初等数学中,我们常常使用幂函数来描述各种各样的问题。

因此,本文将全面总结幂函数的性质,包括定义域、值域、单调性、奇偶性、最值等等。

一、定义域对于幂函数$f(x)=x^a$,其定义域为$x>0$。

这是因为,对于$x\leq 0$的情况,幂函数的值可能会在实数范围内无限制地扩大或缩小,从而变成无意义的虚数或复数。

因此,为了确保$f(x)$在实数范围内有意义,必须限定$x>0$。

二、值域当$a>0$时,$f(x)$的值域为$[0,+\infty)$。

这是因为,对于$x=0$时,$f(x)=0$;而对于$x>0$时,$f(x)$的值随着$x$的增大而增大,趋近于无穷大。

因此,$f(x)$的值域为$[0,+\infty)$。

当$a<0$时,$f(x)$的值域为$(0,+\infty)$。

这是因为,对于$x\neq 0$时,$f(x)>0$;而对于$x=0$时,$f(x)=0$。

因此,$f(x)$的值域为$(0,+\infty)$。

三、单调性当$a>0$时,$f(x)$在定义域内单调递增。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a>0$,因此$x_2^a>x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

因此,$f(x)$在定义域内单调递增。

当$a<0$时,$f(x)$在定义域内单调递减。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a<0$,因此$x_2^a<x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

专题13:幂函数知识点归纳(最新整理)

专题13:幂函数知识点归纳(最新整理)

1
1 3
3
2a
1 3
,求实数
a
的取值范围.
(C) m 为偶数, n 为奇数,且 m 1 n
(D) m 奇数, n 为偶数,且 m 1 n
y
x O
3、比较下列各组数的大小:
1
1
(1)1.53 ,1.73 ,1;(2)
3
2 7,
3
3 7,
3
5 7 ;(3)
2 2
2 3

10 7
2 3

1.1
4 3

4、若 a
解析式为__________
5、设 a 2, 1, 1 , 1 , 1 ,1, 2,3 ,已知幂函数 f x x 是偶函数,且在区间 0, 上是
232
减函数,则满足要求的 值的个数是__________.
6、设 y f x 和 y g x 是两个不同的幂函数,集合 M x | f x g x ,则集合 M
幂函数知识点归纳
一、 幂函数定义:对于形如: fx x ,其中 为常数.叫做幂函数
定义说明:
1、 定义具有严格性, x 系数必须是 1,底数必须是 x
2、 取值是 R .
3、 《考试标准》要求掌握α=1、2、3、½、-1 五种情况
二、 幂函数的图像
幂函数的图像是由 决定的,可分为五类: 1)>1时图像是竖立的抛物线.例如: fx x2
3、 0
① y x2
② y x1
3
—4
③yx 2 ④yx 3
三、 幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。
1、 定义域、值域与α有关,通常化分数指数幂为根式求解

幂函数 知识点总结

幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。

其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。

1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。

当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。

1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。

1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。

二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。

图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。

2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。

图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。

2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。

当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。

2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。

高中幂函数知识点

高中幂函数知识点高中幂函数学问点幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。

当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域幂函数性质:对于a的取值为非零有理数,有必要分成几种状况来商量各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=k,则x=1/(x^k),明显x≠0,函数的定义域是(∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排解了为0与负数两种可能,即对于x0,则a可以是任意实数;排解了为0这种可能,即对于x排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。

〔总结〕起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。

在x大于0时,函数的值域总是大于0的实数。

幂函数运算知识点总结

幂函数运算知识点总结一、幂函数的定义幂函数是指数函数的一种特殊形式,其定义为f(x) = ax^n,其中a和n分别为实数且n为正整数。

幂函数的定义域为实数集合,值域为非负实数集合。

当n为偶数时,幂函数的图像呈现“上凸”的形状;当n为奇数时,幂函数的图像呈现“上凹”的形状。

二、幂函数的图像特点1. 当n为奇数时,幂函数的图像在第一象限和第三象限上凹,在第二象限和第四象限上凸。

2. 当n为偶数时,幂函数的图像在第一象限和第三象限上凸,在第二象限和第四象限上凹。

3. 当n为1时,幂函数的图像为直线y=ax,且通过原点。

三、幂函数的性质1、对任意实数a,b,c(a≠0,1);n,m为正整数,有a^0=1,a^m*a^n=a^(m+n),(a^m)^n=a^(mn),(a*b)^m=a^m*b^m,(a/b)^m=a^m/b^ma^m/a^n=a^(m-n)2、a≠0,1时,当0<a<1时,a^m叫做小于1的幂,a^(−m)=1/a^m;大于1的幂。

a^m>1, 当m>1时 a^m>1, 当m<1时 a^m <1.0^0=1,0^m=0 (m>0).四、幂函数的运算规律1. 幂函数与常数的乘积:y=kx^n(k为常数),则y=kx^n是一条幂函数的图像,图像基本形状不变,只经过纵向压缩或纵向拉伸。

若k>1,则图像纵向压缩;若0<k<1,则图像纵向拉伸。

2. 幂函数的平移:若对f(x)=x^n加常数c,则其图像向上平移c个单位;若对f(x)=x^n减常数c,则其图像向下平移c个单位。

3. 幂函数的镜像:幂函数关于y轴对称时,原函数的图像将对称于y轴;幂函数关于x轴对称时,原函数图像将对称于x轴。

4. 幂函数的复合函数:将两个幂函数进行复合运算时,其结果仍为幂函数。

五、幂函数的求导幂函数的导数运算利用幂函数的性质和指数函数的导数运算法则,以及利用导数的乘法法则与链式法则。

总结幂函数的知识点

总结幂函数的知识点一、幂函数的定义幂函数的一般形式为f(x) = x^n,其中n是一个实数。

当n为正整数时,我们可以得到常见的幂函数,如f(x) = x^2、f(x) = x^3等。

当n为负整数时,幂函数具有分式形式,如f(x) = 1/x、f(x) = 1/x^2等。

当n为分数时,幂函数的解析形式较为复杂,但与整数幂函数有着相似的性质。

总结来说,幂函数是一种以自变量x的幂次作为函数表达式的函数。

二、幂函数的性质1. 定义域和值域幂函数的定义域通常为实数集R,除非n为分数并且分母为偶数时,此时幂函数的定义域为正实数集R+。

对于值域,当n为偶数时,幂函数的值域为非负实数集R+;当n为奇数时,幂函数的值域为全体实数集R。

2. 增减性和奇偶性当n为正数时,幂函数在整个定义域上是增函数;当n为负数时,幂函数在定义域上是减函数。

当n为偶数时,幂函数关于y轴对称;当n为奇数时,幂函数关于原点对称。

3. 渐近线当n>1时,幂函数的图像在y轴右侧有一条垂直渐近线x=0;当n<0时,幂函数的图像在y轴右侧也有一条垂直渐近线x=0。

4. 零点和极限对于n为正数的幂函数,它的零点是x=0;对于n为负数的幂函数,它在x=0处有一个无穷远点的极限。

5. 斜率和凹凸性幂函数的斜率函数为f'(x) = nx^(n-1),在n>1时,斜率函数是一个正函数;在0<n<1时,斜率函数是一个负函数。

并且当n>2时,幂函数在定义域上为凸函数;当0<n<2时,幂函数在定义域上为凹函数。

三、幂函数的图像幂函数的图像可以通过手绘或利用计算机绘图工具制作。

常见的幂函数图像有以下几种特点:1. 当n>1时,幂函数的图像在第一象限上递增,图像呈现上升趋势;当0<n<1时,幂函数的图像在第一象限上递减,图像呈现下降趋势。

2. 当n为偶数时,幂函数的图像在第一、四象限上对称;当n为奇数时,幂函数的图像在整个平面上关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义说明:
1、 定义具有严格性,x 系数必须是1,底数必须是x
2、
取值是R .
3、 《考试标准》要求掌握a =1、2、3、?、-1五种情况
•、 幕函数的图像
幕函数的图像是由 决定的,可分为五类:
2
1 ) >1时图像是竖立的抛物线•例如:f x x
2)
=1时图像是一条直线•即f x x
1
3) O
V V 1时图像是横卧的抛物线•例如f x x 2
4)
=0时图像是除去(0,1)的一条直线•即f x
x 0 ( X Z 0 )
5)
V 0时图像是双曲线(可能一支) •例如f x x
具备规律:
① 在第一象限内x=1的右侧:指数越大,图像相对位 置越高(指大图高)
② 幕指数互为倒数时,图像关于 y=x 对称
③ 结合以上规律,要求会做出任意一种幕函数图像
幕函数的性质要结合图像观察,随着a 取值范围的变化,性质有所不同。

1、 定义域、值域与a 有关,通常化分数指数幕为根式求解
2、 奇偶性要结合定义域来讨论
幕函数定义:对于形如:
幕函数知识点归纳
x ,其中
为常数•叫做幕函

练习: 做出下 F 列函数的 1图像: 5
y x 3
1、
1
①y
x 3
或 ②y
2
x 或y
1
2
1
2、0
1①y x 3
②y x 3
③y x 2
3、 0
①y
x 2
②y
1
x
③y x
x 3 ③ y x 2 或 y x 4
幕函数的性质
3
3、 单调性:a> 0时,在(0, +8)单调递增:a =0无单调性;aV 0时,在(0, +^)单调递减
4、 过定点:a> 0 时,过(0,0)、(1,1)两点;aW 0 时,过(1,1 )
f x x >0
5、 由X
可知,图像不过第四象限
四、
幕函数类型题归纳
(一)
定义应用:
1、 下列函数是幕函数的是 ________
1 Q
2 2 1 0
① y (―) 2
② y 2x ③ y (x 1) ④ y x ⑤ y 1
x
2、 若幕函数y f x 的图像过点 ——,2,则函数y f x 的解析式为 ______________________
2
2
m 2 4m 4 x m m 1是幕函数,且经过原点,则实数m 的值为
2
x x k k 2 k Z 满足f 2 f 3,则k 的值为
解析式为 ___________
1 1 1
5、设a 2, 1,
, , ,1,2,3 ,已知幕函数 f x 2 3 2
减函数,则满足要求的 值的个数是
(A) m 、n 为奇数且m 1
n
(B) m 为偶数,n 为奇数,且m 1
n (C) m 为偶数,n 为奇数,且m 1
n (D) m 奇数,n 为偶数,且m 1
n
3、比较下列各组数的大小:
3、已知函数f x
4、已知函数
屈数f x 的
x 是偶函数,且在区间 0, 上是
6、设y f x 和 y g x 是两个不同的幕函数,集合M
x | f x g x ,则集合M 中
(二) (A) 1 或 2 或 0 ( B ) 1 或 2 或 3
(C)
图像及性质应用 1、
右图为幕函数 y x 在第
•象限的图
像,
a, b, c, d 的大小关系是
(
)
(A) a b c d (B) b a d c (C)a
b d c
(D)a
d c b
2、如图 :幕函数y n
x m ( m 、n N ,且
m 、
(D )0或1或2或3
x
y=x d
c
n 互质)的图象在第一,二象限,且不经过原点,则有
元素的个数是(
)
1或2或3或4

2 2
1 1
(1) 1.53, 1.73, 1;(2)
3
J7,
3 3
.3 7, ,5 7; ( 3)
.2卞
-- ?
2
10亏
- ?
7
4
1.1飞
1
4、若a 1 33
1
2a 3, 求实数a的取值范围.。

相关文档
最新文档