伏安特性曲线
CT伏安特性曲线分析

ct伏安特性试验及数据分析作者:高占杰摘要:CT电流互感器是电力设备中将强电流信号转换成二次使用的弱电流信号,用于保护、测量回路,其运行性能的好坏直接关系到保护的正常运行、测量的准确,本章对CT电流互感器伏安特性曲线测量方法、注意事项,10%误差曲线定义、画法以及数据分析及异常判别、校核方法进行解析,对新安装的互感器校验检查具有一定的指导意义。
一、CT伏安特性试验概述所谓CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。
试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。
三是对差动保护CT 精度有要求的进行10%误差曲线校核。
二、原理接线利用调压器、升压变、电流表、PT、电压表试验接线如图所示:1)通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或FLUKE87型万用表读取电压。
由于FLUKE87型万用表可测最高交流电压为4000V,故可用它直接读取电压而无需另接PT。
2)利用CT伏特性测试仪试验时,接线如图所示:目前生产的CT伏安特性测试仪一般电压可升至2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT特性曲线.三试验过程及注意事项1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。
伏安特性曲线

测量结果可以由电流表内阻RA修正
Rx R RA x
接入误差为
R x RA 100% Rx R R A x
②外接法 外接法电路中,由于电压 表内阻不为无穷大,电流 表测得的电流值为流经待 测电阻和电压表的电流之 和,因此也有接入误差。 电阻的测量值
V Rx A
E
U U R x I I x IV U R x RV U / Rx U / RV R x RV
实验条件: 电源电压取E=2V;电压表选3V档; 电流表选15mA档。
(2)在不通电的情况下连接电路(通电前 滑线变阻器应置于安全位置),调节滑线变 阻器,使电压表读数从0.000V~1.000V之间 变化,每间隔0.100V记录相应的电流值。 (3)使用坐标纸画出伏安特性曲线,并计 算U=0.55V时的静态电阻和动态电阻值。
R x
Rx RV Rx RV
测量结果可以由电压表内阻RV修正
R RV x Rx RV R x
接入误差为
R x R x 100% Rx RV
这里负号表示测量结果偏小。
③接入方法的选择 实际测量时,应选择接入误差小的接入法。 当两种接入法的接入误差相等时有
Rx RV RA Rx RV Rx
(2)在不通电的情况下连接电路(通电前 滑线变阻器应置于安全位置),调节滑线变 阻器,使电压表读数从0.000V~3.000V之间 变化,每间隔0.300V记录相应的电流值。
(3)使用坐标纸画出伏安特性曲线。 (4)根据伏安特性曲线计算电阻的测量值。 (5)对测量值进行修正,并计算接入误差。
2.测定二极管的正向伏安特性曲线 (1)使用外接法连接电路。
dU r dI
U
电阻定律伏安特性曲线

电阻定律
1、内容:
同种材料的导体,其电阻R与它的长
度L成正比,与它的横截面积S成反比;
导体电阻与构成它的材料有关。
2、表达式:
R l
S
是比例常数,它与导体的材料有
关,是一个反映材料导电性能的物理 量,称为材料的电阻率。
电阻率()
1、反映材料导电性能的物理量 2、单位:欧姆·米 Ω·m 3、纯金属的电阻率小,合金的电阻率大 4、金属导体的电阻率随温度的升高而增大
锰铜合金和镍铜合金的电阻率随温度变化极小, 利用它们的这种性质,常用来制作标准电阻。
超导现象:有些物质当温度降低到绝对零度附近 时它们的电阻率会突然变为零。
半导体:导电性能介于导体和绝缘体之间,电阻 率随温度的升高而减小,导电性能由外界条件所控制, 如改变温度、光照、掺入微量杂质等。
1.下列关于电阻率的叙述,错误的是 [ ] A.当温度极低时,超导材料的电阻率会突然
减小到零
B.常用的导线是用电阻率较小的铝、铜材料 做成的
C.材料的电阻率取决于导体的电阻、横截面 积和长度
D.材料的电阻率随温度变化而变化
4.一根阻值为R的均匀电阻丝,长为L,横截面积 为S,设温度不变,在下列哪些情况下其电阻值 仍为R? [ ]
A.当L不变,S增大一倍时 B.当S不变,L增大一倍时
D.当L和横截面的半径都增大一倍时。
2.一粗细均匀的镍铬丝,截面直径为d,电阻为R。 把它拉制成直径为d/10的均匀细丝后,它的电阻 变为( )
A.R/1000 B.R/100 C.100R D.10000R
伏安特性曲线:导体的 I—U 图线
伏安特性曲线是研究导体电流和电 压关系的重要工具。
若导体的伏安特性曲线是过原点的直线, 则这种元件称为线性元件。
伏安特性曲线

(一)线性电阻的伏安特性曲线由图可知,伏安特性曲线的斜率为0.9944,故实验测得线性电阻阻值为1/994.4=1005.6Ω。
实际电阻的标称值为1000Ω,相对误差为E=(|1000-1005.6|/1000)*100%=0.56%。
误差原因:实验中采用电流表内接法,电压表的读数包括了电流表的压降,因此计算所得电阻为电流表内阻和线性电阻之和,偏大。
(二)半导体二极管伏安特性曲线 1、正向特性U/V 2.0 4.0 6.0 8.0 10.0 I/mA 1.992 3.976 5.956 7.953 9.947U/V 0.20 0.40 0.60 0.62 0.64 0.66 0.68 0.70 I/mA0.004 0.004 0.013 0.023 0.042 0.084 0.173 0.3592、反向特性U/V 2.00 4.00 6.00 6.20 6.40 6.60 6.80 I/mA 0.004 0.004 0.004 0.004 0.004 0.004 8.034(三)理想电压源伏安特性曲线I/mA 10.0 20.0 30.0 40.0 50.0U/V 10.032 10.032 10.031 10.030 10.030(四)实际电压源伏安特性曲线I/mA 10.0 20.0 30.0 40.0 50.0U/V 9.406 8.853 8.545 7.842 7.421由公式U=Us-IRs,伏安特性曲线的斜率为电源内阻,可求得实际电源内阻49.8Ω.实验中,实际内阻为51.2Ω,相对误差为E=|51.2-51|/51*100%=0.39%。
误差原因:实验中采用电流表外接法,电流表的读数包括了电压表中的电流,因此,根据公式U=Us-IRs计算所得电阻值偏小。
伏安特性曲线结论分析

伏安特性曲线结论分析引言伏安特性曲线是电子元件中常见的特性曲线之一,用于描述元件的电压和电流之间的关系。
伏安特性曲线可以通过实验或者模拟得到。
在电路设计和分析中,了解伏安特性曲线的特点和分析方法非常重要。
本文将通过对伏安特性曲线的结论分析,帮助读者更好地理解和应用伏安特性曲线。
伏安特性曲线的基本形状伏安特性曲线通常呈现出一种非线性的关系,可以分为三个主要区域:欧姆区、饱和区和截止区。
1.欧姆区:在欧姆区,电压和电流之间存在线性关系,即V = I * R,其中V是电压,I是电流,R是电阻。
在欧姆区,元件的电阻保持不变。
2.饱和区:在饱和区,电压增加时,电流基本不变,接近于一个饱和值。
在饱和区,元件的电阻变得非常小。
3.截止区:在截止区,电压增加时,电流非常接近于零。
在截止区,元件的电阻可以被看作无穷大。
伏安特性曲线的应用伏安特性曲线在电子元件的设计和分析中具有广泛的应用。
下面介绍几个主要的应用领域。
1.电阻的计算:欧姆区的伏安特性曲线可以用来计算电阻值。
根据R =V / I,可以通过测量电压和电流,在欧姆区内得到电阻的近似值。
2.元件类型判断:元件的伏安特性曲线可以帮助判断元件的类型。
例如,二极管的伏安特性曲线通常呈现出一个非线性的关系,在截止区域内电流几乎为零,而在饱和区域内有较大的电流。
3.电源设计:伏安特性曲线可以帮助设计电源电路。
通过测量负载在不同电压下的电流,可以了解相应负载的功耗特性,从而设计出合适的电源电路。
伏安特性曲线的分析方法对于给定的伏安特性曲线,可以采用以下方法进行分析。
1.斜率分析:在欧姆区,可以通过斜率分析得到电阻的值。
计算两点间的斜率,即可得到该区域的电阻近似值。
在非线性区域,可以选择合适的线性片段进行斜率分析,得到近似的电阻值。
2.特征点分析:伏安特性曲线上的特征点包括最大电流点、最大功耗点、截止点和饱和点等。
通过分析这些特征点,可以了解元件的工作状态和性能。
3.曲线拟合:对于复杂的伏安特性曲线,可以进行曲线拟合,得到一个数学模型。
伏安特性曲线

伏安特性曲线伏安特性曲线是描述电子器件的电流与电压之间关系的图像,它是材料特性和电流运动规律的重要表征。
通过研究伏安特性曲线,可以了解电子器件的工作方式、性能指标以及其在电路中的应用。
本文将详细介绍伏安特性曲线的概念、性质和应用,并介绍一些常见的电子器件的伏安特性曲线。
一、伏安特性曲线的概念及基本性质伏安特性曲线又称为IV特性曲线,是描述电子器件电流与电压关系的图像。
它通常是电流I作为横坐标,电压V作为纵坐标绘制的曲线。
伏安特性曲线反映了电流随电压的变化规律,可以从中获得电子器件的许多重要信息。
伏安特性曲线的基本性质有以下几点:1. 伏安特性曲线一般呈现出非线性关系,即电流与电压之间的关系不是简单的比例关系。
这是因为电流的变化过程受到力学、热力学等多种因素的影响。
2. 伏安特性曲线一般具有对称性,即在正负电压下电流基本呈现出相同的变化趋势。
这是由于正负电压下的电流运动规律相似。
3. 伏安特性曲线的形状与电子器件的材料和结构有关。
不同材料和结构的器件具有不同的伏安特性曲线形状。
二、常见电子器件的伏安特性曲线1. 二极管的伏安特性曲线:二极管是一种两端具有PN结的器件。
在正向偏置情况下,二极管的伏安特性曲线呈现出指数关系。
在反向偏置情况下,二极管的伏安特性曲线呈现出较小的电流变化。
2. 晶体管的伏安特性曲线:晶体管是一种三端器件,主要分为P 型和N型两种类型。
晶体管的伏安特性曲线在不同工作区域上有所不同,包括截止区、放大区和饱和区。
3. MOSFET的伏安特性曲线:MOSFET是一种金属氧化物半导体场效应晶体管。
MOSFET的伏安特性曲线可以分为三个区域,包括截止区、增强区和饱和区。
4. 电阻器的伏安特性曲线:电阻器的伏安特性曲线呈现出线性关系,即电流与电压之间成正比。
这是因为电阻器的电流和电压之间满足欧姆定律。
三、伏安特性曲线的应用伏安特性曲线在电子器件的设计和应用中起着重要作用。
以下是伏安特性曲线的一些应用:1. 设计电路:通过研究伏安特性曲线,可以确定电子器件的工作区域,帮助设计出合适的电路。
晶体二极管的伏安特性曲线
晶体二极管的伏安特性曲线二极管最重要的特性就是单向导电性,这是由于在不同极性的外加电压下,内部载流子的不同的运动过程形成的,反映到外部电路就是加到二极管两端的电压和通过二极管的电流之间的关系,即二极管的伏安特性。
在电子技术中,常用伏安特性曲线来直观描述电子器件的特性。
根据图1的试验电路来测量,在不同的外加电压下,每转变一次RP的值就可测得一组电压和电流数据,在以电压为横坐标,电流为纵坐标的直角坐标系中描绘出来,就得到二极管的伏安特性曲线。
图1 测量晶体二极管伏安特性a) 正向特性b) 反向特性图2 2CZ54D伏安特性曲线图3 2AP7伏安特性曲线图2和图3分别表示硅二极管2CZ54D和锗二极管2AP7的伏安特性曲线,图中坐标的右上方是二极管正偏时,电压和电流的关系曲线,简称正向特性;坐标左下方是二极管反偏时电压和电流的关系曲线,简称反向特性。
下面我们以图1为例加以说明。
当二极管两端电压为零时,电流也为零,PN结为动态平衡状态,所以特性曲线从坐标原点0开头。
(一)正向特性1. 不导通区(也叫死区)当二极管承受正向电压时,开头的一段,由于外加电压较小,还不足以克服PN结内电场对载流子运动的阻挡作用,因此正向电流几乎为零,二极管呈现的电阻较大,曲线0A段比较平坦,我们把这一段称作不导通区或者死区。
与它相对应的电压叫死区电压,一般硅二极管约0.5伏,锗二极管约0.2伏(随二极管的材料和温度不同而不同)。
2. 导通区当正向电压上升到大于死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流增长很快,二极管正向导通。
导通后,正向电压微小的增大会引起正向电流急剧增大,AB 段特性曲线陡直,电压与电流的关系近似于线性,我们把AB 段称作导通区。
导通后二极管两端的正向电压称为正向压降(或管压降),也近似认为是导通电压。
一般硅二极管约为0.7伏,锗二极管为0.3伏。
由图可见,这个电压比较稳定,几乎不随流过的电流大小而变化。
导体的伏安特性曲线课件
―→
应用I=qt 计算
[解析] 水溶液中导电的是自由移动的正、负离子,它们在电场 的作用下向相反方向定向移动。电学中规定,电流的方向为正电荷 定向移动的方向,所以溶液中电流的方向与正离子定向移动的方向 相同,即由 A 指向 B。
每个离子的电荷量是 e=1.60×10-19 C。该水溶液导电时负离子
(× )
(2)通过导体某横截面的电荷量越多,电流越大。
( ×)
2:填空 在金属导体中,若 10 s 内通过某一横截面的电荷量 q=10 C,则 导体中的电流大小为_1_A。
知识点二 欧姆定律
1.欧姆定律 (1)内容:导体的电流与导体两端的电__压__成正比,与导体的_电__阻_ 成反比。
U (2)表达式:I=_R_。
2.伏安法 (1)内容:用电压表测量导体两端的电压,用电流表测量通过导 体的电流来计算导体的电阻的方法。 (2)表达式:R=UI 。
①欧姆定律公式中的 I、U、R 必须对应同一导体或同 一段纯电阻电路(不含电源、电动机、电解槽等电器的电路)。
②I=UR表明通过同一导体的电流 I 与导体两端电压 U 成正比, 与其电阻 R 成反比。
考点 3 导体的伏安特性曲线 导体在 A 状态下的电阻的倒数是该点切线的斜率还是 OA 直线 的斜率?
提示:是 OA 直线的斜率,曲线上各点切线的斜率无意义。
1.伏安特性曲线:用纵坐标表示电流 I,用横坐标表示电压 U, 这样画出的导体的 I-U 图像称为导体的伏安特性曲线。
2.线性元件:伏安特性曲线是一条过原点的直线,欧姆定律适 用的元件,如金属导体、电解液导体。
2.对 I=qt 的理解
电流定义式
电流方向
(1)I=qt 是单位时间内通过导体横截面的 电流方向与正电荷定
伏安特性曲线
伏安特性曲线伏安特性曲线是加在PN结两端的电压和流过二极管的电流之间的关系曲线,u>0的部分称为正向特性,u<0的部分称为反向特性。
伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出I-U图像,这种图像常被用来研究导体电阻的变化规律,是物理学常用的图像法之一。
快速导航目录∙1基本定义∙2存在原理∙3实验举例∙4实验方法∙5实验原理∙6参考资料1基本定义二极管伏安特性曲线某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
因为温度可以决定电阻的大小。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
2存在原理二极管伏安特性曲线加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线。
如图所示:正向特性:u>0的部分称为正向特性。
反向特性:u<0的部分称为反向特性。
反向击穿:当反向电压超过一定数值U(BR)后,反向电流急剧增加,称之反向击穿。
势垒电容:耗尽层宽窄变化所等效的电容称为势垒电容Cb。
变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。
如下图所示。
平衡少子:PN结处于平衡状态时的少子称为平衡少子。
非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子均称为非平衡少子。
扩散电容:扩散区内电荷的积累和释放过程与电容器充、放电过程相同,这种电容效应称为Cd3实验举例研究小灯泡伏安特性曲线方法:【目的和要求】通过实验绘制小灯泡的伏安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
伏安特性曲线
伏安特性曲线基本定义二极管伏安特性曲线导体A、B的伏安特性曲线定义:在实际生活中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图像叫做导体的伏安特性曲线。
某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
实验例子研究小灯泡伏安特性曲线方法:【目的和要求】通过实验绘制小灯泡的伏-安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
实验方法伏安法1.连接电路,开始时,滑动变阻器滑片应置于最小分压端,使灯泡上的电压为零。
2.接通开关,移动滑片C,使小灯泡两端的电压由零开始增大,记录电压表和电流表的示数。
3.在坐标纸上,以电压U为横坐标,电流强度I为纵坐标,利用数据,作出小灯泡的伏安特性曲线。
4.由R=U/I计算小灯泡的电阻,将结果填入表中。
以电阻R为纵坐标,电压U为横坐标,作出小灯泡的电阻随电压变化的曲线。
5.由P=IU计算小灯泡的电功串,将结果填入表中。
以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。
6,分析以上曲线。
实验原理由于小灯泡钨丝的电阻随温度而变化,因此可利用它的这种特性进行伏安特性研究。
实验中小灯泡的电阻等于灯泡两端的电压与通过灯泡电流的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
因为温度可以决定电阻的大小。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
研究小灯泡伏安特性曲线
方法:
【目的和要求】
通过实验绘制小灯泡的伏安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】
学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
实验方法
伏安法
1.连接电路,开始时,滑动变阻器滑片应置于最小分压端,使灯泡上的电压为零。
2.接通开关,移动滑片C,使小灯泡两端的电压由零开始增大,记录电压表和电流表的示数。
3.在坐标纸上,以电压U为横坐标,电流强度I为纵坐标,利用数据,作出小灯泡的伏安特性曲线。
4.由R=U/I计算小灯泡的电阻,将结果填入表中。
以电阻R为纵坐标,电压U为横坐标,作出小灯泡的电阻随电压变化的曲线。
5.由P=IU计算小灯泡的电功串,将结果填入表中。
以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。
6,分析以上曲线。
实验原理
由于小灯泡钨丝的电阻随温度而变化,因此可利用它的这种特性进行伏安特性研究。
实验中小灯泡的电阻等于灯泡两端的电压与通过灯泡电流的比值。
改变小灯泡两端的电压,测出相应的电流值,可以得到小灯泡的电阻、电功率与外加电压的关系。
注意事项:
1.由于小灯泡电阻为几欧-几十欧,测小灯泡的电阻宜用电流表外接法。
由于实验时需要小灯泡两端的电压变化范围大,特别是需要测得在低电压下小灯泡的电流值,故应采用滑动变阻器分压接法。
2.小灯泡的电阻随温度的升高而增大,而小灯泡在电压较低时,温度随电压的变化比较明显。
因此在低电压(小于灯泡的额定电压)区域内,电压、电流数值应多取几组。
3.小灯泡可以短时间地在高于额定电压下使用,一般可以超过额定电压的10%-20%,所以加在灯泡两端的电压不能过高,以免烧毁灯泡。
实验时,应使灯泡两端电压由低向高逐渐增大,决不要一开始就使小灯泡在高于额定电压下工作。
因为灯丝电阻随温度的升高而加大,如果灯丝由低温状态,直接超过额定电压使用,会由于灯丝冷电阻过小,瞬间电流过大而烧坏灯泡。
4. 所用的滑动变阻器的量程范围,变阻器电阻越大则每次测量的改变越大,若想得到精确的图像或所测小灯泡电阻过小则建议使用较小的变阻器,可以更精确的测量。