传感器技术实验指导书

合集下载

《传感技术综合实验单元》实验指导书

《传感技术综合实验单元》实验指导书

《传感技术综合实验单元》实验指导书一、电子测量与检测实验须知传感技术综合实验的目的使学生在掌握各类传感器的理论及其检测技术、信号调理电路和光电检测技术基础上,能合理选择和利用传感器测量各种工程上常见的物理量。

这是本专业本科学生必须掌握的基本技能。

要求学生通过实际操作,培养独立思考、独立分析和独立实验的能力。

为使实验正确、顺利地进行,并保证实验设备、仪器仪表和人身的安全,在做检测与转换技术实验时,需知以下内容。

1.实验预习实验前,学生必须进行认真预习,掌握每次实验的目的、内容、线路、实验设备和仪器仪表、测量和记录项目等,做到心中有数,减少实验盲目性,提高实验效率。

2.电源(1)实验桌上通常设有单相(或三相)交流电源开关和直流电源开关,由实验室统一供电,实验前应弄清各输出端点间的电压数值。

(2)实验桌(或仪器)上配有直流稳压电源,在接入线路之前应调节好输出电压数值,使之符合实验线路要求。

特别是在实验线路中,严禁将超过规定电压数值的电源接入线路运行。

(3)在进行实验线路的接线、改线或拆线之前,必须断开电源开关,严禁带电操作,避免在接线或拆线过程中,造成电源设备或部分实验线路短路而损坏设备或实验线路元器件。

3.实验线路(1)认真熟悉实验线路原理图,能识图并能按图接好实验线路。

(2)实验线路接线要准确、可靠和有条理,接线柱要拧紧,插头与线路中的插孔的结合要插准插紧,以免接触不良引起部分线路断开。

(3)线路中不要接活动裸接头,线头过长的铜丝应剪去,以免因操作不慎或偶然原因而触电,或使线路造成意想不到的后果。

(4)线路接好后,应先由同组同学相互检查,然后请实验指导教师检查同意后,才能接通电源开关,进行实验。

4.仪器仪表(1)认真掌握每次实验所用仪器仪表的使用方法、放置方式(水平或垂直),并要清楚仪表的型号规格和精度等级等。

(2)仪器仪表与实验线路板(或设备)的位置应合理布置,以方便实验操作和测量。

(3)仪器仪表上的旋钮有起止位置,旋转时用力要适度,到头时严禁强制用力旋转,以免损坏旋钮内部的轴及其连接部分,影响实验进行。

传感器实验指导书2023

传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。

二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。

电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。

电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。

压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。

磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。

传感器实验指导书

传感器实验指导书

使用说明实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。

一、实验仪的传感器配置及布局是:四片金属箔式应变计:位于仪器顶部的实验工作台部分,左边是一副双孔称重传感器,四片金属箔式应变计贴在双孔称重传感器的上下两面,受力工作片分别用符号和表示。

可以分别进行单臂、半桥和全桥的交、直流信号激励实验。

请注意保护双孔悬臂梁上的金属箔式应变计引出线不受损伤。

电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。

电感式(差动变压器):由初级线圈Li和两个次级线圈L。

绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。

电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。

压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。

磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。

热电式(热电偶):位于仪器顶部的实验工作台部分,左边还有一副平行悬臂梁,上梁表面安装一支K分度标准热电偶,冷端温度为环境温度。

热敏式:平行悬臂梁的上梁表面还装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。

光电式传感器装于电机侧旁。

为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,加热温度通常高于环境温度30℃左右,达到热平衡的时间随环境温度高低而不同。

需说明的是置于上梁上表面的温度传感器所感受到的温度与在两片悬臂梁之间电加热器处所测得的温度是不同的。

霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm 。

MPX 压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50KP 。

精度1%。

(CSY10B )湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH 。

气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm ,灵敏度RO/R >5。

传感器实验指导书

传感器实验指导书

传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

传感器实验指导书

传感器实验指导书

一、人体动脉血压的测量一、实验目的通过实践学习,掌握间接测量人体动脉血压的原理和方法,了解血压测量的意义,要求能较准确地测出人体肱动脉的收缩压与舒张压的正常值,了解人体的正常血压及脉压标准。

二、实验原理血压是指血管内血液对于单位面积血管壁的侧压力,也即压强。

血压的单位通常用kPa或mmHg来表示。

人体动脉血压通常是用汞柱血压计和听诊进行测量的(也可用弹簧血压计或电子血压计进行测量),汞柱血压计的结构原理如附图1-2-3所示;测量部位通常为右上臂肱(GONG)动脉。

血液在血管内流动时一般没有声音,但如果血液通过狭窄处形成涡流时,便会使血管壁振动而发出声音。

当将空气打入缠于上臂的袖带内使其压力超过收缩压时,则完全阻断了肱动脉内的血流,此时在被压迫的肱动脉远端听不到声音,也触不到桡动脉的搏动。

如徐徐放气,降低袖带内压,当其压力刚低于收缩压而高于舒张压时,血液便断续地冲过受压血管,形成涡流使血管壁振动而发出声音,此时即可在被压的肱动脉远端听到,也可触到桡(RAO)动脉脉搏。

如继续放气,当外加压力等于舒张压时,则血管内血流由断续变成连续,声音便会突然由强变弱或消失。

因此当听到第一声音时的最大外加压力相当于收缩压;而当声音突然由强变弱或消失前最后声响时的外加压力则相当于舒张压。

此法即Korotkoff听诊法。

三、实验对象人体四、实验器材血压套件(水银柱血压计、压力表、听诊器、充气球、气管和联接用三通),电子血压计,胶布。

五、实验步骤与方法1.熟悉血压计构造血压计由检压计、袖带和气囊三部分组成。

检压计是一个标有0~260 mm(或0~300 mm)刻度的玻璃管。

上端通大气,下端和水银储槽相通。

袖带是一个外包布套的长方形橡皮囊,通过橡皮管分别与检压计水银储槽和橡皮球相通。

打气球是一个带有螺丝帽的橄榄球状橡皮囊,螺丝帽的拧紧和放松分别用于充气或放气。

2.测量过程1)受试者脱去右臂衣袖,取坐位,全身放松,右肘关节轻度弯曲,置于实验桌上,使上臂中心部与心脏位置同高,准备测量。

《传感器》综合实验指导书

《传感器》综合实验指导书

《传感器技术》综合实验指导书茂名学院自动化教研室实验一热电偶的校验一、实验目的1.学习使用并掌握精密型电子电位差计。

2.掌握热电偶的校验方法。

3.掌握确定仪表精度的方法。

二、实验项目1.识别热电偶的种类及电极方向。

2.热电偶进行校验三、实验设备与仪器1.温度控制系统1套2.精密电位差计1套3.铂铑-铂热电偶及补偿导线1套4.镍铬-镍硅热电偶及补偿导线1套四、实验原理实验装置连接如图1-1所示。

图1-1 热电偶校验装置连接图利用温度控制系统产生响应温度,通过精密电位差计检测标准热电偶和被校热电偶所产生的电势信号,将对应数据进行记录,对记录数据计算分析,完成热电偶的校验。

五、注意事项1.温度控制系统产生各点温度需一定时间,温度恒定后才可进行实验。

2.标准电池有一定安装位置,不可随意倒置,否则电池会毁坏。

3.完成实验后要断开电源。

避免电池耗尽。

六、实验说明及操作步骤1.由实验指导人员讲解本实验的基本要求、操作和注意事项。

2.实验步骤(1)熟悉装置,了解装置及压力表结构及各部分作用。

(2)用经验方法识别热电偶:根据热电偶材料的颜色、粗细、硬度等物理特征,识别热电偶的种类及热电偶的正负电极。

(3)按连线图正确接线。

(4)根据需要,通过温度控制系统的控制器设定温度。

(5)精密电位差计调整。

(6) 温度控制系统温度稳定后检测热电偶电势。

根据被校热电偶的检测范围分3~4点。

(7)数据记录及处理记录各校验点对应数据,按要求进行计算。

七、实验报告1.不能打印。

2.用A4统一规格纸张进行。

3.要求有实验题目、实验目的、实验项目、实验设备、实验原理、实验步骤,实验数据记录。

4.计算各误差,完成思考题。

八、思考题1.为何使用补偿导线?2.精密直流电位差计中粗、细和短三个按键的作用是什么?3.检流计有什么作用?实验二压力表的校验一、实验目的1.熟悉弹簧管压力表的结构及工作原理。

2.了解并掌握活塞式压力计的正确使用。

3.掌握确定仪表精度的方法。

传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。

通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。

11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。

图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。

传感器技术实验指导书

《传感器技术》实验指导书权义萍南京工业大学自动化学院目录实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3)实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验四压电式传感器振动实验 (11)实验五直流激励时霍尔式传感器位移特性实验 (13)实验六电涡流传感器综合实验 (15)实验七光纤传感器的位移特性实验 (18)实验一金属箔式应变片单臂、半桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

,对单臂电桥输出电压U o1= EKε/4。

不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。

三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。

传感器与检测技术实验指导书

实验一金属箔式应变片性能研究一、实验目的1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。

2、了解金属箔式应变片,半桥的工作原理和工作情况。

3、了解金属箔式应变片,全桥的工作原理和工作情况。

4、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的的各种物理量的检测。

本实验以金属箔式应变片为研究对象。

箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如图所示:(a)丝式应变片(b) 箔式应变片图1-1金属箔式应变片结构金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。

为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。

电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。

能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。

电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。

因此,为了得到较大的输出电压一般采用半桥或者全桥工作。

三、需用器件与单元:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源。

传感器技术实验指导书

传感器技术实验指导书2013年10月实验一 电阻应变片特性实验一、实验目的(1)了解金属箔式应变片的特性,掌握传感器的工作原理。

(2)明确掌握应变片在直流电桥中的几种接法,并通过每种接法的输入输出特性,分析应变式传感器和应变片的灵敏度与线性度。

(3 ) 了解温度对应变测试系统的影响。

二、实验设备CSY910传感器系统实验仪 三、实验原理应变片电阻式传感器采用悬臂梁,在梁的正反面贴有应变片电阻如图1所示。

利用这四个应变片电阻可构成一个测量桥路。

当在应变梁的自由端加载时,梁产生弯曲变形。

粘贴在表面的电阻应变片也随之图1 金属等强度悬臂梁实验架 图2 直流电桥接线板变形,从而阻值也偏离初始值。

若将应变片电阻构成不同的桥路,电桥的输出电压与所加载荷之间的关系就是应变特性。

图2所示电阻检测电路上的虚线是供使用者接上应变电阻或固定电阻值的电阻,并构成电桥,本身没接电阻。

以单臂电桥为例,直流电桥的输出表达式为))((424142310R R R R R R R R UU ++-=当R 1感受应变ε产生电阻增量ΔR 1时,电桥输出为440U K R R U U ε=∆=由此可见,应变片电阻发生变化时,电桥的输出电压也随着变化,当面ΔR <<R 时,电桥的输出与应变成线性关系 四、实验内容(一)金属箔式应变片性能——单臂电桥所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F /V 表、主副电源。

旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。

实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)负(一)、地短接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四电涡流传感器位移特性实验一、实验目的:1、了解电涡流传感器测量位移的工作原理和特性。

2、了解不同的被测体材料对电涡流传感器性能的影响。

3、了解电涡流传感器位移特性与被测体的形状和尺寸有关。

二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图4-1所示。

根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图4-2的等效电路。

图中R1、L1为传感器线圈的电阻和电感。

短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

图4-1电涡流传感器原理图图4-2电涡流传感器等效电路图根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。

因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0—无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。

由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。

因此Z、L、Q均是x的非线性函数。

虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。

其实Z、L、Q的变化与导体的电导率、磁导率、几何形状、线圈的几何参数、激励电流频率以及线圈到被测导体间的距离有关。

如果控制上述参数中的一个参数改变,而其余参数不变,则阻抗就成为这个变化参数的单值函数。

当电涡流线圈、金属涡流片以及激励源确定后,并保持环境温度不变,则只与距离x有关。

于此,通过传感器的调理电路(前置器)处理,将线圈阻抗Z、L、Q的变化转化成电压或电流的变化输出。

输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。

为实现电涡流位移测量,必须有一个专用的测量电路。

这一测量电路(称之为前置器,也称电涡流变换器)应包括具有一定频率的稳定的震荡器和一个检波电路等。

电涡流传感器位移测量实验框图如图4-3所示:图4-3电涡流位移特性实验原理框图根据电涡流传感器的基本原理,将传感器与被测体间的距离变换为传感器的Q值、等效阻抗Z 和等效电感L三个参数,用相应的测量电路(前置器)来测量。

本实验的涡流变换器为变频调幅式测量电路,电路原理与面板如图4-4所示。

电路组成:⑴Q1、C1、C2、C3组成电容三点式振荡器,产生频率为1MHz左右的正弦载波信号。

电涡流传感器接在振荡回路中,传感器线圈是振荡回路的一个电感组件。

振荡器作用是将位移变化引起的振荡回路的Q值变化转换成高频载波信号的幅值变化。

⑵D1、C5、L2、C6组成了由二极管和LC形成的π形滤波的检波器。

检波器的作用是将高频调幅信号中传感器检测到的低频信号取出来。

⑶Q2组成射极跟随器。

射极跟随器的作用是输入、输出匹配以获得尽可能大的不失真输出的幅度值。

电涡流传感器是通过传感器端部线圈与被测物体(导电体)间的间隙变化来测物体的振动相对位移量和静位移的,它与被测物之间没有直接的机械接触,具有很宽的使用频率范围(从0~10Hz)。

当无被测导体时,振荡器回路谐振于f0,传感器端部线圈Q0为定值且最高,对应的检波输出电压V o最大。

当被测导体接近传感器线圈时,线圈Q值发生变,振荡器的谐振频率发生变化,谐振曲线变得平坦,检波出的幅值V o变小。

V o变化反映了位移x的变化。

电涡流传感器在位移、振动、转速、探伤、厚度测量上得到应用。

图4-4电涡流变换器原理图与面板三、需用器件与单元:机头静态位移安装架、电涡流传感器、被测体(铁、铜、铝圆片)、端面积不同的二个铝材被测体(被测体1、被测体2)、测微头、主板F/V表、涡流变换器。

四、实验步骤:1、电涡流传感器测量位移实验:(1)观察传感器结构,这是一个平绕线圈。

调节测微头初始位置的刻度值为5mm处,按图4-5安装测微头、被测体(铁圆片)、电涡流传感器(注意安装顺序:先将测微头的安装套插入安装架的安装孔内,再将被测体套在测微头的测杆上;其次在安装架上固定好电涡流传感器;最后平移测微头安装套使被测体与传感器端面相帖时拧紧测微头安装孔的紧固螺钉)并按图接线。

图4-5电涡流传感器安装、按线示意图(2)将电压表(F/V表)量程切换开关切换到20V档,检查接线无误后将涡流变换器的拨动开关拨到“开”位置,开启主电源开关,记下电压表读数,然后逆时针调节测微头微分筒每隔0.1mm读一个数,直到输出V o变化很小为止并将数据列入表4-1。

(在输入端可接示波器观测振荡波形)表4-1被测体为铁圆片时电涡流传感器位移X与输出电压数据(3)根据表4-1数据,画出V-X曲线,根据曲线找出线性区域试计算灵敏度和线性度(可用最小二乘法或其它拟合直线)。

实验完毕,关闭所有电源。

2、被测体材料对电涡流传感器性能的影响:电涡流传感器在被测体上产生的涡流效应与被测导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。

(1)将被测体铁圆片换成铜和铝圆片,实验方法与步骤同上。

(2)按上一实验,将数据列入表4-2~4-3。

表4-2被测体为铜圆片时的位移与输出电压数据表4-3被测体为铝圆片时的位移与输出电压数据(3)根据上表的实验数据,在同一坐标上画出实验曲线进行比较,分别计算灵敏度和线性度。

实验完毕,关闭电源。

3、被测体面积大小对电涡流传感器特性的影响:电涡流传感器的位移性能与被测体的形状、大小有很大关系,当被测体面积小于线圈平面时会减弱甚至不产生涡流效应,所以电涡流传感器在实际使用时,被测体面积必须大于传感器线圈平面并进行位移标定后测量。

(1)实验方法、步骤与上一相同,参阅上一实验。

(2)在测微头的测杆上分别用二种不同面积的被测铝材进行电涡位移特性测定,并分别将实验数据列入表4-4。

表4-4实验数据(3)根据表4-4数据在同一坐标上画出V—X实验曲线,计算二种被测体的灵敏度与相同线性范围内的线性度。

实验完毕,关闭电源。

实验六线性霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。

它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。

霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。

如图6-1(带正电的载流子)所示,把一块宽为b,厚为d的导电板放在磁感应强度为B的磁场中,并在导电板中通以纵向电流I,此时在板图6-1霍尔效应原理的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。

霍尔效应的数学表达式为:U H =R HdIB =K HIB式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数;K H =R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。

具有上述霍尔效应的组件称为霍尔组件,霍尔组件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔组件),厚度d 只有1µm 左右。

霍尔传感器有霍尔组件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔组件、放大器等做在一个芯片上的集成电路型结构,与霍尔组件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔组件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图6-2(a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔组件置于两块磁钢间的中点,其磁感应强度为0,设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H =0。

当霍尔组件沿X轴有位移时,由于B≠0,则有一电压U H 输出,U H 经差动放大器放大输出为V 。

V 与X有一一对应的特性关系。

(a)工作原理(b)实验电路原理图6-2霍尔式位移传感器工作原理图*注意:线性霍尔组件有四个引线端。

涂黑二端1(V s+)、3(V s-)是电源输入激励端,另外二个2(V o+)、4(V o-)是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:机头静态位移安装架、传感器输入插座、霍尔传感器、测微头;主板F/V表、±4V、霍尔、电桥、差动放大器。

四、实验步骤:1、差动放大器调零:按图6-3示意接线,电压表(F/V表)量程切换开关打到2V档,检查接线无误后合上主电源开关并将差动放大器的拨动开关拨到“开”位置。

将差动放大器的增益电位器顺时针慢悠悠转到底,再逆时针回转半周;调节差动放大器的调零电位器,使电压表显示为0。

维持差动放大器的调零电位器的位置不变,关闭主电源,拆除差动放大器的输入引线。

图6-3差动放大器调零接线图2、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm刻度线。

按图6-4在机头上安装传感器与测微头并根据示意图接线。

检查无误后,开启主电源。

图6-4线性霍尔传感器(直流激励)位移特性实验安装与接线示意图3、松开安装测微头的紧固螺钉,移动测微头的安装套,使PCB板(霍尔组件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

仔细调节电桥单元中的W1电位器,使电压表显示0。

4、使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数(大约在1.6V~1.8V左右)作为位移起点。

以后,反方向(逆时针方向)调节测微头的微分筒(0.01mm/每小格),每隔△X=0.1mm(总位移可取3~4mm)从电压表上读出输出电压Vo值,填入下表6-1(这样可以消除测微头的机械回差)。

相关文档
最新文档