勾股定理的应用立体图形展开
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
《勾股定理的应用》--长方体表面上的最短路径问题教学设计

17.3.勾股定理的应用---长方体表面上最短路径问题一、学生知识状况分析本节将利用勾股定理解决立体图形表面上两顶点间最短距离问题,需要学生了解空间图形、对长方体进行展开实践操作活动.学生在学习七年级下正(长)方体展开图已经有了一定的认知上,已经基本具备解决本课题问题所需的知识基础和活动经验.二、教学任务分析本节是义务教育课程标准人教版教科书八年级(下)第十七章《勾股定理的应用》延伸的课题学习,具体内容是运用勾股定理解决长方体表面两顶点间最短路径问题.在这问题的解决过程中,需要经历立体图形转化为平面图形的过程,通过操作、观察、对比,培养学生的分析、归纳应用等能力;在探究活动具体一定的难度,在突破难点时需要具有学生敢于探索、勇于思考的精神,有助于锻炼学生独立思考,力闯难关的勇气.也通过转化思想、对比方法培养学生学习数学的基本素养。
三、教学设计:(一)教学目标:知识与技能:1、熟练运用勾股定理解决实际问题;2.通过立体图形转化为平面图形,能找出最短路线;过程与方法:1.强化转化思想和对比方法,培养学生分析、归纳、解决问题的能力;2.构建直角三角形模型,回归平面几何本源;情感态度与价值观:在教学过程中培养学生动手实践、观察、分析、归纳的习惯,体会知识的形成过程和获得知识的成就感;增强学生应用数学知识解决实际问题的经验,培养学生解决问题的能力,激发学生学习的兴趣和信心。
(二)教学重难点:1、教学重点:知识形成过程,并有效运用勾股定理解决实际问题。
2、教学难点:通过转化思想把立体图形转化为平面图形,构建直角三角形模型,并分情况讨论,得出结论的探究的过程。
(三)课前准备:课件、长方体盒子、线、两颗螺丝。
(四)教法、学法:引导---探究---归纳演示操作,引发思考,分类讨论,对比分析,达成结论。
(五)教学过程分析本节课设计了八个环节.第一环节:复习巩固;第二环节:问题呈现;第三环节:探索新知;第四环节:解决问题;第五环节:课堂练习;第六环节:课堂小结;第七环节:课后作业.第八环节:课后反思。
勾股定理的应用

5.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面 还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地 面,求旗杆的高度.
【解析】设旗杆的高度AC为x m,
那么绳子的长度AB为(x+1) m,
根据题意得到△ABC为直角三角形,∠C=90°,
根据勾股定理得到:
52+x2=(x+1)2,
答案:480
4.如图所示,学校有一块长方形花圃,有极 少数人为了避开拐角走“捷径”,在花圃内 走出了一条“路”.他们仅仅少走了_______ 步路(假设2步为1 m),却踩伤了花草. 【解析】根据勾股定理可得斜边长是 则少走的距离是3+4-5=2(m),即4步. 答案:4
42 32 5 m .
A.45 m
B.40 m
C.50 m
D.56 m
【解析】选B.由题意知△AOB为直角三角形, 因为OA=32 m,OB=24 m, 所以 AB AO2 BO2 322 242 40 m .
2.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用 上,他搬来了一架高为2.5 m的梯子,要想把拉花挂在高2.4 m的 墙上,小虎应把梯子的底端放在距离墙______m处. 【解析】由勾股定理得,梯子的底端到墙的距离为
(打“√”或“×”) (1)应用勾股定理的前提是三角形是直角三角形.( √ ) (2)只用米尺不能确定一个门框的两边是否垂直.( × ) (3)如图,为测得到池塘两岸点A和点B间的距离,一个观测者 在C点设桩,使∠ABC=90°,并测得AC长50 m、BC长40 m,则 A,B两点间距离是30 m.( √ )
解得x=12.
答:旗杆的高度为12 m.
6.如图所示,从电线杆离地8 m高的A处向地面B处拉一条长 10 m的缆绳,如果从电线杆离地6 m高的C处同样拉一条长10 m 的缆绳,这条缆绳在地面的固定点D与B点的距离有多远?
勾股定理的应用ppt课件

● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;
读
(2)根据“两点之间线段最短”构造直角三角形;
(3)利用勾股定理求距离.
1.3 勾股定理的应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程解决问题.
1.3 勾股定理的应用
返回目录
考
对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨
单 树的顶部落在离白杨树根部 8 m 处,已知白杨树高 16 m, 解
读 则白杨树是在离根部_____ m 的位置折断的.
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
AB 上建一个土特产收购站 E,使得 C,D 两村到收购站 E
的距离相等,请求出 E 站到 A 地的距离.
1.3 勾股定理的应用
返回目录
重 [答案] 解:由题意得 CE=DE,在 Rt△DAE和 Rt
难 题
△CBE
中
,DE2
=AD2
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版

【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
巧用勾股定理解决折叠与展开问题

专题:巧用勾股定理解决折叠与展开问题类型1利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解•【例1】直角三角形纸片的两直角边AC= 8, BC= 6,现将△ ABC如图折叠,折痕为DE 使点A与点B重合,则BE的长为.1. (2017 •黔西南)如图,将边长为6 cm的正方形纸片ABCDff叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是第1题图第2题图2•如图,在长方形纸片ABCD中,已知AD= 8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF= 3,则A吐 -------- .类型2利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】(教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm,底面半径等于3 cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(n取3)【思路点拨】要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A点的AA剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB这条路线走.针对训练3. 如图是一个高为10 cm,底面圆的半径为4 cm的圆柱体.在AA上有一个蜘蛛Q, QA=3 cm;在BB上有一只苍蝇P,PB= 2 cm,蜘蛛沿圆柱体侧面爬到P点吃苍蝇,最短的路径是(结果用带n4. 如图,在一个长为2 m宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是——(精确到o.oi m.5. 如图,长方体的高为5 cm底面长为4 cm,宽为1 cm(1)点A i到点G之间的距离是多少?(2)若一只蚂蚁从点A爬到C,则爬行的最短路程是多少?1. (2017 •广州)如图,E, F 分别是? ABC [的边AD , BC 上的点,EF = 6,/ DEF= 60 将四边形EFCD 沿EF 翻折,得到EFC D ', ED 交BC 于点6则厶GEF 的周长为()A. 6B. 12C. 18 2. (2017 •舟山)一张矩形纸片ABCD 已知A 吐3, AD= 2,小明按下图步骤折叠纸片, 则线段DG 长为()4. 如图,OAB(是一张放在平面24A.2 C. 1 D. 2 3. (2017 •南宁)如图,菱形ABC [的对角线相交于点 O, AO2, BD= 23,将菱形按如图 方式折叠,使点 专题练习D CA B B. 22 E H H r EB 与点O 重合,直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA= 5, OC= 4.在OC边上取一点D,将纸片沿AD翻折, 使点O落在BC边上的点E处.求D, E两点的坐标.5. (2017 •鄂州)如图,将矩形ABC即对角线AC翻折,点B落在点F处,FC交AD于E.⑴求证:△ AFE^A CDE⑵若AB= 4, BO 8,求图中阴影部分的面积.6. (2017 •济宁)(教材P34 “活动1”的变式)实验探究:⑴如图1,对折矩形纸片ABCD使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM同时得到线段BN MN请你观察图1,猜想/ MBN勺度数是多少,并证明你的结论;⑵将图1中的三角纸纸片BMN剪下,如图2.折叠该纸片,探究MN与BM的数量关系,并结合方案证明你的结论.专题:解决特殊平行四边形中折叠冋题的4种方法? 方法一用方程思想解决特殊平行四边形中的折叠问题1 •如图1-ZT—1,将矩形ABCDS EF折叠,使顶点C恰好落在AB边的中点C上•若A吐6, BO9,贝U BF的长为()D fA. 4B. 3 2C. 4.5D. 5 2•把一张矩形纸片(矩形ABCD按如图1 —ZT—2所示的方式折叠,使顶点B和点D重合,折痕为EF.若A吐3 cm BO 5 cm,则重叠部分△ DEF的面积是 ____________ m.图1—ZT—23. 如图1—ZT—3,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE 且点D落在对角线D'处.若AB= 3, AD= 4,则ED的长为()A32 B. 3 C. 1 D.434. 如图1—ZT—4,折叠矩形ABCD勺一边AD,使点D落在BC边上的点F处,已知折痕AE= 5 5 cm 且EC: FO BF: A吐3 : 4.那么矩形ABCD勺周长为________ m5. 如图1—ZT—5,在矩形ABC冲,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG// CD交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;⑵若CD= 8, CF= 4,求CEDE勺值.图1—ZT? 方法二用数形结合思想解决特殊平行四边形中的折叠问题6. 如图1— ZT — 6,在矩形ABCD 中,A 吐4, BO6, E 为BC 的中点,将△ ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,贝U CF 的长为( )A95 B.125 C.165 D.1857•如图1 — ZT — 7,在平面直角坐标系中,将矩形AOCD&直线AE 折叠(点E 在边DC上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10, 8),则点E 的坐标为8. 如图1— ZT — 8,在矩形ABCD 中 AB= 6 cm, E, F 分别是边BC, AD 上一点,将矩形ABCD 沿EF 折叠,使点C, D 分别落在点C', D'处.若C E 丄AD 贝U EF 的长为______ m9. _________________________________________________________________ 如图1— ZT — 9,在矩形ABCOK OA 在 x 轴上,OC 在y 轴上,且OA= 2, A 吐5,把 △ ABC 沿着AC 对折得到厶AB C, AB 交y 轴于点D,则点D 的坐标为 ________________________ .10. 如图1 — ZT — 10,在矩形ABCD 中, E 是边CD 的中点,将△ ADE 沿AE 折叠后得到△AFE 且点F 在矩形ABCD 内部.将 AF 延长交边BC 于点G,若CGG 号1k ,贝U ADAB图 1— ZT — 6A图1—ZT—1011 •如图1 —ZT—11,将矩形ABCD& DE折叠,使顶点A落在DC上的点A'处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处•再将矩形ABCDS CE折叠,此时顶点B恰好落在DE上的点H处.(1) 求证:EG= CH(2) 已知AF= 2,求AD和AB的长.图 1 —ZT—11? 方法三用转化思想解决特殊平行四边形中的折叠问题12. 如图1 —ZT—12,将矩形ABCD勺四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH EH= 12 cm, EF= 16 cm,则边AD的长是()A. 12 cmB 16 cmC 20 cmD 28 cm13. 如图1—ZT—13,已知正方形ABCD勺对角线长为2 2,将正方形ABCDS直线EF折叠,则图中阴影部分的周长为()A. 8 2B. 4 2C. 8D. 614•如图1 —ZT—14,正方形纸片ABCD勺边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为_________ .C f?方法四用分类讨论思想解决特殊平行四边形中的折叠问题15.如图1 —ZT—15,在矩形ABCD中, A吐3, BO4, E是BC边上一点,连接AE把 /B沿AE折叠,使点B落在点B'处,当△ CEB为直角三角形时,求BE的长.图1—ZT。
七年级下册数学勾股定理的应用

h=3.75,r=3
h=2.625,r=3
8.625
11.625 9.375
①
我想检测雕塑底座正面的AD边和BC 边是否分别垂直于底边AB,随身只带
了一把卷尺.
(1)你有办法吗? ( 2 )量得 AD 长是 30 厘米, AB 长是 40 厘米, BD 长是 50 厘米 .AD 边垂直于 AB 边吗? D A C B
食 物
B
A
B
B
A
【解析】AB2=202+102=500>400
不能
【规律方法】将立体图形展开成平面图形,找出两点间 的最短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1、没有图的要按题意画好图并标上字母; 2、有时需要设未知数,并根据勾股定理列出相应的方 程来解.
数学是无穷的科学. ——赫尔曼外尔
例 题
《九章算术》中的趣题
“今有池方一丈,葭生其中央,出水一尺.引葭赴岸, 适与岸齐.问水深、葭长各几何?” 注:方:正方形 丈:长度单位 1丈=10尺 葭:芦苇.
1
5
《九章算术中的趣题》
“今有池方一丈,葭生其中央,出水一尺.引葭赴岸, 适与岸齐.问水深、葭长各几何?”
【解析】设水池的深度为x尺,则芦苇的长度为(x+1)尺 由勾股定理得x2 +52=(x+1)2 x2+25=x2+2x+1 1
【解析】如图AD2+AB2=302+402=502=BD2
得∠DAB=90°AD边垂直于AB边
(3)若随身只有一个长度为 20厘米的 刻度尺,能有办法检验 AD 边是否垂直 于AB边吗?
【解析】在AD上取点M,使AM=9,在AB
人教版数学八年级下册第十七章勾股定理勾股定理的应用立体图形中的最短路程问题优秀教学案例

(三)小组合作
1.分组合作:将学生分成小组,鼓励学生进行合作学习和讨论交流。每个小组共同解决问题,共同思考和探讨。
2.小组讨论:鼓励学生发表自己的观点和思考,培养学生的团队合作精神和沟通能力。学生可以通过讨论、辩论等方式,共同解决问题。
(3)通过实际问题,感受数学与生活的联系。
2.方法目标:通过本节课的学习,使学生掌握以下方法:
(1)观察分析法:观察立体图形,发现最短路程问题;
(2)勾股定理运用法:运用勾股定理,解决最短路程问题;
(3)实际问题解决法:将数学知识运用到实际生活中,解决实际问题。
(三)情感态度与价值观
1.情感目标:通过本节课的学习,使学生能够对数学产生浓厚的兴趣,激发学生学习数学的积极性。具体包括:
本节课的教学目标是通过解决立体图形中的最短路程问题,巩固学生对勾股定理的理解,提高学生运用勾股定理解决实际问题的能力。同时,通过小组合作、讨论交流的方式,培养学生的团队协作精神和沟通能力。
在教学过程中,我以生活中的实际问题为切入点,引导学生运用勾股定理解决立体图形中的最短路程问题。在解决问题的过程中,学生需要充分运用空间想象能力和逻辑思维能力,从而达到提高学生数学素养的目的。
为了更好地实施本节课的教学,我采用了多媒体教学手段,通过动画、图片等形式,直观地展示立体图形和最短路程问题,激发学生的学习兴趣,提高学生的参与度。同时,在教学过程中,我注重启发学生思考,引导学生发现规律,培养学生自主探究的能力。
在课堂拓展环节,我设计了一些具有挑战性的练习题,让学生在课后进行思考和探索,进一步提高学生的数学素养和解决问题的能力。通过对本节课的学习,学生不仅掌握了勾股定理在立体图形中的应用,还提高了空间想象能力和解决问题的能力,为今后的数学学习奠定了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
B
5米
∟
A
A
12
C
例1:如图所示,有一个高为12cm,底面半 径为3cm的圆柱,在圆柱下底面的A点有一 只蚂蚁,它想吃到圆柱上底面上与A点相对 的B点处的食物,问这只蚂蚁沿着侧面需要 爬行的最短路程为多少厘米?(的值取3)
B
A
c
BC
B
1 2
A
A
r=3
解:如图,在Rt△ABC中,BC=底面周长的 一半=2×3×3÷2=9, AC=12
B
A
3cm
A
正面与上面
B
1cm 2cm
B 1
想 想看
下面与右侧 面
B
2
A
3
1C
AB=( 20)CM
∟ ∟
∟
2
A
3
C
AB=( 18)CM
正面与右侧 面
B 1
A
3
2C
AB=( 26)CM
回顾与反思:上述这类问题,一般按三个 步骤进行:
(1)把立体图形转换成平面图形; (2)寻找问题中隐藏的直角三角形; (3)利用勾股定理解答。
路线中的数学知识 B
起点 A
终点 C
两点之间线段最短
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中, ∠C=90º,AB=c,AC=b,BC=a,
A
a2+b2=c2.
cb
B aC
1.一个直角三角形的两边长分别为3和4,则第 三边长为__5_或___7_.
2.直角三角形一直角边长为6cm,斜边长为10cm,
则这个直角三角形的面积为_2_4_cm_2 ,斜边上的高 为__4_.8_c_m__.
3.等腰△ABC的腰长为10cm,底边长为16cm,则底边
上的高为__48_cm_2,面积为____6_cm__.
如图,有一圆柱形油罐,现要从油罐底部的一点A 环绕油罐建梯子,并且要正好建到A点正上方的油 罐顶部的B点,已知油罐高AB=5米,油罐底部周 长为12米,那么梯子最短要多少米?
通过本节课学习,我的收获是 我的困惑是
在今后的学习中我要改进的是
同步解析 P55~P57
答:蚂蚁沿着表面爬行的最短路线是 10 c5m
拓展2:如图,是一个三级台阶,它的每一级的长、 宽、高分别为2m、0.3m、0.2m,A和B是台阶上两 个相对的顶点,A点有一只蚂蚁,想到B点去吃可口 的食物,问蚂蚁沿着台阶爬行到B点的最短路程是多 少?
B
B
0.3 0.2
(0.2×3+0.3×3)m
A
2
A
C
2m
B
(0.2×3+0.3×3)m
A
C
2m
解:如图,在Rt△ABC中,
AC=2 , BC=0.2×3+0.3×3=1.5
由勾股定理得 AB= AC2 BC2 4 2.25 =2.5
答:蚂蚁沿着台阶爬行到B的最短距离是2.5 米
拓展与提升:如果盒子换成如图长 为3cm,宽为2cm,高为1cm的长方 体,蚂蚁沿着表面需要爬行的最短路 程又是多少呢?
由勾股定理得,AB= AC2 BC2 92 122 15
答:最短路程为15cm。
拓展1:如果圆柱换成如图的棱长为10cm 的正方体盒子,蚂蚁沿着表面需要爬行的 最短路程又是多少呢?
B
A
B
B
10
10
A
A
10Leabharlann 10C解:如图,在Rt△ABC中,AC=20 ,BC=10
由勾股定理得,AB=AC2 BC2 202 102 500 10 5