飞行奥妙与空气动力学(2018,刘沛清)

合集下载

空气动力学是研究飞行的原理和技术

空气动力学是研究飞行的原理和技术

空气动力学是研究飞行的原理和技术空气动力学是研究飞行原理和技术的一个重要学科,它探讨了飞行器在空气流动中所受到的各种力和力矩,并寻求有效的飞行设计和控制方法。

通过空气动力学的研究,人们能够深入了解飞行器的运动、稳定性和机动性能,为飞行器的设计和改进提供科学的依据。

空气动力学的研究对象是飞行器在空气中的运动行为。

飞行器通常通过机翼产生升力,通过推力产生动力,通过尾翼产生稳定性和操纵性。

空气动力学通过对飞行器和周围空气流动的相互作用进行分析,揭示了飞行原理中的一些关键问题,例如升力的产生机理、阻力的来源、气动力的平衡、飞行器的稳定性和操纵性等。

升力是飞机能够在重力作用下保持在空中飞行的关键力量。

空气动力学研究揭示了升力的产生机理,主要通过机翼的形状和攻角来生成升力。

攻角是机翼和来流风向之间的夹角,通过调整飞机的攻角可以改变机翼所受到的升力和阻力。

同时,空气动力学的研究还可以指导飞机的机翼设计,进一步优化飞机的升力性能。

阻力是飞行器在飞行过程中所受到的阻碍运动的力量。

空气动力学的研究揭示了阻力的来源和降低阻力的方法。

阻力主要由摩擦阻力和压力阻力组成。

摩擦阻力是流体在飞行器表面摩擦产生的阻碍力量,而压力阻力则是流体在飞行器表面周围流动时产生的阻碍力量。

通过优化飞机的外形设计和减小阻力面积,可以有效降低阻力,提高飞机的速度和燃油效率。

气动力的平衡是飞行器在飞行过程中保持稳定的关键因素。

空气动力学的研究可以帮助设计师了解飞机受力的平衡状态,包括升力、阻力、重力和推力之间的关系。

通过合理调整飞机的重心位置、机翼和尾翼的设计,可以使飞机在飞行中保持平衡稳定的状态。

飞行器的稳定性和操纵性是影响飞机飞行安全和操控能力的重要因素。

空气动力学的研究可以揭示飞机稳定性和操纵性的机理,并为飞机的操纵系统设计提供理论依据。

通过合理设计飞机的稳定和操纵性特性,可以提高飞行器的安全性和操纵性能。

总之,空气动力学的研究对于飞行器的设计和改进具有重要的意义。

空气动力学学报说明书

空气动力学学报说明书

空气动力学学报(双月刊)第35卷 第6期(总第167期)(K O N G Q I D O N G L I X U EX U EB A O )2017年12月目 次综述现代大型飞机起落架气动噪声研究进展刘沛清,邢 宇,李 玲,郭 昊 (751)…………………………………………………研究论文基于P O D 方法的复杂外形飞行器热环境快速预测方法聂春生,黄建栋,王 迅,李 宇 (760)………………………………高超声速风洞轴对称喷管收缩段设计胡振震,李震乾,陈爱国,石义雷 (766)……………………………………………………高超声速壁湍流入口条件生成方法的比较禹 旻,袁湘江,朱志斌 (772)………………………………………………………尖楔前体飞行器F A D S 系统的神经网络算法王 鹏,胡远思,金 鑫,张卫民 (777)……………………………………………翼吊布局民机短舱位置气动影响张冬云,张美红,王美黎,向传涛 (781)…………………………………………………………一种仿H X 扁平面对称类升力体布局气动特性分析刘深深,解 静,冯 毅,唐 伟,桂业伟 (787)…………………………过失速薄翼增升流动控制方法吴继飞,王志金,G U R S U LI s m e t (792)……………………………………………………………电大尺寸目标电磁散射的并行F V T D 计算许 勇,黄 勇,余永刚 (797)………………………………………………………城市地貌高空台风特性及湍流积分尺度的研究王澈泉,李正农,胡佳星,张学文,周利芬,曹守坤 (801)……………………基于网格框架的结构网格自动重构技术庞宇飞,卢风顺,蔡云龙,张书俊,孙俊峰 (807)………………………………………基于P a r e t o 分布的风压极值计算方法李正农,曹守坤,王澈泉 (812)……………………………………………………………荧光油流显示技术在高超声速风洞中的应用陈 磊,朱 涛,徐 筠,江 涛 (817)……………………………………………民用飞机静压孔布局规律周 峰,赵克良,张 淼,汪君红 (823)…………………………………………………………………电弧风洞转动部件动密封试验杨远剑,陈德江,赵文峰,张松贺,江 波 (828)…………………………………………………飞翼布局气动外形设计余永刚,黄 勇,周 铸,黄江涛 (832)……………………………………………………………………导弹侧向喷流干扰及多喷口耦合效应数值模拟贾洪印,吴晓军,周乃春,赵 辉 (837)…………………………………………大展弦比机翼跨声速静气动弹性风洞试验郭洪涛,陈德华,吕彬彬,余 立,祖孝勇 (841)……………………………………考虑隐身约束的舰载飞翼无人机翼尖装置气动设计和分析李继广,陈 欣,李 震 (846)……………………………………飞翼布局飞行器舵面缝隙对操纵效率的影响姚军锴,曹德一,何海波 (850)……………………………………………………移动式冰风洞试验方法研究和应用李 斯,于 雷,金 沙,裴如男 (855)………………………………………………………空气动力分析中动网格技术的数值阻尼赵张峰,邓洪洲 (860)……………………………………………………………………渐扩后倾肩臂孔平板气膜冷却特性数值模拟黄 康,马护生 (866)………………………………………………………………低速高雷诺数风洞腹撑支架干扰研究郑新军,焦仁山,苏文华,马洪雷,张连河 (870)…………………………………………8mˑ6m 风洞大尺度模型进气道和喷流试验技术陈 洪,刘李涛,巫朝君 (875)………………………………………………扇翼飞行器气动特性优化设计李仁凤,乐贵高,马大为,陈 帅 (879)……………………………………………………………偏转头弹箭飞行特性张志勇,陈志华,黄振贵 (883)………………………………………………………………………………分离形式后体喷流试验技术及阻力修正方法邓祥东,郭大鹏,季 军,白玉平,杨庆华 (887)…………………………………基于自适应重叠网格的三角翼跨声速流场计算王 娜,叶 靓 (893)……………………………………………………………低亚声速火箭橇尾流场特性分析房 明,孙建红,王从磊,余元元,张延泰 (897)………………………………………英文编审: 姜 屹 责任编辑: 王 颖期刊基本参数:C N 51-1192/T K*1980*q *16*168*z h +e n *P *¥30.00*1000*30*2017-12A C T A A E R O D Y N A M I C A S I N I C AC h i n e s eA e r o d y n a m i c sR e s e a r c hS o c i e t yV o l .35,N o .6, D e c .,2017C O N T E N T S R e v i e wP r o g r e s s i na e r o a c o u s t i c i n v e s t i g a t i o no fm o d e r n l a r g e a i r c r a f t l a n d i n gge a r L I UP e i q i n g ,X I N G Y u ,L IL i n g ,G U O H a o (751)……R e s e a r c hA r t i c l e sF a s t a e r o h e a t i n gp r e d i c t i o nm e t h o d f o r c o m p l e x s h a p e v e h i c l e sb a s e do n p r o p e r o r t h o g o n a l d e c o m po s i t i o n ……………… N I EC h u n s h e n g ,HU A N GJ i a n d o n g,WA N G X u n ,L IY u (760)……………………………………………………………………C o n t r a c t i o nd e s i g n f o r a x i s -s y mm e t r i cn o z z l e s i nh y p e r s o n i cw i n d t u n n e l …………………………………………………… HUZ h e n z h e n ,L I Z h e n q i a n ,C H E N A i g u o ,S H IY i l e i (766)…………………………………………………………………………A s s e s s m e n t o f i n f l o wb o u n d a r y c o n d i t i o n s f o r h y pe r s o n i cw a l l b o u n d e d t u r b u l e n tf l o w s …………………………………… Y U M i n ,Y U A N X i a ng j i a n g,Z HUZ h i b i n (772)……………………………………………………………………………………N e u r a l n e t w o r ka l g o r i t h mf o rF A D Ss y s t e ma p p l i e d t o t h e v e h i c l e sw i t hs h a r p w e d g e d f o r e -b o d i e s ……………………… WA N GP e n g,HU Y u a n s i ,J I N X i n ,Z HA N G W e i m i n (777)………………………………………………………………………A e r o d y n a m i c i n f l u e n c e o f n a c e l l e p o s i t i o no f aw i n g -m o u n t e d c i v i l a i r c r a f t …………………………………………………… Z H A N G D o n g y u n ,Z H A N G M e i h o n g,WA N G M e i l i ,X I A N GC h u a n t a o (781)………………………………………………………A e r o d y n a m i c c h a r a c t e r i s t i c s a n a l y s i s f o rH Xa n a l o g l i f t i n g b o d y……………………………………………………………… L I US h e n s h e n ,X I EJ i n g,F E N G Y i ,T A N G W e i ,G U IY e w e i (787)………………………………………………………………L i f t e n h a n c e m e n t c o n t r o lm e t h o do f t h i n f l a t -p l a t e a t p o s t s t a l l a n g l e s o f a t t a c k …………………………………………… WUJ i f e i ,WA N GZ h i j i n ,G U R S U LI s m e t (792)……………………………………………………………………………………P a r e l l e l F V T Dc o m p u t a t i o n f o r e l e c t r o m a g n e t i c s c a t t e r i n g o f e l e c t r i c a l l y l a r g e o b je c t s …………………………………… X U Y o n g ,HU A N G Y o n g ,Y U Y o n g g a n g(797)……………………………………………………………………………………S t u d y o n t y p h o o n c h a r a c t e r i s t i c s a t h i g hu r b a n l a n d f o r ma l t i t u d e a n d t u r b u l e n c e i n t e g r a l l e n gt hs c a l e …………………… WA N GC h e q u a n ,L I Z h e n g n o n g ,HUJ i a x i n g,Z HA N G X u e w e n ,Z H O U L i f e n ,C A Os h o u k u n (801)………………………………A u t o m a t i c r e m e s h i n g t e c h n i qu e f o r s t r u c t u r e d g r i db a s e do n g r i d f r a m e w o r k ……………………………………………… P A N G Y u f e i ,L U F e n g s h u n ,C A IY u n l o n g ,Z H A N GS h u j u n ,S U NJ u n f e n g(807)…………………………………………………M e t h o do f e s t i m a t i n g ex t r e m ew i n d p r e s s u r eb a s e do n t h eP a r e t od i s t r i b u t i o n ……………………………………………… L I Z h e n g n o n g ,C A OS h o u k u n ,W a n g C h e qu a n (812)………………………………………………………………………………A p p l i c a t i o n s o f f l u o r e s c e n c e -o i l -f l o wv i s u a l i z a t i o n t e c h n i q u e i nh y p e r s o n i cw i n d t u n n e l t e s t ……………………………… C H E NL e i ,Z HU T a o ,X U Y u n ,J I A N G T a o(817)…………………………………………………………………………………S t a t i c p o r t o r i e n t a t i o n r u l e f o r c i v i l a i r c r a f t Z HO U F e n g ,Z HA O K e l i a n g ,Z H A N G M i a o ,WA N GJ u n h o n g(823)……………………S e a l c o m pl e m e n t a t i o n t e s t f o r r o t a t a b l e p a r t s i na r ch e a t e dw i n d t u n n e l ……………………………………………………… Y A N G Y u a n j i a n ,C H E N D e j i a n g ,Z H A O W e n f e n g ,Z H A N GS o n gh e ,J I A N GB o (828)……………………………………………A e r o d y n a m i c d e s i g no f a f l y i n g -w i n g a i r c r a f t Y U Y o n g g a n g ,HU A N G Y o n g ,Z H O UZ h u ,HU A N GJ i a n g t a o (832)…………………N u m e r i c a l i n v e s t i g a t i o no n c o u p l i n g e f f e c t s o fm u l t i p l e s p o u t s a n d l a t e r a l j e t i n t e r a c t i o no v e rm i s s i l e c o n f i gu r a t i o n …… J I A H o n g y i n ,WU X i a o ju n ,Z HO U N a i c h u n ,Z H A O H u i (837)……………………………………………………………………W i n d t u n n e l t e s t o n t r a n s o n i c s t a t i c a r e o e l a s t i c i t y o f h i g h -a s p e c t -r a t i ow i n g ………………………………………………… G U O H o n g t a o ,C H E N D e h u a ,L Y U B i n b i n ,Y U L i ,Z U X i a o y o n g (841)……………………………………………………………A e r o d y n a m i c d e s i g na n da n a l y s i s o f t i p d e v i c e s o n c a r r i e r -b a s e d f l y -w i n g U A V w i t hs t e a l t hc o n s t r a i n t s ………………… L I J i gu a n ,C H E N X i n ,L I Z h e n (846)………………………………………………………………………………………………G a p i n f l u e n c e o n r u d d e r e f f i c i e n c y o f f l y i n g w i n g ai r c r a f t Y A OJ u n k a i ,C A O D e y i ,H E H a i b o (850)………………………………S t u d y a n da p p l i c a t i o no fm o v a b l e i c i n g wi n d t u n n e l t e s tm e t h o d L I S i ,Y U L e i ,J I NS h a ,P E IR u n a n (855)………………………N u m e r i c a l d a m p i n g o f d y n a m i cm e s h f o r a e r o d y n a m i c a n a l ys i s Z HA OZ h a n g f e n g ,D E N G H o n g z h o u (860)…………………………N u m e r i c a l s i m u l a t i o no n c o o l i n g c h a r a c t e r i s t i c s o f p l a t e f i l mf r o mb a c k w a r d -e x p a n d i n g s h o u l d e r a r mh o l e ……………… HU A N G K a n g ,MA H u s h e n g (866)…………………………………………………………………………………………………V e n t r a l s u p p o r t i n t e r f e r e n c e i n l o w -s p e e da n dh i g hR e y n o l d sn u m b e rw i n d t u n n e l ………………………………………… Z H E N G X i n j u n ,J I A O R e n s h a n ,S U W e n h u a ,MA H o n g l e i ,Z H A N GL i a n h e (870)…………………………………………………I n l e t a n d j e t t e s t t e c h n i q u e s f o r l a r g e s c a l em o d e l i n8mˑ6m L o wS pe e d W i n dT u n n e l …………………………………… C H E N H o n g ,L I U L i t a o ,WU C h a o ju n (875)………………………………………………………………………………………O p t i m i z a t i o nd e s i g n f o r a e r o d y n a m i c p e r f o r m a n c e o f f a n -w i n g a i r c r a f t L IR e n f e n g ,L EG u i g a o ,MA D a w e i ,C H E NS h u a i (879)…F l i g h t c h a r a c t e r i s t i c s o f d e f l e c t e dn o s e p r o je c t i l e Z H A N GZ h i y o n g ,C H E NZ h i h u a ,HU A N GZ h e n g u i (883)…………………………S l e e v e -t y p e af t e r b o d y j e t e x p e r i m e n t t e c h n i q u e a n d i t s d r ag c o r r e c t i o nm e th o d ……………………………………………… D E N G Xi a n g d o n g ,G U O D a p e n g ,J I J u n ,B A IY u p i n g ,Y A N G Q i n g h u a (887)………………………………………………………N u m e r i c a l s i m u l a t i o no f t r a n s o n i c f l o wf i e l do v e r d e l t aw i n g w i t ha d a p t i v e o v e r l a p p e d g r i d s ys t e m ……………………… WA N G N a ,Y EL i a n g(893)…………………………………………………………………………………………………………A n a l ys i s o fw a k e f l o wc h a r a c t e r i s t i c s f o r l o ws u b s o n i c r o c k e t s l e d …………………………………………………………… F A N G M i n g ,S U NJ i a n h o n g ,WA N GC o n g l e i ,Y U Y u a n y u a n ,Z h a n g Ya n t a i (897)…………………………………………………现代大型飞机起落架气动噪声研究进展(751-759,d o i:10.7638/k q d l x x b-2017.0063)刘沛清,邢宇,李玲,郭昊主要概括了国内外在大型飞机起落架气动噪声研究领域,利用风洞试验㊁飞行试验和数值模拟等手段,所取得的研究成果和最新进展㊂主要包括起落架噪声的产生机理㊁起落架降噪的主要方法㊁风洞试验需要遵循的相似律和工程预测起落架噪声方法的发展等㊂并对起落架噪声的未来研究进行了展望㊂基于P O D方法的复杂外形飞行器热环境快速预测方法(760-765,d o i:10.7638/k q d l x x b-2015.0157)聂春生,黄建栋,王迅,李宇采用本征正交分解对数据库进行降阶处理,结合相应的基系数插值方法,快速预测出未知状态热流㊂与C F D结果的对比表明,该方法可大幅提高计算效率且不损失预测精度,实现了沿给定弹道的三维热环境快速预测,能够反映真实的热流空间分布特征,快速获得激波干扰区热流,有力地弥补了工程算法的不足㊂高超声速风洞轴对称喷管收缩段设计(766-771,d o i:10.7638/k q d l x x b-2015.0141)胡振震,李震乾,陈爱国,石义雷构造了A Q A曲线,分析了高超声速风洞轴对称喷管喉道曲率半径是否连续对喉部流动和喷管出口流场的影响㊂研究结果表明喉道曲率半径连续时结果达到最佳,而上游曲率半径偏大优于偏小的情况㊂基于三角/双曲函数设计了一种新的收缩曲线,与B样条函数构造的曲线一样可达到出入口曲率半径任意可调的目的,但控制更为方便,是确保喉道曲率连续的不错选择㊂高超声速壁湍流入口条件生成方法的比较(772-776,d o i:10.7638/k q d l x x b-2015.0177)禹旻,袁湘江,朱志斌给定恰当的入口条件是开展壁湍流数值模拟的关键问题㊂采用直接数值模拟,讨论了自然转捩㊁波纹壁面促发的"B y p a s s"转捩和利用时间发展湍流场进行参数回收这几种方法在高超声速条件下的可行性,分析了各自存在的优点和不足㊂计算表明,B y p a s s转捩和参数回收方法与自然转捩相比,能更快速促发转捩,但自然转捩得到的湍流场品质更好㊂尖楔前体飞行器F A D S系统的神经网络算法(777-780,791,d o i:10.7638/k q d l x x b-2015.0064)王鹏,胡远思,金鑫,张卫民对人工神经网络算法在尖楔前体飞行器用嵌入式大气数据传感系统中的应用进行了探讨㊂通过合理选择网络结构参数及训练验证,分别建立了F A D S系统的含有单隐含层的三层神经网络模型及含有双隐含层的四层神经网络模型,对攻角等飞行参数参数进行求解㊂数值仿真结果表明,建立的用于尖楔前体飞行器的F A D S系统的神经网络算法求解精度较高,且含有双隐含层的网络模型精度优于单隐含层的模型精度㊂Ⅰ文章导读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍翼吊布局民机短舱位置气动影响(781-786,d o i :10.7638/k q d l x x b -2015.0069)张冬云,张美红,王美黎,向传涛使用C F D 方法对孤立通气短舱㊁某型民机机翼/机身组合体以及机翼/机身/短舱组合体构型进行粘性绕流数值模拟,分析流场特征,得出短舱安装干扰阻力水平;分别改变短舱安装的前伸量㊁下沉量㊁俯仰角㊁内撇角等参数,研究短舱不同在翼位置对高速巡航升阻特性的影响㊂一种仿H X 扁平面对称类升力体布局气动特性分析(787-791,d o i :10.7638/k q d l x x b -2015.0187)刘深深,解静,冯毅,唐伟,桂业伟提出了一种对H T V -2进行改进的仿H X 气动模型,对二者气动特性进行了对比分析㊂探究了仿H X 外形的横侧向稳定性,对两侧小翼关键气动布局参数进行了分析,对控制舵进行了匹配设计㊂结果表明H X 外形能够增强偏航稳定性,其效果与翼高及面积呈正相关,小安装角度下对安装角度不敏感㊂经过匹配设计,该方案具备较高的控制效率和合理的配平攻角范围㊂过失速薄翼增升流动控制方法(792-796,d o i :10.7638/k q d l x x b -2015.0068)吴继飞,王志金,G U R S U LI s m e t采用吸气流动控制方法对薄翼升力特性进行了试验研究,来流速度为5m /s ,雷诺数R e =6.7ˑ104㊂研究表明,过失速条件下,合适的吸气控制可以使翼型失速迎角延迟近7ʎ,最大升力系数可增大近一倍;在翼型前缘进行吸气流动控制时,较小吸气流量即可延缓翼型失速;流动控制参数存在优化空间,当吸气相对位置位于x /c =0.4附近时,吸气流量小于3%即可产生较大的升力增量㊂电大尺寸目标电磁散射的并行F V T D 计算(797-800,d o i :10.7638/k qd l x x b -2015.0071)许勇,黄勇,余永刚电大尺寸目标电磁问题的高精度数值计算通常伴随着大存储量和大计算量的沉重负担㊂本文构建了直接求解电磁学麦克斯韦方程组的时域有限体积法(F V T D )解算器,解决大规模网格的大计算量,采用M P I 并行编程,进行网格分割㊁负载平衡以及通信设置,对电大尺寸飞翼外形进行了L 波段双站电磁散射计算㊂结果表明p m b R C S 3d 这一并行高精度电磁模拟软件具有稳定和鲁棒特性,适合应用于目标更高频段电磁计算㊂城市地貌高空台风特性及湍流积分尺度的研究(801-806,822,d o i :10.7638/k q d l x x b -2015.0090)王澈泉,李正农,胡佳星,张学文,周利芬,曹守坤基于2014年第10号台风麦德姆 在城市地貌的高空实测风场资料,共选取五个时距分析其特性㊂然后采用两种基于T a y l o r 假定的方法来计算湍流积分尺度,分别从平均风速㊁湍流度和阵风因子等要素来探讨不同时距对湍流积分尺度的影响㊂分析结果表明当平均时距为5m i n 时最为合理㊂Ⅱ文 章 导 读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍基于网格框架的结构网格自动重构技术(807-811,d o i:10.7638/k q d l x x b-2015.0179)庞宇飞,卢风顺,蔡云龙,张书俊,孙俊峰针对多学科耦合计算过程中出现的外形剧烈变化情况,提出了一种基于网格框架的多块结构网格自动重构技术,基本思想是:首先提取多块分区结构网格的网格框架,然后借助其它学科计算得到的物面变形信息以及拟合样条曲线来重构框架线,最后利用更新的框架线自动生成变形网格㊂该方法已被应用到某翼身组合体外形的气动弹性计算㊂基于P a r e t o分布的风压极值计算方法(812-816,d o i:10.7638/k q d l x x b-2015.0143)李正农,曹守坤,王澈泉通过P a r e t o分布I型分布拟合峰值样本的高尾部数据,利用广义极值分布和广义P a r e t o分布之间的关系对风压的极值做出估计,得到基于P a r e t o分布的风压极值计算方法㊂利用高层建筑风洞试验多次独立采样得到的数据,将基于P a r e t o分布的风压极值计算方法从风压极值的期望值和指定保证率的极值两个方面进行了验证㊂荧光油流显示技术在高超声速风洞中的应用(817-822,d o i:10.7638/k q d l x x b-2015.0150)陈磊,朱涛,徐筠,江涛通过原理性试验分析了系统组成中主要部件的参数指标,搭建了试验平台,完成不同颜色和类型荧光示踪剂的对比试验,筛选出性能可靠的荧光示踪剂,制作了荧光油膜,最后成功地将荧光油流技术应用到C A R D C 中的Φ1m高超声速风洞中㊂该技术具有信噪比高㊁精度高㊁获取到信息的细节量多等优点㊂最后对荧光油流图像定量化显示技术进行了研究,结果表明,根据荧光油膜发出的荧光信号,能够推算出荧光油膜的厚度信息㊂民用飞机静压孔布局规律(823-827,d o i:10.7638/k q d l x x b-2015.0140)周峰,赵克良,张淼,汪君红对民用飞机静压孔布局规律进行了研究㊂利用数值模拟方法得到机身表面静压随马赫数㊁攻角变化较小的区域,定义为稳压线;通过圆柱绕流压力分布理论,获得与数值模拟结果一致的稳压线分布规律㊂开展高/低速测压风洞试验,结果表明稳压线及静压孔布局规律的正确㊁普适㊂所得稳压线分布规律可为常规布局民用飞机静压孔布局提供直接参考㊂电弧风洞转动部件动密封试验(828-831,d o i:10.7638/k q d l x x b-2015.0147)杨远剑,陈德江,赵文峰,张松贺,江波翼/舵等部件在转动条件下热结构/匹配/密封考核一直是高超声速飞行器研制阶段的技术难点㊂为此在电弧风洞上开展了相应的试验技术研究,针对关键技术问题提出了解决方案㊂试验结果表明:试验模型表面热流分布与飞行条件下较为一致,转动过程中流场稳定,在国内首次实现了高超声速飞行器转动部件动密封地面试验考核㊂Ⅲ文章导读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍飞翼布局气动外形设计(832-836,878,d o i :10.7638/k q d l x x b -2015.0163)余永刚,黄勇,周铸,黄江涛双后掠前缘飞翼布局的纵向气动特性设计主要难点是如何在小俯仰力矩的约束下实现高升阻比设计㊂本文从平面形状㊁重心位置㊁翼型选择/优化与配置等方面提出了一些设计思路,并以此设计了气动外形㊂通过数值模拟和风洞试验两种手段,验证了设计思路的合理性㊂该布局在亚声速设计点具有较高升阻比和较小的俯仰力矩系数㊂导弹侧向喷流干扰及多喷口耦合效应数值模拟(837-840,d o i :10.7638/k q d l x x b -2015.0083)贾洪印,吴晓军,周乃春,赵辉利用数值模拟手段对导弹的侧向喷流干扰流场进行了研究,重点讨论了采用空气冷喷流模拟的相似准则问题㊂通过与燃气喷流的对比,验证了方法的可靠性㊂对某导弹外形的多喷口耦合效应进行了研究,分析了侧向多喷口耦合干扰下的放大因子及流场结构,相关结论可为导弹喷流控制系统设计提供参考依据㊂大展弦比机翼跨声速静气动弹性风洞试验(841-845,d o i :10.7638/k q d l x x b -2015.0075)郭洪涛,陈德华,吕彬彬,余立,祖孝勇基于风洞试验研究了某翼身组合体的跨声速静气动弹性效应㊂研究结果表明:在设计巡航点,静气动弹性可使机翼的升力系数减小㊁升阻比增加㊁焦点前移,并在超过巡航马赫数后使得气动特性恶化㊂试验结果表明,跨声速时,马赫数和速压对静气动弹性效应具有较大影响,且影响规律呈复杂非线性特征,难以仅靠理论分析准确预计㊂考虑隐身约束的舰载飞翼无人机翼尖装置气动设计和分析(846-849,d o i :10.7638/k q d l x x b -2015.0061)李继广,陈欣,李震在隐身要求约束下,设计了舰载飞翼无人机翼下增升装置㊂并针对未来雷达探测的反隐身技术,分析了增升装置对尾流消弱的作用,从而提高了该探测方式的隐身效果㊂计算结果表明,该增升装置可以较好地增加升力㊁减弱诱导阻力㊁提高升阻比,并能起到减弱尾流的作用㊂最后分析了其机理,解释了大迎角条件下气动优化效果更好的原因,并与常规布局飞机翼尖小翼的作用作了对比㊂飞翼布局飞行器舵面缝隙对操纵效率的影响(850-854,d o i :10.7638/k q d l x x b -2015.0088)姚军锴,曹德一,何海波采用数值模拟方法分析了飞翼布局飞行器舵面缝隙对各舵面操纵效率的影响㊂结果表明:舵面缝隙使得内侧㊁外侧升降副翼的操纵效率均有所降低;有缝隙存在时开裂式方向舵的操纵效率比无缝隙高㊂内㊁外侧升降副翼操纵效率降低的原因是下表面气流通过舵面缝隙流至上表面从而降低了上下表面压力差和阻滞了主流;开裂式方向舵大舵偏时操纵效率增加的机理在于有缝隙时下翼面高压气流通过缝隙注入上翼面回流区从而降低回流范围㊂Ⅳ文 章 导 读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍移动式冰风洞试验方法研究和应用(855-859,d o i:10.7638/k q d l x x b-2015.0121)李斯,于雷,金沙,裴如男开展了移动式冰风洞喷雾参数测量,进行了发动机短舱唇口模型㊁N A C A23012翼型模型的结冰和防/除冰试验,掌握了移动式冰风洞云雾校测㊁试验的基本方法㊂移动式冰风洞在户外模拟结冰条件虽然受环境因素影响较大,但喷雾性能良好,试验结果能够反映一般结冰规律,可以满足飞机进气系统防/除冰试验要求㊂空气动力分析中动网格技术的数值阻尼(860-865,d o i:10.7638/k q d l x x b-2015.0080)赵张峰,邓洪洲在F L U E N T中动网格宏模块由于数据传递方式的限制,修改了常加速度N e w m a r k法的原有算法,模块软件算法的有效性存在质疑㊂针对这个问题,首先给出算例来显示软件算法的缺陷特征,提出了软件算法会引入数值阻尼的假定;而后通过数学手段证明数值阻尼的存在,并给出数值阻尼的理论计算公式;之后通过算例验证理论公式的有效性;最后给出了理论的工程应用㊂渐扩后倾肩臂孔平板气膜冷却特性数值模拟(866-869,d o i:10.7638/k q d l x x b-2015.0081)黄康,马护生为进一步改善气膜冷却效果,提出了渐扩后倾肩臂孔的构型㊂对圆形孔㊁扩张孔㊁原肩臂孔和渐扩后倾肩臂孔在吹风比0.5~2.0情况下的平板气膜冷却特性进行了数值计算㊂结果表明,采用渐扩后倾肩臂孔的平板模型可提高展向平均气膜冷却效率,在各吹风比方案下气膜冷却性能均优于其它三种孔型㊂低速高雷诺数风洞腹撑支架干扰研究(870-874,d o i:10.7638/k q d l x x b-2015.0114)郑新军,焦仁山,苏文华,马洪雷,张连河针对F L-9低速高雷诺数风洞腹撑支架干扰问题,采用风洞试验研究的方法,开展了F L-9风洞内式天平腹撑支杆的二维截面形状㊁三维外形㊁支杆直径选取等相关研究㊂获得了对雷诺数不敏感㊁支架干扰量小且稳定的腹撑支杆方案,并通过与其他风洞试验结果的对比,进一步验证了F L-9风洞内式天平单支杆腹撑系统的精准度㊂8mˑ6m风洞大尺度模型进气道和喷流试验技术(875-878,d o i:10.7638/k q d l x x b-2015.0133)陈洪,刘李涛,巫朝君采用单台抽吸流量达383m3/m i n的真空泵抽吸系统和最大落压比达3.5的喷流模拟器,在8mˑ6m风洞建立了大尺度模型进气道和喷流试验技术,可实现8mˑ6m试验段大尺度战斗机100%进气流量和高落压比模拟要求,能够更为精细地模拟战斗机气动外形,获得更为准确的进气道性能㊁喷流对战斗机气动特性影响及矢量喷管性能参数㊂Ⅴ文章导读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍扇翼飞行器气动特性优化设计(879-882,892,d o i :10.7638/k q d l x x b -2015.0173)李仁凤,乐贵高,马大为,陈帅采用多目标优化和数值模拟结合的方法对扇翼飞行器气动特性进行了优化设计㊂计算得到多结构参数影响下扇翼飞行器高升力㊁低阻力的优化结构参数和主要影响因素㊂研究结果表明,建立的近似数学模型和优化结果精度较高,满足工程需要㊂优化后,扇翼飞行器的升力和推力较大,飞行器气动特性得到显著改善㊂偏转头弹箭飞行特性(883-886,d o i :10.7638/k q d l x x b -2015.0182)张志勇,陈志华,黄振贵偏转头弹箭通过头部偏转来改变气动力,达到增加弹箭射程与提高机动性的目的㊂对头部偏转角0ʎ~8ʎ㊁马赫数2~5条件下的飞行流场进行数值模拟并验证仿真的可靠性㊂然后利用仿真数据计算偏转头弹箭的外弹道轨迹,结果表明,偏转头弹箭能带迎角稳定飞行,其升阻比远大于普通弹箭,弹箭射程提高且机动性能优于普通弹箭㊂分离形式后体喷流试验技术及阻力修正方法(887-892,d o i :10.7638/k qd l x x b -2015.0113)邓祥东,郭大鹏,季军,白玉平,杨庆华详细介绍了分离形式后体喷流模型设计中需要注意的关键技术问题,以及相应的设计方法㊂针对某型飞机,精细化设计后体喷流模型的密封以及内外腔压力监测点,并对天平阻力项结果进行修正,得到与国外同类型试验阻力测量精度相一致的结果,阻力测量精度达到0.0005㊂证明该修正方法能有效地应用于分离形式后体喷流试验阻力数据的修正,精度满足国军标阻力测量指标㊂基于自适应重叠网格的三角翼跨声速流场计算(893-896,d o i :10.7638/k q d l x x b -2016.0138)王娜,叶靓在自适应重叠网格系统下,数值求解N a v i e r -S t o k e s 方程,开展了钝前缘三角翼跨声速流场的计算研究㊂网格方面采用了贴体网格与可自适应的直角网格交叠来捕捉脱体涡系的发展变化及涡与激波的干扰㊂比较了雷诺平均与D E S 计算的结果差异㊂在重叠网格系统下,网格构建简便,适用性好;对于大迎角状态,D E S 方法能够有效地模拟脱体涡系的发展变化㊂低亚声速火箭橇尾流场特性分析(897-901,d o i :10.7638/k qd l x x b -2017.0132)房明,孙建红,王从磊,余元元,张延泰采用不可压N a v i e r -S t o k e s 方程和R e a l i z a b l e k -ε湍流模型,对低亚声速条件下火箭橇试验的流场进行数值模拟,得到了火箭橇的流场特性,并与飞机流场进行了对比㊂结果表明,低亚声速情况下(60~90m /s ),火箭橇的阻力系数约为0.65,升力系数约为-0.005,并且气动升力小于自重的1.9%㊂速度对流场特性影响小,护板可改善尾流特性,与飞机尾流特性具有较好的相似性㊂Ⅵ文 章 导 读췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍第35卷 第6期空气动力学学报V o l .35,N o .62017年12月A C T AA E R O D Y N A M I C AS I N I C A D e c .,2017췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍췍文章编号:0258-1825(2017)06-0751-09现代大型飞机起落架气动噪声研究进展刘沛清*,邢 宇,李 玲,郭 昊(北京航空航天大学航空科学与工程学院,北京 100083)摘 要:起落架部件是现代大型飞机在起飞㊁着陆阶段时最主要的一类机体气动噪声源㊂本文主要概括了国内外利用风洞试验㊁飞行试验和数值模拟等手段在大型飞机起落架气动噪声研究领域所取得的研究成果和最新进展,主要包括起落架噪声的产生机理㊁起落架降噪的主要方法㊁风洞试验需要遵循的相似律和工程预测起落架噪声方法的发展等㊂已有的研究表明,起落架宽频噪声主要包括分离噪声和上下游部件相互干扰噪声两类,而纯音噪声主要来自空腔结构的声激振现象㊂使用整流罩㊁等离子体激励等主㊁被动控制技术抑制钝体分离和流动干扰现象,这些方法能够显著降低起落架噪声㊂文末还对起落架噪声的未来研究进行了展望㊂关键词:起落架;气动噪声;风洞试验;噪声机理;降噪技术中图分类号:V 226;T B 533+.3 文献标识码:A d o i :10.7638/k q d l x x b -2017.0063 收稿日期:2017-04-19; 修订日期:2017-06-13基金项目:国家自然科学基金(11772033)作者简介:刘沛清*(1960-),男,教授,博导,主要从事空气动力学㊁水动力学实验和数值模拟工作.E -m a i l :l p q@b u a a .e d u .c n 引用格式:刘沛清,邢宇,李玲,等.现代大型飞机起落架气动噪声研究进展[J ].空气动力学学报,2017,35(6):751-759.d o i :10.7638/k q d l x x b -2017.0063 L I UPQ ,X I N GY ,L I L ,e t a l .P r o g r e s s i n a e r o a c o u s t i c i n v e s t i g a t i o no fm o d e r n l a r g e a i r c r af t l a n d i n gg e a r [J ].A c t aA e r o d yn a m i c aS i n i c a ,2017,35(6):751-759.P r o g r e s s i na e r o a c o u s t i c i n v e s t i g a t i o no fm o d e r n l a r g e a i r c r a f t l a n d i n g ge a r L I U P e i q i n g *,X I N G Y u ,L IL i n g,G U O H a o (S c h o o l o f A e r o n a u t i cS c i e n c e a n dE n g i n e e r i n g ,B e i h a n g U n i v e r s i t y ,B e i j i n g 100083,C h i n a ) A b s t r a c t :L a n d i n g g e a ri so n eo ft h e m o s ti m p o r t a n ta e r o a c o u s t i cn o i s es o u r c e sd u r i n gm o d e r n l a r g ea i r c r a f t st a k e o f fa n dl a n d i n g .T h i s p a pe rs o m er e s e a r c ha c h i e v e m e n t sa n dl a t e s t d e v e l o p m e n t s m a d e t h r o u g h w i n d t u n n e l e x p e r i m e n t s ,f l y o v e r e x pe r i m e n t s a n d n u m e r i c a l s i m u l a t i o n s i n t h e a e r o a c o u s t i c i n v e s t i g a t i o nf i e l d o f l a n d i ng g e a r i n th e l a s t d e c a d e s .T hi s p a pe r a b r i ef o v e r v i e w o f f o u ra s p e c t s i n c l u d i ng th en o i s e g e n e r a t i o n m e c h a n i s m s ,t h en o i s er e d u c t i o n t e c h n i q u e s ,t h e s i m i l a r i t y r u l e o f w i n d t u n n e la e r o a c o u s t i c e x pe r i m e n t s a n d t h e p r e d i c t i o n m e t h o d sf o r l a n d i n gg e a r s .L a n d i n gg e a rb r o a d b a n dn o i s ec a nb e g e n e r a l l y c a t e g o r i z e d i n t ot w o p a r t s i s th e f l o ws e p a r a ti o n i n d u c e dn o i s e a n d t h e o t h e r i s t h e i n t e r a c t i o nn o i s e b e t w e e nu ps t r e a m a n dd o w n s t r e a m c o m p o n e n t s .M o r e o v e r ,t h er e s o n a n t p h e n o m e n o na p p e a r e di ns o m ec a v i t yc o n f i g u r a t i o n s c a na l s o g e n e r a t et o n a ln o i s e .S o m ea c t i v ea nd p a s s i v en o i s ere d u c t i o n m e t h o d s s u c ha sf a i r i ng a n d p l a s m aa c t u a t o r s whi c hc a ns u p p r e s st h ef l o w s e pa r a t i o na n di n t e r a c t i o n p h e n o m e n aa r eu s e dt or e d u c el a n d i n gg e a rn o i s e .F i n a l l y,p r e d i c t i o no ff u r t h e rr e s e a r c h o n l a n d i n gge a r n o i s e i s p r e s e n t e d . K e yw o r d s :l a n d i n gg e a r ;a e r o a c o u s t i c s ;w i n dt u n n e le x p e r i m e n t ;n o i s e g e n e r a t i o n m e c h a n i s m ;n o i s e r e d u c t i o nm e t h o d0 引 言随着航空运输业的迅猛发展,在近地面起飞㊁降落阶段,大型客机产生的噪声问题日益受到人们的关注和重视㊂国际民用航空组织(I C A O )对航空器噪声的适航标准越来越严格,对于飞越㊁横侧及近场三个测量点(分别位于与跑道中心线及其延长线相平行且距离跑道中心线450m 的边线上㊁跑道中心线的延长线上且距起飞滑跑起点6500m 处和跑道中心线的延长线上且距跑道入口2000m 处)测得的有效感知声压级(E f f e c t i v eP e r c e i v e dN o i s eL e v e l ,E P N L ),其第四阶段的有效感知声压级噪声指标要比第三阶段还要低10d B[1]㊂美国N A S A的未来航空器减噪目标要求在2020年和2050年,比目前第四阶段的适航标准有效感知声压级分别降低42d B和71d B[2]㊂欧洲的A C A R E计划也提出类似的要求,预计在2020年和2050年民机的噪声水平相比于2000年分别降低50%和65%㊂中国民航部门也针对航空器噪声提出了相应的审定标准,并写入中国民航规章第36部(C C A R-36)[3-4]㊂现代大型民用飞机的噪声水平已成为制约飞机取得适航证的关键因素之一[5]㊂因此,国内外相关单位对飞机的主要噪声源㊁噪声产生机理和控制方法开展了大量的研究㊂现代大型飞机的主要噪声源包括发动机噪声和机体噪声两大类㊂早在1970年代,G i b s o n[6-7]㊁R e v e l l[8]等人通过飞行试验测量了滑翔机㊁运输机等不同种类的飞机飞过机场时产生的噪声大小和噪声源分布,并指出机体部件是一类可能的噪声源㊂自20世纪80年代初以来,随着民用飞机大涵道比涡轮风扇发动机的广泛应用,发动机噪声已经显著下降㊂尤其在飞机起飞㊁降落阶段,起落架放下且增升装置打开,发动机处于低功率状态,此时起落架㊁增升装置等机体部件产生的气动噪声已经与飞机发动机噪声处于相同的水平,甚至超过发动机噪声[9-13]㊂因此机体噪声已经成为大型客机一类重要的噪声源㊂无论是从航空适航条例还是从舒适性㊁环保等方面来看,开展机体噪声相关问题的研究并进行相应的减噪是十分必要的㊂ D o b r z y n s k i[9]总结过去40年间国内外在飞机机体气动噪声领域的成果后指出,若按产生的噪声强度依次排列,现代大型飞机的机体噪声源包括起落架㊁前缘缝翼㊁后缘襟翼㊁襟翼侧缘㊁增升装置导轨,及扰流板和部件间的相互影响;但对于窄体飞机和支线飞机,增升装置噪声的强度几乎与起落架噪声相当㊂因此起落架噪声被认为是现代大型飞机最重要的一类机体噪声㊂本文主要综述起落架相关的气动噪声问题的研究进展㊂1起落架噪声产生机理航空部件气动噪声的研究方法主要有风洞试验㊁飞行试验㊁数值模拟和理论分析等多种方法㊂综合考虑研究成本㊁时间㊁结果精度等因素,过去几十年对起落架进行气动声学研究最常用的方法还是风洞试验㊂起落架噪声主要为宽频噪声,其产生机理包括两大类:一类是钝体分离噪声,即气流流过起落架钝体部件发生流动分离㊁再附着等流动现象而辐射的噪声;另一类是干扰噪声,即上游部件的非定常湍流尾迹作用于下游部件而产生的噪声[1,4]㊂但是主要噪声源位置和远场噪声特性与起落架构型密切相关㊂20世纪70年代末,H e l l e r和D o b r z y n s k i[14]对一个简化的两轮小车式起落架进行了远场噪声大小和指向性的测量,并分析了各个起落架部件对总噪声的贡献㊂结果表明起落架过顶方向的噪声主要产生于起落架轮胎,而侧边方向的噪声则主要来自于支撑杆部件㊂D o b r z y n s k i等人[15]在D NW-L L F风洞中对全尺寸A320和A340的前起落架和主起落架进行了试验研究,发现起落架辐射的总声压级与起落架的支柱尺寸㊁轮胎直径和支柱数目等参数密切相关,会随着支柱尺寸和数目的增加而增大㊂G u o等人[16]在L S A F 气动声学风洞中对全尺寸B737飞机的主起落架辐射的噪声进行了测量,发现起落架低频㊁中频和高频的噪声源分别为起落架轮胎㊁主支柱和细小部件㊂Y o k o k a w a等人[17]在日本R T R I风洞对40%缩放的两轮主起落架模型进行了远场噪声测量,发现两轮中间的连接轴区域是最主要的噪声源㊂L a z o s[18]测量了四轮起落架的时均流场,并指出前后两轮之间存在一个非定常的旋涡,这被认为是四轮起落架主要的噪声源㊂除了两轮和四轮起落架外,人们对现代大型宽体客机中更常见的六轮小车式主起落架构型也进行了深入的研究㊂S t o k e r[19-20]㊁H o r n e[21-22]㊁R a v e t t a[23]㊁R i n g s h i a[24]等人分别对B o e i n g777六轮小车式主起落架的缩比模型进行了试验研究,J a e g e r[25]㊁O e l e m a n s[26]㊁H u m p h r e y s[27]等人分别对其它六轮小车式起落架进行了试验研究,从他们的试验结果中,能够总结出一些非常重要的起落架噪声特点,一是起落架轮胎的数量不仅会改变低频噪声的大小,也会影响高频噪声的大小,另一个就是真实起落架上存在的小尺寸细小零部件,会产生额外的高频噪声㊂此外,起落架的安装效应会导致真实起落架与风洞试验中起落架产生的噪声存在差异㊂除试验研究外,C F D和F W-H方程相结合的混合方法㊁C A A计算气动声学等数值计算方法逐渐成为研究起落架等飞机部件气动噪声的另一类主要方法㊂X i a o等人[28]用D D E S方法模拟了四轮起落架的流场,结果显示从起落架前轮会脱落出很强的旋涡,周期性地撞击后轮,同时旋涡也会与前轮的后侧有周期性地相互作用,这些流动现象可以产生很强的辐射噪声㊂D r a g e[29]等人对简化的B747前起落架进行了数值模拟,并将得到的结果运用F W-H方程进行远场噪声的计算,他们发现对起落架的几何形状进行很小的改动,可能会导致辐射的噪声场有很大的差别㊂S o u l i e z等人[30]采用C F D和F W-H方程相结合的混合方法计算稍复杂四轮起落架的远场噪声,但是他在257空气动力学学报第35卷。

空气动力学与飞行原理课件:无人飞艇基本飞行原理

空气动力学与飞行原理课件:无人飞艇基本飞行原理
19
壹 地面操作
section
4
解系
与无人飞艇的其它地面操 作相比,对解系的操作技术要 求相对较少。解系要求在释放 无人飞艇后直至上升到正常操 作高度和速度的过程中确保无 人飞艇没有接触地面设备的风 险。在无人飞艇的解系操作中 需要通过空气动升力的获取来 控制好上升的速度和加速度, 保证无人飞艇离地升空的安全 性。
LOTTE艇身的升力系数、阻力系数
12
空气动力学与飞行原理
第六章:无人飞艇基本飞行原理 第二节:无人飞艇操纵控制
LOGO 13
第二节
目录页
学 习 大 纲
一、 二、
地面操作 飞行操纵
14
壹 目录页
一、
地面操作
二、
飞行操纵
15

地面操作
无人飞艇的地面操作通常包括艇库停 放、地面移动、系留、解系、地面回收这 五个部分。在无人飞艇离开艇库后,地面 操作最重要的一点是保持低速控制。
17
壹 地面操作
无人飞艇的地面移动主要依靠多名 地勤人员协调配合将无人飞艇由一处移 动至另外一处。地勤组人员通常由两名 无人飞艇头部拉绳员、两名扶舱员和两 名无人飞艇尾部拉绳员组成。左图是无 人飞艇地面移动时地勤组人员的位置分 布示意图。由于地面存在阵风的影响, 需要地勤组人员配合使无人飞艇不会明 显偏离其预定的地面移动轨迹,通过各 地勤人员的协调合作确保无人飞艇在地 面移动过程中的安全。
起飞 空中悬停
上升 着陆
巡航 复飞
22
贰 飞行操纵 ——起飞
无人飞艇的起飞操纵是由操控师和地勤组共同完成。在起飞之前,需要对无人飞艇进行起飞前的准备工作。无人飞 艇的起飞前准备工作包括称重、配重、设备检查、启动发动机、副气囊供气、无人飞艇俯仰姿态检查这六个部分。称重 的目的是判断无人飞艇的实际净重状态,为无人飞艇的配重提供依据。地勤组的扶舱员先将无人飞艇抬起然后松手放下 ,观察无人飞艇是上飘还是下沉。上飘代表无人飞艇处于负净重状态,下沉代表无人飞艇处于正净重状态。在通过称重 得到无人飞艇净重情况后,操控师和地勤组需要结合大气温度、预计飞行时间等因素进行配重。配重指的是往无人飞艇 上加配压舱物,压舱物通常选用砂带,一般情况下起飞前需要通过配重将无人飞艇调整到零净重状态(既不下沉也不上 飘的状态)。设备检查主要是对无人飞艇的导航系统、操纵系统、动力装置等设备进行起飞前检查,确保飞行过程中各 设备的正常运行。启动发动机指的是在动力装置设备检查完成后发动机开车,一般情况下先启动右侧发动机,再启动左 侧发动机。有些情况下启动后还需要将油门操纵杆推至最大功率观察发动机运行及振动情况,若无异常再将油门操纵杆 推回至怠速状态。副气囊供气时无人飞艇压力系统所有阀门应处于自动位置,且应该系好绳索防止飞艇突然升空。无人 飞艇俯仰姿态检查指的是起飞前应确认无人飞艇在自然状态下的俯仰角应为0°或1°。

空气动力学与飞行原理

空气动力学与飞行原理

空气动力学与飞行原理飞行是人类向往已久的梦想,而空气动力学就是飞行的基石。

它是研究空气对物体运动和力学性质的学科,它让飞机得以在空中翱翔,是现代航空工程的重要理论基础。

空气动力学主要研究空气流动以及空气对物体的作用力。

根据牛顿第二定律,物体所受力等于物体质量乘以加速度,所以在飞行中,需要考虑的第一个因素就是空气对飞机的作用力。

飞机在飞行时受到的主要力有重力、升力、阻力和推力。

首先,重力是指地球对物体的吸引力。

它是物体垂直向下的力,是使飞机下降的力。

在飞行中,飞机需要克服重力的作用,才能保持在空中飞行。

而升力则是使飞机保持在空中的力。

升力产生的原因是飞机在运动时空气产生一个向上的反作用力。

根据伯努利定律,当气流通过飞机的翼面时,流速增加,压力下降,形成一个向上的压力差,从而产生升力。

为了增加升力,翼面通常具有弯曲的形状,称为翼型。

翼型的选择和设计对于飞机的性能有着至关重要的影响。

然而,飞机在飞行中还会受到阻力的作用。

阻力是指空气对飞机运动的阻碍力,它使得飞机需要消耗更多的能量来保持飞行速度。

阻力有两个主要的分量,一个是摩擦阻力,即飞机表面与空气之间的阻力;另一个是压力阻力,即飞机运动过程中的压力差引起的阻力。

为了减小阻力,飞机的外形通常设计为流线型,以使空气尽量顺利地流过飞机的表面。

在飞行过程中,推力是让飞机向前移动的力。

飞机需要通过推力来克服阻力,以保持飞行速度。

推力的来源通常由喷气发动机、涡轮风扇发动机或者螺旋桨引擎提供。

除了这些基本的力量,空气动力学还研究了气动力学现象,比如气流分离、失速、升力和阻力对速度、密度、粘度的依赖关系等。

这些研究为飞机的设计和性能提供了理论依据。

空气动力学的研究成果不仅仅运用在飞机上,还应用在车辆、建筑、桥梁等领域。

例如,对于一座高大的建筑物,空气动力学研究可以帮助设计师了解建筑物在强风条件下的受力情况,从而选择合适的设计方案。

总的来说,空气动力学是研究空气对物体运动和力学性质的学科,是现代航空工程的基础。

飞行的奥秘了解飞机与空气动力学

飞行的奥秘了解飞机与空气动力学

飞行的奥秘了解飞机与空气动力学飞行的奥秘:了解飞机与空气动力学飞行,是人类长久以来的梦想与追求。

而如今,我们已经能够通过飞机实现自由翱翔于天空之中。

然而,飞机的飞行并非简单的“飞”起来而已,而是基于深厚的空气动力学原理与技术基础。

本文将从飞机与空气动力学的关系入手,探究飞行的奥秘。

一、空气动力学与飞机1. 空气动力学的基本原理空气动力学是研究物体在空气中运动的学科。

它涉及了流体力学、热力学以及运动学等多个学科领域。

在空气动力学理论中,最重要的概念之一是气动力,它是指空气对物体施加的力。

而根据牛顿第三定律,物体在空气中运动时,空气同样会对物体施加与它相等反向的力。

2. 飞机的基本结构与原理飞机是能够在空中飞行的交通工具。

它由机身、机翼、发动机、尾部组成,每个部分都发挥着重要的作用。

机身为飞机提供了基本的结构和载客空间,机翼则负责产生升力和改变飞机的姿态,发动机则提供了动力,尾部则控制着飞机的平衡。

整个飞机的设计都基于空气动力学原理,力求在空中实现平稳的飞行。

二、飞机的升力与气动力学1. 飞机的升力与气动力学基础升力是指垂直于飞机机翼平面的力,使飞机能够克服重力向上飞行。

升力的产生与气流的流动有着密切的关系。

当飞机在空中飞行时,机翼表面的空气会被迫分离,上表面的气流速度更快,压力更低,而下表面的气流速度较慢,压力较高,这种气流的分离形成了马格努斯效应。

根据伯努利定律,速度更快的气流所产生的气压就较低,而速度较慢的气流所产生的气压就较高,因此形成了升力。

2. 操纵飞机的副翼与方向舵飞机的机翼除了产生升力外,还能通过副翼和方向舵来改变飞机的姿态与方向。

副翼位于机翼的尖端,当副翼升起时,会对飞机产生一个向下的力,使得飞机产生滚转的运动;而方向舵则位于飞机尾部,通过改变方向舵的位置,飞机能够改变飞行方向。

这些控制面的设计与使用同样基于空气动力学原理。

三、发动机与推进力1. 发动机的类型与工作原理发动机是飞机的动力源,不同类型的发动机有着不同的工作原理。

北航空气动力学试题2009(刘沛清)

北航空气动力学试题2009(刘沛清)

北京航空航天大学2008-2009学年第二学期考试统一用答题册考试课程空气动力学(Ⅰ)(A卷)班级成绩姓名学号2009年6月18日一、选择题(在所选括号内选择一个正确答案 ,每小题4分,共16分)1.流体具有以下那几个属性a. 所有流体不能保持固定的体积()b. 流体能保持固定的形状()c. 在任何状态下,流体不能承受剪切力()d. 在静止状态下,流体几乎不能承受任何剪切力()2.流体微团的基本运动形式包括a. 仅有平移运动()b. 平移运动与整体旋转运动()c. 平移运动、整体旋转运动和变形运动()d. 平移运动、旋转运动和变形运动()3.以下说法正确的是a. 理想流体运动的速度势函数满足拉普拉斯方程()b. 理想不可压缩流体的运动存在速度势函数()c. 理想流体无旋流动的速度势函数满足拉普拉斯方程()d. 理想不可压缩流体无旋流动的速度势函数满足拉普拉斯方程()4.在边界层内a. 流体微团所受的粘性力大于惯性力 ( )b. 流体微团所受的粘性力大于压力 ( )c. 流体微团所受的粘性力小于惯性力 ( )d. 流体微团所受的粘性力与惯性力同量级 ( )二、填空题(在括号内填写适当内容,每小题4分,共16分)1.流动Re数是表征()。

根据其大小可以用来判别流动的()。

在圆管中,流动转捩的下临界Re数为()。

2.沿空间封闭曲线L的速度环量定义为(),如果有涡量不为零的涡线穿过该空间曲线所围的区域,则上述速度环量等于()。

3.写出在极坐标系下,速度势函数与径向、周向速度分量之间的关系。

()4.一维定常理想不可压流伯努利方程(欧拉方程沿流线的积分)写为( );一维定常绝热流能量方程写为( )。

三、 简答题(每小题4分,共16分)1.用图形说明理想不可压缩流体有环量圆柱绕流,随涡强Г增大时流线的变化图谱。

2.分别写出流体微团平动速度、旋转角速度、线变形与角变形速率的分量表达式。

3.简述绕流物体压差阻力产生的物理机制。

空气动力学与飞行原理课件:旋翼空气动力学 、牛顿定律与无人机受力

空气动力学与飞行原理课件:旋翼空气动力学 、牛顿定律与无人机受力
牛顿第一运动定律:在不受任何外力或所受外力之和为零 的状态下,物体总保持匀速直线运动状态或是静止状态。
例如无人机的定直平飞状态的飞行性能就可以利用牛顿第 一定律来分析。在定直平飞状态无人机所受的合外力为零。即升 力等于重力,推力等于阻力。此时无人机保持定直平飞状态。图 为无人机定直平飞所受外力示意图。
17
空气动力学与飞行原理
牛顿定律与无人机受力
LOGO 18
壹 目录页
一、
牛顿定律
二、
无人机受力
19
壹 牛顿定律
在考虑固定翼无人机的飞行稳定性特性时,需要将其当成 刚体,除了具有三个平动的自由度,还具有绕机体轴转动的三个 转动自由度。如果评价其飞行性能,则可以将无人机作为质点处 理,只有三个平动自由度,此时牛顿定律可以解释无人机的多数 飞行性能。
悬停时桨叶气动区域分布
前飞时刻桨叶气流区域分布
14
贰 旋翼
(三)桨尖失速、桨尖涡和地面效应
地面效应 由于在后退区域,桨叶旋转速度和前飞速度相减,会导致后退区域的升力损失,会造成桨盘升力的不对 称,此时为了保持升力对称,弥补升力损失,需要给桨叶一个较大的变距操纵,此时翼尖速度较大且处于较 大攻角之下,则会出现翼尖失速情况。 当直升机悬停靠近地面时,将会产生明显的地效效应。地效效应会使直升机诱导阻力减小,同时能获得 比空中飞行更高升阻比的流体力学效应:当运动的直升机距地面(或水面)很近时,整个桨盘的上下压力差增大, 升力会陡然增加。
桨叶截面形状-翼型
对称和非对称翼型
5

翼型
对于翼型,其空气动力产生原理与固定翼翼型相同,由伯努利定理可以解释其升力产生原因。 升力计算公式也与固定翼翼型相同。即
L
1 2

空气动力学基础(刘沛清,2017,12)

空气动力学基础(刘沛清,2017,12)
2
当气流迎着翅膀(翼型)吹过时,会因为上下翼面产生 的气流速度差而产生压力差,通常是上翼面的空气流速快、 压力小,下翼面的气流速度慢、压力大,从而将翅膀向上托 起,产生升力。
1738年瑞士科学家伯努利给出理想流体能量方程式,建立了空气压强与速度 之间的定量关系,为正确认识升力提供了理论基础,特别是由该能量定理得 出,翼型上的升力大小不仅与下翼面作用的空气顶托力有关,也与上翼面的 吸力有关,后来的风洞试验证实:这个上翼面吸力约占翼型总升力的60%~ 70%。
(3)李林达尔,O.(18481896)
德国工程师和滑翔飞行家李 林达尔,是一位制造与实践固定 翼滑翔机航空先驱之一。李林达 尔制造了多架单翼或双翼滑翔机, 并在柏林附近试飞2000多次, 积累了丰富资料,虽然其最终未 能实现动力飞行,但他所积累的 大量飞行经验和数据,为日后美 国莱特兄弟实现动力飞行提供了 许多宝贵教益。 1889年,著《鸟类飞行──航空 基础》。
莱特兄弟 奥维尔(1871—1948) 维尔伯(1867—1912)
世人一般认为他们于 1903年12月17日首次完成 完全受控制、附机载外部 动力、机体比空气浮力大、 可持续飞行,并因此将发 明了世界上第一架实用飞 机的成就归功给他们。
1903年12月17日,世界 上第一架有动力、可操纵的 飞机由美国莱特兄弟驾驶试 飞成功。飞行者1号的起飞重 量仅仅360kg,勉强能载一个 人飞离地面,速度比汽车还 慢,只有48km/h,最成功一 次飞行只有59秒,距离260m。 但是就这么一架不起眼的小 飞机翻开了人类航空史上的 重要一页,从此人类实现了 带动力飞行的固定翼飞机, 让人类进入航空文明时代。
(1) 达·芬奇
15世纪70年代,达芬奇画出的一种由飞行员 自己提供动力的飞行器,并称这种飞行器为 “扑翼飞机”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V 飞行速度方向
升力L
力矩=0
气流相对运动方向
重力G 平尾负升力
早期的飞行器可以升天,却无法控制飞行姿态。如何才能向鸟儿 一样自如飞行呢。细心的观察者发现,当鸟需要俯仰或转向时,它 们或是身体倾斜,或是扭动尾翼。因此,介入了力矩的概念。
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
飞天的探索从意大利文艺复兴时期开始,走上科学探索之路。先驱 们沿着不同的道路摸索:或着手升力、动力等问题,从滑翔飞行开 始。
飞行奥秘与空气动力学
一、飞行的梦想— 古代人类的飞行梦想
飞行奥秘与空气动力学 第二章 尝试与实践
古代 飞行 技艺
1
航空 的先 导者
2
4
梦想 成真
3
早期 探索
飞行奥秘与空气动力学 第二章 尝试与实践
通过对力的认识的逐渐加深,人类从幻想走向了实践。升天首 先要由升力以克服重力。早期的飞行器如孔明灯、风筝、竹蜻蜓以 最朴素的方式解决了升力的问题。
飞行奥秘与空气动力学
鸟类中飞行速度
最快的雨燕可以达到
170km/h.
J10
大雁 尖头雨燕
SU35
J20 F-22
YF-12 MIG31
游隼

最快的美国军用机YF-12时速可达到
3700km/h,现代战斗机的一般时速也在
鸽子
2000km/h以上.
蜂鸟
速度km/h
0
50
100
200
1000
2000
3000
翅 逃 亡年
定的认识,只可惜伊卡 洛斯还是因为翅膀散落

命丧大海。
飞行奥秘与空气动力学
一、飞行的梦想— 古代人类的飞行梦想

对风力的认识和应用

在中国已有4000年的

历史,凭借风力飞行的

设想早在公元前就有记
对 风 的
载。 列子,战国时代(公

元前450年)的传奇人

物,据说他能乘风而行,

轻虚飘渺,微妙无比,
4000
飞行奥秘与空气动力学
今天,大大小小不同的航空器在各自的领域发挥重要的 作用。航空技术水平成为衡量一个国家经济技术水平、 国防实力和综合国力的重要标志。 退去高难度的技术层面,飞行器的原理还是相对简单的。
飞行奥秘与空气动力学
力平衡原理 (弹簧秤,气球原理)
飞行奥秘与空气动力学
力平衡原理 (中国的杆秤,飞机)
微重量说
飞行奥秘与空气动力学
800
——
一、飞行的梦想— 古代人类的飞行梦想


戴达罗斯临行前对儿子

说:“你如果飞得太低,
神 戴话 达传 罗说
羽翼会碰到海水,沾湿 了会变得沉重,你就会 被拽在大海里;要是飞
斯(
得太高,翅膀上的羽毛
父公
会因靠近太阳而着火。”
子元
可见此时人们已经对飞
插前
行中重力的影响有了一
无重量说
飞行奥秘与空气动力学
800 ——
一、飞行的梦想— 古代人类的飞行梦想

希 年腊 )神

丘 比 特 ( 厄 洛 斯 )
传 说 人 物 ( 公 元 前
通过对鸟类飞行 的观察,古希腊人 已经认识到翅膀扑 动对飞行的重要性, 于是为丘比特象征 性的加上了一对小 翼。只是这样的翅 膀对于如此重的人 体还是显得力不从 心。
2、 早期的探索
2)乔治·凯利
但是,当时的技术还未能制造合 适的发动机,于是凯利便以俯冲作 为推进动力发明了滑翔机。
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
鸟 在 翱 翔 时 的 受 力 。
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
3)李林达尔,O. (1848-1896)
德国工程师和滑翔飞行家李林 达尔,是一位制造与实践固定翼滑 翔机航空先驱之一。李林达尔制造 了多架单翼或双翼滑翔机,并在柏 林附近试飞2000多次,积累了丰 富资料,虽然其最终未能实现动力 飞行,但他所积累的大量飞行经验 和数据,为日后美国莱特兄弟实现 动力飞行提供了许多宝贵教益。
飞行奥秘与空气动力学
二、尝试与实践
3、 梦想成真
莱特兄弟 奥维尔(1871—1948) 维尔伯(1867—1912)
世人一般认为他们于 1903年12月17日首次完成 完全受控制、附机载外部 动力、机体比空气浮力大、 可持续飞行,并因此将发 明了世界上第一架实用飞 机的成就归功给他们。
飞行奥秘与空气动力学

且强调说道:“顶着风

飞,你就容易升高向上,

以后,当你下降的时候,
要顺着风飞扬。”然而

经 Egil实践,顺风下降
羽 衣

并不平稳。后来才知道, 原来不论起飞着陆都应

逆风行驶。
飞行奥秘与空气动力学
一、飞行的梦想— 古代人类的飞行梦想
中国诗人李白(公元720年): 大鹏一日同风起,扶摇直上九万里。 假令风歇时下来,犹能簸却沧溟水。 世人见我恒殊调,闻余大言皆冷笑。 宣父犹能畏后生,丈夫未可轻年少。
自然的启发
鸟类的仿生学贡献
智慧的结晶
现代三大机种的 力学奥妙
飞行奥秘与空气动力学
第一章 飞行的梦想
人类关于飞行的梦想源远流长,古已有之。大 量关于飞行的神话与传说,美丽而玄妙,对人们有 极大的吸引力。古希腊与古罗马有架战车飞行、羽 衣飞行、丘比特飞行射箭等;中国有飞车、嫦娥奔 月等。种种传说,无一不表现了人类对翱翔天空、 凌云御风的渴望与遐想。 人类渴望像小鸟一样自由飞翔!
飞行奥秘与空气动力学
然而就是这简单的力平衡原理,人类历经了近上千年认识 与实践过程。
人类要想实现飞行: 如何产生升力? 如何克服阻力? 如何保持平衡或稳定? 如何控制与导航?
目录
飞行奥秘与空气动力学
Fruit
Practice
Dream
Exploration
飞行的梦想
古代人类的飞天之梦
尝试与实践
人类的飞天历程
天鸥 2.5万个羽毛与骨头
波音747-400 240倍 600多万个零件和连接件
飞行奥秘与空气动力学
绪论
人类从飞鸟中得到启示,在长期的探索过程中,对飞行的认识 从神话到实现,经历上千年的历史。 人类真正实践翱翔天空的梦想,应归于近代100多年的历史。 自1903年12月17日,美国莱特兄弟发明人类第一架带动力的飞 机以来,人类开创了航空新纪元。经过114年努力,我们不仅掌 握了飞行奥妙,克服各种技术难关,研制出不同类型和用处的 飞行器,成为二十世纪人类史上最伟大的科技成果,为社会的 文明发展起到巨大的促进作用。
二、尝试与实践
3、 梦想成真
1903年12月17日,世界上 第一架有动力、可操纵的飞机 由美国莱特兄弟驾驶试飞成功。 飞行者1号的起飞重量仅仅 360kg,勉强能载一个人飞离 地面,速度比汽车还慢,只有 48km/h,最成功一次飞行只有 59秒,距离260m。但是就这 么一架不起眼的小飞机翻开了 人类航空史上的重要一页,从 此人类实现了带动力飞行的固 1903 年 12 月 17 日由约翰·Daniels 拍 定翼飞机,让人类进入航空文 摄的历史性瞬间相片 明时代。
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
1) 达·芬奇
15世纪70年代,达芬奇画出的一种由飞行员 自己提供动力的飞行器,并称这种飞行器为 “扑翼飞机”。
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
2)乔治·凯利(1773-1857) ——空气动力学之父,英国人
也许是受中国风筝的启发,在 空气动力学之父英国科学家凯利的 科学理论指导下,通过对鸟翼面积、 鸟的体重和飞行速度的观察,估算 出速度、翼面积和升力之间的关系, 在1809年其所发表的“论空中航行” 著名论文中,提出了人造飞行器应 该将推进动力和升力面分开考虑的 设想,使更多人放弃了单纯模仿鸟 的扑翼,逐渐接受和实践了固定翼 技术产生升力的正确原理。


——
竹蜻蜓的叶片和水平旋转面之间有一个倾角。当旋翼旋转时, 旋转的叶片将空气向下推,而空气也给竹蜻蜓一股向上的反作用 升力,这股升力随著叶片的倾斜角而改变。当升力大于竹蜻蜓的 重量时,竹蜻蜓便可向上飞起。
飞行奥秘与空气动力学
二、最初的尝试
活塞螺旋桨发动机
飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
飞行奥秘与空气动力学
美国发明家威尔伯·莱特Wilbur Wright (1867~1912年) 和奥维尔·莱特Orville Wright (1871~1948年 )。
飞行奥秘与空气动力学
飞行奥秘与空气动力学
航空器:在大气层内飞行的飞行器
轻于空气的航空器
重于空气的航空器
气球
固定翼飞行器 滑翔机
飞行奥秘与空气动力学
二、最初的尝试
古代飞行技艺
1200 ——

荷兰的风车,

最早从德国

引进。开始

时,风车仅

用于磨粉之
类。到了
年 力)
16~17世纪, 风车对荷兰

的经济有
飞行奥秘与空气动力学
二、最初的尝试
古代飞行技艺


气 反 作
水 平
蜻 蜓













飞行奥秘与空气动力学
二、尝试与实践
2、 早期的探索
相关文档
最新文档