第一章_时间序列分析简介
时间序列分析

时间序列分析时间序列分析是一种重要的统计方法,用于研究随时间变化的数据序列。
它可以帮助我们了解数据的趋势、季节性和周期性,预测未来的发展趋势,以及识别可能存在的异常情况。
本文将介绍时间序列分析的基本概念和步骤,并探讨其在实际应用中的重要性。
时间序列分析的目标是通过对历史数据的分析,找出其中的模式和规律,并将其应用于未来的预测。
在进行时间序列分析之前,首先需要对数据进行收集和整理。
收集的数据应该是按照时间顺序排列的,这样才能准确反映出数据的变化趋势。
整理数据的过程包括去除异常值、缺失值和季节性因素等。
时间序列分析的第一步是绘制数据的图表,以便直观地观察数据的变化趋势。
常用的图表类型包括折线图和柱状图。
接下来,需要对数据进行平稳性检验。
平稳性是指数据的均值和方差在整个时间范围内保持不变。
如果数据不平稳,需要对其进行差分处理,以消除趋势和季节性。
平稳性处理完成后,下一步是确定模型。
根据数据的特点和模式,选择合适的时间序列模型。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归移动平均滑动平均模型(ARIMA)和季节性自回归移动平均模型(SARIMA)等。
选择模型时,需要考虑模型的复杂度和适应数据的能力。
确定模型后,需要对模型进行参数估计和模型检验。
参数估计是根据历史数据来估计模型中的参数值,以使模型能够最好地拟合数据。
模型检验是通过对残差进行检验,检查模型是否能够很好地解释和预测数据。
常用的模型检验方法包括图形检验和统计检验。
最后,使用已经确定并验证的模型进行预测。
根据历史数据和模型的参数,可以预测未来一段时间内的数据情况。
在预测时,需要注意预测结果的置信区间和可靠性,并及时调整模型和预测方法。
时间序列分析在实际应用中具有广泛的应用价值。
它可以帮助政府和企业进行长期规划和决策,预测经济、销售和市场的发展趋势,优化资源配置和生产计划。
同时,时间序列分析也对个人金融投资有着重要的指导作用,可以帮助投资者了解市场动态和行业走势,制定合理的投资策略。
时间序列分析第一章

对香港恒生指数取一阶对数差分后趋势图
第十六页,共54页。
1.2.3时间序列的主要分类
4.按时间序列分布规律分:高斯型时间序列,非高斯型 时间序列。
高斯型时间序列:服从正态分布的时间序列。
非高斯型时间序列:不服从正态分布的时间序列。
我们研究的通常是服从正态分布的时间序列,即高 斯型时间序列。
N次独立重复实验的结果。 5.二者建模思路不同:
第三十四页,共54页。
应用时间序列分析方法的重要性
与回归分析方法相比较,有时应用时间序列分析方法显 得很有必要:
❖1 .很多情况下,很难或不可能得用变量间的因果关
系来说明某一变量的变化。 ❖ 2 .即使能估计出一个有关变量的令人满意的回归方程,
其结果也可能不能用于预测。
我们所研究的是离散性时间序列,对于连续性时间序列,可以 采用等间隔采样使之化为离散序列。
第十三页,共54页。
1.2.3时间序列的主要分类
3.按序列的统计特性分:平稳序列,非平稳序列。
平稳序列:时间序列的统计特性不随时间而变化。
非平稳序列:时间序列的统计特性随时间而变化。
第十四页,共54页。
1.2.3时间序列的主要分类
分段平均法
最小二乘法
普通最小二乘法
折扣最小二乘法
: y yˆ 2 min : t i y i yˆ i 2 min
移动平均法
一次移动平均法
二次移动平均法
指数平滑法
一次指数平滑法
Brown Holt
单参数线性指数平滑法 双参数线性指数平滑法
3月被英国皇家统计学会授予“佳氏银章奖”。
❖ 目前,时间序列分析方法仍在不断的发展和完H.To善ng(汤家之豪)博中士 。
第一讲 时间序列分析

一、时间序列的含义
例1、国际航线旅客客票数.图1给出某国 际航空公司1949—1960年间客票月总数 (单位:千张)的时间序列曲线.直观上看, 每年有一次大的峰值和一次小的降值.并 且逐年不断增加。
一、时间序列的含义
例2,图2是我国铁路客流员的统计曲线,记录 了1971—1981年客票月总数.从铁路客流量的 时间序列曲线上可见,每年都有一次较大的峰 值,大约是在1、2月份,也就是每年的春节前 后有一次最大的峰值.
例如,对河流水位的测量。其中每一时 刻的水位值都是一个随机变量。如果以 一年的水位纪录作为实验结果,便得到 一个水位关于时间的函数xt。这个水位函 数是预先不可确知的。只有通过测量才 能得到。而在每年中同一时刻的水位纪 录是不相同的。
随机过程:由随机变量组成的一个有序序列称 为随机过程,记为{x (s, t) , sS , tT }。其中S 表示样本空间,T表示序数集。对于每一个 t, tT, x (·, t ) 是样本空间S中的一个随机变量。 对于每一个 s, sS , x (s, ·) 是随机过程在序数集 T中的一次实现。
80 60 40
20
Trend-cy cle for SA LE
S from SEA SO N, MO D_1
0
Seas factors fo r SA L
-20
JAN 1S9E9P01M9A90YJ1A9N911S9E9P21M9A92YJ1A9N931S9E9P41M9A9Y4J1A9N951S9E9P61M9A96YJ1A9N971S9E9P81M9A98YJ1A9N992S0E0P02M0A00YJ2A0N012S0E0P220E0S2 from SEA S ON, MOD_
下面的图2表示了去掉季节成分,只有 趋势和误差成分的序列的一条曲线。 图3用两条曲线分别描绘了纯趋势成分 和纯季节成分。图4用两条曲线分别描 绘了纯趋势成分和纯误差成分。这些 图直观地描述了对于带有几种成分的 时间序列的分解。
第一章 时间序列分析简介(人大版)

1.1 引言
最早的时间序列分析可以追溯到 7000年前的古 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来,就构 成所谓的时间序列。对这个时间序列长期的观察使 他们发现尼罗河的涨落非常有规律。由于掌握了尼 罗河泛滥的规律,使得古埃及的农业迅速发展,从 而创建了埃及灿烂的史前文明。
按照时间的顺序把随机事件变化发展的过程记 录下来就构成了一个时间序列。对时间序列进 行观察、研究,找寻它变化发展的规律,预测 它将来的走势就是时间序列分析。
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
1.2 时间序列的定义
随机序列:按时间顺序排列的一组随机变量
观察值序列:随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列 x1 , x2 ,, xt 随机序列和观察值序列的关系
, X 1 , X 2 ,, X t ,
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
中国人民大学出版社
中国人民大学音像出版社
《应用时间序列分析》
目
录
第一章 第二章 第三章 第四章 第五章 第六章
时间序列分析概论

上海财经大学统计学系
5
第一章时间序列分析概论
例3.GDP即国内生产总值,它是对一国(地区) 经济在核算期内所有常住单位生产的最终产品总 量的度量,常常被看成反映一个国家(地区)经 济状况的重要指标。本例给出我国1978年— 2007年GDP数据(单位:亿元)的时间序列图。
上海财经大学统计学系
6
上海财经大学统计学系
20
上海财经大学统计学系 16
5.金融时间序列分析
研究金融过程的动态结构 探索金融变量之间的动态关系 对金融数据进行季节或其它形式的周期调 整(如日内效应、周效应等) 通过对具有自相关关系的模型误差分析, 改进用时间序列进行回归分析的模型 对均值或波动率进行点预测或区间预测
上海财经大学统计学系 17
1
第一章时间序列分析概论
2.定义 在统计研究中,有大量的数据是按照时间顺 序排列的,使用数学方法表述即用一组随机 序列 , X1 , X 2 , , X t ,
表示随机事件的时间序列,简记为 X t , t T 或者 X t 。
上海财经大学统计学系 2
关于时间序列 X t ,对于任意的t, X t 是一个随机变量,且每个随机变量所服从的 分布可以不同,对于任意的t和s, X t 与 X s 不是相互独立的。 根据不同的需要,数据的收集可以按 小时、天、周、月或者年为间隔进行,现在 更有以秒为时间间隔的高频时间序列。
由美国北卡来罗纳州立大学(North Carolina State University)的两位教授(A. J. Barr and J. H. Goodnight)共同开发。 专门用于数学建模和统计分析的软件系统。在数 据处理和统计分析领域,SAS系统被誉为国际上 的标准软件系统 。 人机对话界面不太友好,并且在编程操作时需要 用户最好对所使用的统计方法有较清楚的了解, 非统计专业人员掌握起来较为困难。
时间序列分析基础知识

时间序列分析基础知识时间序列分析是一种用于研究时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的一系列观测值,例如股票价格、气温变化、销售额等。
通过对时间序列数据的分析,我们可以揭示数据的趋势、季节性、周期性等特征,从而进行预测和决策。
一、时间序列的基本概念1. 时间序列:按照时间顺序排列的一系列观测值。
2. 观测值:在特定时间点上对某个变量的测量结果。
3. 时间点:观测值对应的时间,可以是年、季度、月、周、日等。
4. 频率:观测值的时间间隔,可以是固定的(如每天、每月)或不固定的(如不同时刻的股票价格)。
5. 趋势:时间序列数据长期上升或下降的总体变化趋势。
6. 季节性:时间序列数据在特定时间段内重复出现的周期性变化。
7. 周期性:时间序列数据在较长时间内呈现出的波动性变化。
二、时间序列分析的方法1. 描述性分析:通过绘制时间序列图、计算统计指标等方法,对时间序列数据的基本特征进行描述和分析。
2. 平稳性检验:判断时间序列数据是否具有平稳性,即均值、方差和自协方差不随时间变化。
3. 分解:将时间序列数据分解为趋势、季节性和随机成分,以便更好地理解和预测数据。
4. 模型拟合:根据时间序列数据的特征,选择合适的模型进行拟合,如ARIMA模型、指数平滑模型等。
5. 模型诊断:对拟合的模型进行诊断,检验模型的残差是否符合假设,以及模型是否能够准确预测未来数据。
6. 预测:基于拟合的模型,对未来的时间序列数据进行预测,提供决策支持和参考。
三、常用的时间序列模型1. AR模型(自回归模型):当前观测值与过去观测值的线性组合。
2. MA模型(移动平均模型):当前观测值与过去观测值的线性组合。
3. ARMA模型(自回归移动平均模型):AR模型和MA模型的组合。
4. ARIMA模型(差分自回归移动平均模型):对非平稳时间序列进行差分,再应用ARMA模型。
5. SARIMA模型(季节性差分自回归移动平均模型):对季节性时间序列进行差分,再应用ARMA模型。
第一章 时间序列分析简介

本章内容
引言 时间序列的定义 时间序列分析方法简介 时间序列分析软件
1.1 引言
最早的时间序列分析可以追溯到7000年前的古 最早的时间序列分析可以追溯到7000年前的古 7000 埃及。 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来, 古埃及人把尼罗河涨落的情况逐天记录下来 双星 天狼星:夜空里最亮的恒星,是大犬座中的一颗双星。 天狼星:夜空里最亮的恒星, 逐天记录下来,就构 。 恒星 大犬座中的一颗双星 中的一颗 成所谓的时间序列 时间序列。 成所谓的时间序列。 太阳亮 倍的蓝白星 双星中的亮子星是一颗比太阳 倍的蓝白星, 双星中的亮子星是一颗比太阳亮23倍的蓝白星,体积略大 尼罗河:尼罗河位于非洲东北部,流经布隆迪 卢旺达、 布隆迪、 尼罗河:尼罗河位于非洲东北部,流经布隆迪、卢旺达、 于太阳。 于太阳。 对这个时间序列长期的观察, 对这个时间序列长期的观察,发现尼罗河的涨落非 坦桑尼亚、乌干达、苏丹和埃及等国,跨越世界上面积最 坦桑尼亚、乌干达、苏丹和埃及等国, 等国 在中国古代,看作恶星,象征侵扰, 在中国古代,看作恶星,象征侵扰,所以文人们写出 常有规律。 常有规律。 大的撒哈拉沙漠,最后注入地中海。全长6650公里,为世 公里, 大的撒哈拉沙漠,最后注入地中海。全长 公里 会挽雕弓如满月,西北望,阿拉伯语意为“ 。 “会挽雕弓如满月,西北望 ,使古埃及农业迅速发展 掌握了尼罗河泛滥的规律,使古埃及农业迅速发展, 界上最长的河流。(尼罗河—阿拉伯语意为 大河) 。(尼罗河 射天狼”的词句。 掌握了尼罗河泛滥的规律 射天狼”的词句 界上最长的河流。(尼罗河 ,阿拉伯语意为“大河) , 而古埃及却崇拜天狼星, 而古埃及却崇拜天狼星,因为它与尼罗河的泛滥有着密 从而创建了埃及灿烂的史前文明。 从而创建了埃及灿烂的史前文明。 切的联系。 切的联系。
时间序列分析基础知识

时间序列分析基础知识时间序列分析是一种用于研究时间序列数据的统计方法。
随着人们对时间相关数据的需求不断增长,时间序列分析在预测、模型建立和决策支持等领域发挥了重要作用。
本文将介绍时间序列分析的基础知识,包括时间序列数据的特点、常见的时间序列模型以及常用的时间序列分析方法。
时间序列数据的特点时间序列数据是按照时间顺序排列的观测值的集合。
与横截面数据不同,时间序列数据具有以下特点:趋势性:时间序列数据常常具有长期趋势,即随着时间推移,观测值呈现出明显的上升或下降趋势。
季节性:某些时间序列数据可能具有季节性波动,例如销售额在每年同一季度可能会有重复出现的周期性增长或下降。
周期性:某些时间序列数据可能具有周期性波动,即在较长时间范围内出现重复的上升或下降阶段。
自相关性:时间序列数据中的观测值常常与前一时期或多个时期的观测值相关联。
异方差性:时间序列数据的方差可能会随着时间变化而变化,即不满足常数方差的假设。
常见的时间序列模型为了对时间序列数据进行建模和预测,我们可以使用多种模型。
以下是几种常见的时间序列模型:平稳性模型:平稳性是指观测值的均值和方差在时间上保持不变。
平稳性模型包括ARMA模型(自回归滑动平均)和ARIMA模型(自回归积分滑动平均)等。
趋势模型:趋势模型用于捕捉长期上升或下降趋势。
常见的趋势模型包括线性趋势模型、指数趋势模型和多项式趋势模型等。
季节性模型:季节性模型用于捕捉季节性波动。
常见的季节性模型包括季节ARIMA模型、周期曲线拟合和移动平均法等。
自回归模型:自回归模型基于过去时期观测值与当前观测值之间的关系来进行预测。
常见的自回归模型包括AR(p)模型和ARMA(p,q)模型等。
时间序列分析方法为了对时间序列数据进行分析和预测,我们可以使用多种方法。
以下是几种常用的时间序列分析方法:线性回归方法:线性回归方法被广泛应用于时间序列预测中。
通过拟合一个线性方程来描述观测值与时间之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Box—Jenkins模型实际上主要是运用于单变量、 同方差场合的线性模型 ,存在局限性。
2016/2/29
34
ARIMA(博克斯&詹金斯)
1970年,博克斯和詹金斯出版了关于时 间序列的奠基性著作《时间序列分析: 预测与控制》讨论了非平稳自回归移动 平均ARIMA模型,以及整套的建模、估 计、检验和控制方法,时间序列的理论 和实践得到了飞速发展,在现代社会中 的应用也日益广泛.
2016/2/29
3
1.1 引言
最早的时间序列分析可以追溯到7000年前的古 埃及。
天狼星:夜空里最亮的恒星,是大犬座中的一颗双星。 古埃及人把尼罗河涨落的情况逐天记录下来,就构 成所谓的时间序列。 双星中的亮子星是一颗比太阳亮 23倍的蓝白星,体积略大 尼罗河:尼罗河位于非洲东北部,流经布隆迪、卢旺达、 于太阳。 对这个时间序列长期的观察,发现尼罗河的涨落非 坦桑尼亚、乌干达、苏丹和埃及等国,跨越世界上面积最 在中国古代,看作恶星,象征侵扰,所以文人们写出 常有规律。 大的撒哈拉沙漠,最后注入地中海。全长 6650公里,为世 “会挽雕弓如满月,西北望,射天狼”的词句。 掌握了尼罗河泛滥的规律,使古埃及农业迅速发展, 界上最长的河流。(尼罗河 —阿拉伯语意为“大河) 而古埃及却崇拜天狼星,因为它与尼罗河的泛滥有着密 从而创建了埃及灿烂的史前文明。 切的联系。
2016/2/29
6
3、循环波动:是时间序列呈现出的非固定长 度的周期性变动。循环波动的周期可能会持续 一段时间,但与长期趋势不同,它不是朝着单 一方向的持续变动,而是涨落相同的交替波动。 4、不规则波动:是时间序列中除去趋势、季 节变动和周期波动之后的随机波动。不规则波 动通常总是夹杂在时间序列中。
一、频域(频谱)分析方法
1906年,德国学者舒斯特创建周期图模型,考察了 1750~1900年太阳黑子序列的周期,而且把150年 间隔平均分成两阶段逐个调查,成功地解决了太阳 黑子的周期问题:太阳黑子不仅有众所周知的11年 周期,也存在其他的确定周期如4.78、8.38年,3个 周期11.125、8.38和4.78年不仅都是周期33.375年 的子周期,而且前2个周期频率的和与第3个周期的 频率相一致.此后,周期图方法成为调查各类自然 现象周期问题的基本工具,引领着时间序列频域分 析的发展。
一、频域(频谱)分析方法
原理 一个时间序列都可以分解成若干不同频率的 周期波动,即可看成各种周期扰动的叠加。 频域分析就是确定各周期的振动能量的分配 (称为“谱”或“功率谱”) ,所以也叫谱分析。 发展过程
早期的频域分析借助富里埃分析从频率角度揭示时间序列 规律 ; 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个 函数; 20世纪60年代,引入最大熵谱估计理论,进入现代谱分析 阶段 。
2016/2/29
4
时间序列的含义
按照时间顺序把随机事件变化过程量化 记录下来的一列有序数据,构成一个时 间序列。
对时间序列进行观察、研究,找出变化 发展的规律,预测它将来的趋势就是时 间序列分析。
5
2016/2/29
时间序列的组成因素:
(长期趋势,季节变动,循环波动,不规则波动)
1、长期趋势:是时间序列在长时期内呈现出 来的持续向上或持续向下的变动。 2、季节变动:是时间序列在一年内重复出现 的周期性波动。如气候条件、生产条件、节假 日或人们的风俗习惯等各种因素影响的结果。
基本概念推动着统计性时序分析的初步发展
17世纪,当帕斯卡和费马等学者以机会游戏 为基础讨论稳定的概率比率时,欧洲的商人 没有借鉴这些自然哲学家的数学方法,而是 借助不同的定量推理,计算自己在市场变化 中的利益得失。他们利用商人的独特方法分 析市场波动情形,无意中为商业实践转入统 计性时序分析奠定了基础。
基本概念推动着统计性时序分析的初步发展 19世纪的数学家正是在欣赏并应用上述金融 算术的过程中,逐步开始讨论对时间现象的 建模问题。由此产生了一些重要的概念。 这些基本概念都经历了从金融算术到政治算 术,最后进入科学算术阶段及现代化数学领 域的发展过程.
基本概念推动着统计性时序分析的初步发展
商业贸易活动中的日常变化可被抽象到人类自然规 律中,是差分方法从金融领域到政治领域的过渡。 统计学家有意识地利用上述技术进行科学调查,逐 步把这些工具用于截痕数据或随机试验,使得这些 概念进入到科学计算和现代数学的领域。 光滑过程把波动转变为振荡和偏差,由此产生了序 列相关、趋势和分解等重要思想.差分成为消除趋 势、产生平稳时间序列的基本技术,消除了趋势项 影响后的序列更适宜于用统计工具处理。
特点
理论基础扎实,操作步骤规范,分析结果易于解释, 是时间序列分析的主流方法。
27
2016/2/29
时域分析方法的分析步骤
考察观察值序列的特征; 根据序列的特征选择适当的拟合模型;
根据序列的观察数据确定模型口径(参数);
检验进而优化模型;
利用模型来推断序列其它的统计性质或预测序
列将来的发展 。
2016/2/29
7
时间序列的应用
从经济到工程技术,从医学到生物,从天文、
地理到气象,几乎在各种领域中都会遇到时间
序列。
例如:沪市日收盘指数、月交通事故死亡人数、 某地月平均气温及降雨量等等。
2016/2/29
8
1.2 时间序列的定义
随机序列: 按时间顺序排列的一组随机变 量 , X 1 , X 2 ,, X t ,
简记为 { X t , t T }或{ X t }
观察值序列: 随机序列的n个有序观察值, 称为序列长度为n的观察值序列
x1 , x2 ,, xn或{ xt , t 1,2,...,n}
2016/2/29
9
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现。 时间序列分析目的是通过观察值序列揭 示随机序列的性质。 时间序列分析手段都是通过观察值序列 的性质进行推断。
2016/2/29
28
时域分析方法的发展过程
基础阶段 核心阶段 完善阶段
2016/2/29
29
基础阶段
G.U.Yule
1927年,AR(自回归)模型 1931年,MA(平均)模型 ARMA(自回归移动平均)模型
G.T.Walker
2016/2/29
30
AR(尤尔&沃克)
尤尔的出发点是“根据时间序列数据, 统计学家为什么经常会得到一些奇怪的 相关?”,他否定了变量是时间的函数 ,而认为变量不是与时间相关,时间也 不是因果因素.以此为基础, 1927 年, 在研究沃尔夫太阳黑子数、探讨受扰动 序 列 的 周 期 时, Yule 首 创 AR(2) 模型和 AR(4)模型。1931年,沃克推广到AR(S).
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》。 提出ARIMA(p,d,q)(差分自回归滑动平均 )模型 (Box—Jenkins 模型) --经典模型。
(其中p为自回归项数,q为滑动平均项数,d为使之成为平稳 序列所做的差分阶数)。
最初,这些概念只是金融家进行贸易猜测、欺骗大 众和掩盖真相的工具。
如为应对议会调查其暂缓现金支付的行为, 银行试图在掩盖真实数值的基础上,揭示变 化模式的数据处理,最终导致了1797年指数 换算序列和1832年滑动平均序列的首次公开 ;一阶差分首先被商人和金融家用来观察价 格和数量的重大变化。
基本概念推动着统计性时序分析的初步发展
德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
2016/2/29
13
描述性时序分析
英国学者格朗特分析了持续二十余年的时 间序列数据,对伦敦教会自1604年起每周 一次发表的死亡公报中的数据进行整理, 所提出的创新思想“统计比率对于时间和 空间的稳定性”,正是19世纪商业实践 应用于平稳时间序列的理论基础和铺垫知 识,是平稳时间序列产生的背景。 ……
统计时序分析
利用数理统计原理研究分析时间序 列的方法,即一般所说的时间序列分析。 分两大类: 频域分析方法
时域分析方法
2016/2/29
20
一、频域(频谱)分析方法
时间序列分析旨在从系统模式或行为中分离随机白 噪声,通过分析数据,最终发现序列的真实过程或 现象特征,如平稳性水平、季节性长度、振幅、频 率和相位等,其中,振幅、频率和相位属于时间序 列的频域性质,对他们的研究常称为频域分析或谱 分析。
二、时域分析方法(重点)
原理
事件的发展通常都具有一定的惯性,即序列值 之间存在着一定的相关关系,这种相关关系通常具 有某种统计规律。
目的
确定序列在不同时刻取值的相互依赖关系,即 找出序列值之间相关关系的统计规律,并拟合出适 当的数学模型来描述这种规律,进而利用这个拟合 模型预测序列未来的趋势。
描述性时序分析
早期时序分析,主要依赖于对数据的直观比 较或者是简单的绘图观测.随着研究领域的 逐渐拓宽和研究问题的复杂化,这种单纯的 描述性分析不能使研究重心从对表面现象的总结逐 渐转移到分析随机序列内在本质的相关关系 上,从而开辟了统计时序分析的时代。
章节安排
第一章 时间序列分析简介
第二章 时间序列的预处理 第三章 平稳时间序列分析 第四章 非平稳序列的确定性分析 第五章 非平稳序列的随机分析