智能制造五大模式专题培训课件
合集下载
智能制造培训课件

远程监控与故障诊断
通过引入远程监控和故障诊断系统,实现了设备状态的实时监控和 故障预警。
案例三:某电子制造企业智能制造实践
精益生产管理
该企业采用精益生产管理理念,通过消除浪费、提高效率等方式降 低成本。
智能化生产线
通过引入先进的自动化生产线和机器人,实现了电子产品的自动化 生产和组装。
供应链协同
通过与供应商建立紧密的合作关系,实现了供应链的协同管理和优化 。
感谢您的观看
包括机器人技术、自动化 设备、自动化生产线等, 实现了制造过程的自动化 和高效化。
人工智能技术
包括机器学习、深度学习 、自然语言处理等,为智 能制造提供了更加智能化 的决策和控制能力。
智能制造的应用领域
汽车制造
智能制造在汽车制造领域的应用包括 自动化生产线、机器人焊接、智能化 检测等,提高了生产效率和产品质量 。
机器学习与深度学习算法
介绍常见的机器学习与深度学习算法,如线性回 归、神经网络等,并解释其在工业中的应用。
3
人工智能伦理与法律问题
分析人工智能技术在工业应用中可能引发的伦理 与法律问题。
工业物联网技术
物联网在智能制造中的应用
列举并解释物联网技术在智能制造中的各种应用,如设备远程监控、实时数据 处理等。
定ቤተ መጻሕፍቲ ባይዱ化生产模式的实施要点
建立灵活的生产流程,加强供应链管理,提高生产线的柔 性,加强与客户的沟通与协作。
精益生产模式
01
精益生产模式概述
精益生产模式是一种以消除浪费、提高效率为目标的生产模式,通过持
续改进和优化生产流程,实现高效、低成本的生产。
02
精益生产模式的优势
能够降低生产成本,提高产品质量,减少浪费,提高企业的盈利能力。
通过引入远程监控和故障诊断系统,实现了设备状态的实时监控和 故障预警。
案例三:某电子制造企业智能制造实践
精益生产管理
该企业采用精益生产管理理念,通过消除浪费、提高效率等方式降 低成本。
智能化生产线
通过引入先进的自动化生产线和机器人,实现了电子产品的自动化 生产和组装。
供应链协同
通过与供应商建立紧密的合作关系,实现了供应链的协同管理和优化 。
感谢您的观看
包括机器人技术、自动化 设备、自动化生产线等, 实现了制造过程的自动化 和高效化。
人工智能技术
包括机器学习、深度学习 、自然语言处理等,为智 能制造提供了更加智能化 的决策和控制能力。
智能制造的应用领域
汽车制造
智能制造在汽车制造领域的应用包括 自动化生产线、机器人焊接、智能化 检测等,提高了生产效率和产品质量 。
机器学习与深度学习算法
介绍常见的机器学习与深度学习算法,如线性回 归、神经网络等,并解释其在工业中的应用。
3
人工智能伦理与法律问题
分析人工智能技术在工业应用中可能引发的伦理 与法律问题。
工业物联网技术
物联网在智能制造中的应用
列举并解释物联网技术在智能制造中的各种应用,如设备远程监控、实时数据 处理等。
定ቤተ መጻሕፍቲ ባይዱ化生产模式的实施要点
建立灵活的生产流程,加强供应链管理,提高生产线的柔 性,加强与客户的沟通与协作。
精益生产模式
01
精益生产模式概述
精益生产模式是一种以消除浪费、提高效率为目标的生产模式,通过持
续改进和优化生产流程,实现高效、低成本的生产。
02
精益生产模式的优势
能够降低生产成本,提高产品质量,减少浪费,提高企业的盈利能力。
智能制造培训课件

特点
具有自感知、自决策、自执行、自适应、自学习的特性,能够实现精细化、个 性化、柔性化的生产,提高生产效率和产品质量,降低能耗和资源消耗。
智能制造的发展历程
自动化阶段
数字化阶段
20世纪中叶,制造业开始广泛应用自动化 技术,实现生产线上的自动化生产。
随着计算机技术的普及,制造业开始实现 数字化转型,通过计算机技术对生产过程 进行数字化建模和仿真。
智能服务的实践案例
某机械企业远程智能服务
输入 标题
案例描述
该企业通过建立远程智能服务平台,实现了对客户的 设备进行实时监测、故障诊断和远程维修,提高了客 户设备的运行效率和降低了维修成本。
案例名称
案例分析
智能服务是智能制造的重要应用场景之一,通过智能 化服务可以大幅提高服务的响应速度和客户满意度。
自动化与智能化
智能制造将不断提升自动化和智能化 水平,减少人工干预,提高生产效率 和产品质量。
智能制造面临的挑战
技术瓶颈
智能制造技术的发展仍面临一些技术瓶颈,如传感器、控制器、 工业软件等关键技术的研发和应用仍需加强。
数据安全与隐私保护
智能制造过程中涉及大量数据采集、传输和处理,如何保障数据安 全和隐私保护成为亟待解决的问题。
03
智能制造的实践案例
智能工厂的实践案例
案例名称
某汽车制造企业智能工厂
案例描述
该企业通过引入先进的工业互联网技术和智能装备,实现了生产线的 智能化升级,提高了生产效率和产品质量。
案例分析
该案例的成功之处在于将智能制造技术与实际生产场景相结合,实现 了生产过程的数字化、智能化和柔性化。
案例总结
智能工厂是智能制造的核心,通过智能化升级可以大幅提高生产效率 和降低成本。
具有自感知、自决策、自执行、自适应、自学习的特性,能够实现精细化、个 性化、柔性化的生产,提高生产效率和产品质量,降低能耗和资源消耗。
智能制造的发展历程
自动化阶段
数字化阶段
20世纪中叶,制造业开始广泛应用自动化 技术,实现生产线上的自动化生产。
随着计算机技术的普及,制造业开始实现 数字化转型,通过计算机技术对生产过程 进行数字化建模和仿真。
智能服务的实践案例
某机械企业远程智能服务
输入 标题
案例描述
该企业通过建立远程智能服务平台,实现了对客户的 设备进行实时监测、故障诊断和远程维修,提高了客 户设备的运行效率和降低了维修成本。
案例名称
案例分析
智能服务是智能制造的重要应用场景之一,通过智能 化服务可以大幅提高服务的响应速度和客户满意度。
自动化与智能化
智能制造将不断提升自动化和智能化 水平,减少人工干预,提高生产效率 和产品质量。
智能制造面临的挑战
技术瓶颈
智能制造技术的发展仍面临一些技术瓶颈,如传感器、控制器、 工业软件等关键技术的研发和应用仍需加强。
数据安全与隐私保护
智能制造过程中涉及大量数据采集、传输和处理,如何保障数据安 全和隐私保护成为亟待解决的问题。
03
智能制造的实践案例
智能工厂的实践案例
案例名称
某汽车制造企业智能工厂
案例描述
该企业通过引入先进的工业互联网技术和智能装备,实现了生产线的 智能化升级,提高了生产效率和产品质量。
案例分析
该案例的成功之处在于将智能制造技术与实际生产场景相结合,实现 了生产过程的数字化、智能化和柔性化。
案例总结
智能工厂是智能制造的核心,通过智能化升级可以大幅提高生产效率 和降低成本。
智能制造培训课件ppt

产品智能化:将传感器、控制器 和执行器等智能组件集成到产品 中,实现产品的智能化和自主控 制。
个性化定制:利用数字化技术和 定制化平台,实现产品的个性化 定制,满足不同用户的特殊需求 。
智能服务的创新与实施
总结词:智能服务是 智能制造的重要组成 部分,通过创新的服 务模式和技术手段, 提高客户满意度和服 务质量。
协同管理:实现供应商、制造商、分销商等各方的信息 共享和协同管理,提高整个供应链的效率和灵活性。
智能产品的设计与生产
详细描述
产品模块化:将产品划分为多个 模块,每个模块具有独立的功能 和接口,便于产品的升级和维护 。
总结词:智能产品的设计和生产 需要关注产品的智能化、模块化 和定制化等方面,以满足市场需 求的多样化和个性化。
03
智能制造的实践案例
智能工厂的构建与管理
在此添加您的文本17字
总结词:智能工厂是智能制造的核心,构建和管理智能工 厂需要关注工厂布局、设备连接、数据采集和智能化决策 等方面。
在此添加您的文本16字
详细描述
在此添加您的文本16字
工厂布局:合理规划生产线、仓库、物流通道等空间布局 ,提高生产效率和物料流动性。
加强技术研发和创新,突破关键 技术瓶颈,推动智能制造技术的
持续发展。
数据安全与隐私保护
数据加密与安全传输
采用数据加密技术和安全 传输协议,保证数据在传 输过程中的安全性和保密
性。
数据备份与恢复
建立完善的数据备份和恢 复机制,防止数据丢失和
损坏。
隐私保护
制定严格的隐私保护政策 ,保护用户个人信息和敏
总结词
人工智能与机器学习技术为智能制造提供强大的数据处理和学习能力,支持自动 化决策和优化。
智能制造培训ppt课件

智能制造能够将设计与制造紧密结合 ,支持产品创新和设计优化,提高产 品的竞争力和附加值。
面临的挑战与解决方案
01
技术实施难度
智能制造需要先进的技术支持和系统集成,实施难度较大。解决方案:
加强技术研发和人才培养,提高技术成熟度和可实施性。
02 03
数据安全与隐私保护
智能制造涉及大量数据采集、传输和存储,存在数据安全和隐私保护的 风险。解决方案:建立完善的数据安全和隐私保护机制,确保数据的安 全性和合规性。
工业互联网
01
工业互联网是智能制造的基础, 通过互联网技术实现设备连接、 数据交互和远程控制等功能,提 升生产效率和灵活性。
02
工业互联网平台能够汇聚设备、 软件、数据等资源,提供数据分 析、远程监控、预测性维护等服 务,助力企业数字化转型。
工业大数据
工业大数据是智能制造的核心,通过 对海量数据的采集、存储、分析和可 视化,挖掘潜在价值,优化生产过程 。
绿色制造的可持续发展
绿色制造是智能制造的重要发 展方向,旨在实现生产过程的 环保和可持续发展。
企业需要采用环保材料、节能 技术和清洁能源,降低生产过 程中的能耗和排放。
绿色制造还需要建立完善的环 保管理体系,确保企业生产活 动的合规性和可持续性。
全球供应链的协同发展
随着全球化进程的加速,智能制 造需要实现全球供应链的协同发
特点
具有自感知、自决策、自执行、自适 应、自学习的特性,能够实现精细化 、动态化、智能化的生产方式,提高 生产效率、降低能耗、提升质量。
智能制造的发展历程
自动化阶段
数字化阶段
20世纪中叶,制造业开始引入自动化技术 ,实现生产线上的自动化生产和检测。
20世纪末至21世纪初,制造业开始实现数 字化转型,通过计算机技术实现生产过程 的数字化控制和信息管理。
智能制造培训ppt

10/12/2024
低成本、高质量
智能管控技术实现精益生产。
绿色生产、低能耗
减少资源浪费,降低生产能耗。
数字化转型、新增值 服务型制造、智能制造服务商
16
一 为什么要智能制造
二 智能制造是什么
目 三 智能制造(案例分享)
录 四 相机原理
五 自由分组组合尖刀队
10/12/2024
17
3.1 连线检测喷码机
10/12/2024
12
2.3 智能车间标准
智能车间
智 能 装 备 应 用
车 间 设 备 联 网
生 产 过 程 实 时 调 度
物 料 配 送 自 动 化
产 品 信 息 可 追 溯
车 间 环 境 智 能 监 控
资 源 能 源 消 耗 智 能 监 控
设 计 开 发 和 生 产 联 动 协 同
售 后 服 务 智 能 化
AB级
10/12/2024
18
3.2 分拣包装机
1、用于片料产品的连线分拣包装;
2、可识别标识,区分良品与不良品,良品包装;
3、可自动导正产品,以便于放入吸塑盒内;
4、包装速度,120PCS/MIN。
5、适用产品规格70*70范围
物料 物料精度 检测精度 效率 成品良率
二维码
料帯 产品
±0.05 ±0.05
10/12/2024
制造环境 变化趋势
➢以技术为中心转向以人为中心 ➢规模制造转向快速响应制造 ➢大批量生产转向定制化生产
3
一、项目简介
10/12/2024
第四次工业革命 智
智能化工厂
能
智能装备及信息通信 化
第三次工业革命
智能制造培训ppt课件

协同层
实现企业之间的协同研发、协同制造和协同服务等,构 建企业间的协同创新平台和产业链协同平台。
信息物理系统(CPS)
CPS定义
信息物理系统是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computer、 Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感 知、动态控制和信息服务。
拓展数字化服务
通过开发定制化软件、构建数字化服务平台等方 式,为客户提供个性化、智能化的产品和服务。
政策环境与市场机遇分析
政策环境分析
01
深入研究国家和地方政府关于智能制造、数字化转型的相关政
策,了解政策导向和支持措施。
市场机遇挖掘
02
关注行业发展趋势和市场需求变化,挖掘智能制造领域的市场
机遇和创新点。
可编辑和可优化。
仿真技术
通过数学建模和计算机模拟,预测 产品的性能、制造过程和生产效率 ,减少实际生产中的试错成本。
数字化双胞胎
结合数字化设计和仿真技术,构建 与实际产品相对应的虚拟模型,实 现产品设计、生产和服务的全生命 周期管理。
工业机器人与自动化技术
01
02
03
工业机器人
具有自动化、高精度、高 效率等特点,可广泛应用 于焊接、装配、检测等生 产环节。
应用案例
如设备故障预测APP、生 产优化APP等,提高设备 运行效率、降低生产成本 。
边缘计算与实时数据处理
边缘计算定义
在设备端或网络边缘进行计算和 数据处理的技术,降低数据传输
延迟和带宽需求。
实时数据处理
通过边缘计算技术对实时数据进 行处理和分析,提取有价值的信
息。
应用场景
实现企业之间的协同研发、协同制造和协同服务等,构 建企业间的协同创新平台和产业链协同平台。
信息物理系统(CPS)
CPS定义
信息物理系统是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computer、 Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感 知、动态控制和信息服务。
拓展数字化服务
通过开发定制化软件、构建数字化服务平台等方 式,为客户提供个性化、智能化的产品和服务。
政策环境与市场机遇分析
政策环境分析
01
深入研究国家和地方政府关于智能制造、数字化转型的相关政
策,了解政策导向和支持措施。
市场机遇挖掘
02
关注行业发展趋势和市场需求变化,挖掘智能制造领域的市场
机遇和创新点。
可编辑和可优化。
仿真技术
通过数学建模和计算机模拟,预测 产品的性能、制造过程和生产效率 ,减少实际生产中的试错成本。
数字化双胞胎
结合数字化设计和仿真技术,构建 与实际产品相对应的虚拟模型,实 现产品设计、生产和服务的全生命 周期管理。
工业机器人与自动化技术
01
02
03
工业机器人
具有自动化、高精度、高 效率等特点,可广泛应用 于焊接、装配、检测等生 产环节。
应用案例
如设备故障预测APP、生 产优化APP等,提高设备 运行效率、降低生产成本 。
边缘计算与实时数据处理
边缘计算定义
在设备端或网络边缘进行计算和 数据处理的技术,降低数据传输
延迟和带宽需求。
实时数据处理
通过边缘计算技术对实时数据进 行处理和分析,提取有价值的信
息。
应用场景
智能制造培训课件ppt

利用机器学习和深度学习技术对工业数据进行学习,提取特征并 建立模型。
预测性维护
通过分析设备运行数据,预测设备可能出现的故障,提前进行维 护和更换。
智能优化
利用人工智能技术对生产过程进行优化,提高生产效率和产品质 量。
工业物联网技术
01
02
03
设备标识与跟踪
通过物联网技课件
汇报人:可编辑
2023-12-22
目录
Contents
• 智能制造概述 • 智能制造技术体系 • 智能制造生产模式 • 智能制造实施路径 • 智能制造面临的挑战与对策 • 智能制造未来发展趋势与展望
01
智能制造概述
定义与发展
定义
智能制造是一种先进的制造模式,通 过集成信息化和工业化,实现制造过 程的智能化和自动化。
对策
加强人才培养和引进,建立完善的人才激励机制;推动产学研合作,提高人才培 养质量;加强人才交流和合作,促进人才流动和共享。
06
智能制造未来发展趋势与展 望
数字化转型趋势与展望
数字化转型是智能制造的核心
随着互联网、大数据、云计算等技术的不断发展,数字化转型已经成为智能制造的核心趋 势。
数字化转型提升生产效率
加强教育培训
加强智能制造教育培训 ,提高员工的专业技能 和综合素质。
建立激励机制
建立激励机制,鼓励员 工积极参与智能制造工 作,提高工作积极性。
05
智能制造面临的挑战与对策
技术创新挑战与对策
01
技术更新迅速
智能制造技术不断推陈出新,企业需要跟上技术发展步伐,及时更新设
备和技术。
02
技术应用难题
智能制造技术在实际应用中可能遇到各种技术难题,如设备兼容性、数
预测性维护
通过分析设备运行数据,预测设备可能出现的故障,提前进行维 护和更换。
智能优化
利用人工智能技术对生产过程进行优化,提高生产效率和产品质 量。
工业物联网技术
01
02
03
设备标识与跟踪
通过物联网技课件
汇报人:可编辑
2023-12-22
目录
Contents
• 智能制造概述 • 智能制造技术体系 • 智能制造生产模式 • 智能制造实施路径 • 智能制造面临的挑战与对策 • 智能制造未来发展趋势与展望
01
智能制造概述
定义与发展
定义
智能制造是一种先进的制造模式,通 过集成信息化和工业化,实现制造过 程的智能化和自动化。
对策
加强人才培养和引进,建立完善的人才激励机制;推动产学研合作,提高人才培 养质量;加强人才交流和合作,促进人才流动和共享。
06
智能制造未来发展趋势与展 望
数字化转型趋势与展望
数字化转型是智能制造的核心
随着互联网、大数据、云计算等技术的不断发展,数字化转型已经成为智能制造的核心趋 势。
数字化转型提升生产效率
加强教育培训
加强智能制造教育培训 ,提高员工的专业技能 和综合素质。
建立激励机制
建立激励机制,鼓励员 工积极参与智能制造工 作,提高工作积极性。
05
智能制造面临的挑战与对策
技术创新挑战与对策
01
技术更新迅速
智能制造技术不断推陈出新,企业需要跟上技术发展步伐,及时更新设
备和技术。
02
技术应用难题
智能制造技术在实际应用中可能遇到各种技术难题,如设备兼容性、数
智能工厂和智能制造专题培训课件pptx

智能工厂和智能制造的核心技 术和应用场景
智能工厂和智能制造在企业中 的实际应用和案例分享
学员互动和提问环节
下一步工作计划和目标设定
01
制定更加具体的培训计 划和方案,结合学员反 馈和需求进行优化
02
加强与企业的合作和交 流,开展更加深入的调 研和实践,提升培训质 量和效果
03
探索新的培训方式和手 段,例如在线培训、虚 拟仿真等,满足不同学 员的需求
关键技术与应用领域
关键技术
智能工厂的关键技术包括自动化技术、信息技术、物联网技术、大数据技术、人工智能技术等。这些技术的应用 能够实现生产过程的自动化、信息化和智能化,提高生产效率和质量。
应用领域
智能工厂的应用领域非常广泛,包括汽车制造、机械制造、电子制造、化工制造、食品制造等。在这些领域中, 智能工厂能够通过自动化和智能化技术提高生产效率和质量,降低成本和资源消耗,提高企业的竞争力和可持续 发展能力。
考虑实施成本和经济效 益,确保实施策略的经
济性。
可持续性
注重环境保护和资源利 用,确保实施策略的可
持续性。
路径选择及实施步骤分解
路径选择
根据企业实际情况和目标,选择合适的智能制造路径,如数字化转型、自动化升级、智能化改造等。
实施步骤分解
将实施过程分解为多个具体步骤,包括需求分析、方案设计、系统集成、测试运行、优化改进等。
02
智能制造核心概念与技术
智能制造定义与特点
智能制造定义
智能制造是一种先进的制造模式 ,通过集成信息化和工业化技术 ,实现制造过程的智能化和高效 化。
智能制造特点
高度自动化、信息化、网络化、 个性化、柔性化、智能化。
关键技术体系与架构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型智能制造模式——要素条件
1. 车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实 现规划、生产、运营全流程数字化管理。
2. 应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试 验进行验证与优化。建立产品数据管理系统(PDM),实现产品数据的集成管理。
3. 实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智 能物流与仓储装备等关键技术装备在生产管控中的互联互通与高度集成。
4. 建立生产过程数据采集和分析系统,充分采集生产进度、现场操作、质量检验、设 备状态、物料传送等生产现场数据,并实现可视化管理。
离散型智能制造模式——要素条件
制造模式的意义:制造过程的运行、制造系统的体系结构以
及制造系统的优化管理与控制等均受到制造模式的制约,必须遵循制造模式 确定的规律。因此,对制造模式进行深入研究,为制造系统建立先进的制造 模式具有重要意义。
新模式1:离散型智能制造
子问题1.1 离散型智能制造模式概念和特点? 子问题1.2 离散型智能制造模式目标和要素条件?
。
2015 智能制造试点示范
智能工厂
以智能工厂为代表的流程制造试点示范
数字化车间
以数字化车间为代表的离散制造试点示范
两化
智
智能装备
深度
以信息技术深度嵌入为代表智能装备和产品试点示范
能
融合
制
的主
造
智能新业态
攻方
个性化定制、网络协同为代表的智能制造新业态新模式
向
智能化管理
以物流能源管理智慧化为代表的智能化管理试点示范
智能制造五大模式
中国制造2025的主攻方向
克强总理视察工信部重点关注工作内容
装备制造业智能制造经验交流
智能制造的内涵
智能制造的功能
信息深度自感知
准确感知企业、车间 、系统、设备、产品 的实施运行状况
精准控制自执行
执行决策,对设备状 态、车间和生产线的
计划作出调整。
智慧优化自决策
对实时运行状态数据 进行识别、分析、处 理,根据分析结果, 自动做出判断与选择
5. 建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效的 全过程闭环管理。建立企业资源计划系统(ERP),实现供应链、物流、成本等企业 经营管理的优化。
6. 建立工厂内部互联互通网络架构,实现设计、工艺、制造、检验、物流等制造过 程各环节之间,以及与制造执行系统(MES)和企业资源计划系统(ERP)的高效协 同与集成,建立全生命周期产品信息统一平台。
智能化服务
在线监测、远程诊断、云服务代表智能服务试点示范
ቤተ መጻሕፍቲ ባይዱ
《智能制造试点示范案例汇编 》
编委会主任: 工业与信息化部苗圩部长 主 编: 工业与信息化部辛国斌副部长 46家企业参与。
2%2%2%2%2%2%2% 2% 2% 4%
17%
4% 4% 4%
4% 4%
4% 7%
7%
11% 9%
山东省 广东省 北京市 辽宁省 上海市 湖南省 江苏省 江西省 内蒙古自治区 陕西省 新疆维吾尔自治区 浙江省 安徽省 广西壮族自治区 贵州省 海南省 湖北省 宁夏回族自治区 山西省 四川省 重庆市
7. 建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安 全保障能力。建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
新模式1:离散型智能制造
子问题1.3 离散型智能制造模式问题和方法? 子问题1.4 离散型智能制造模式转型建议?
离散型制造模式——问题
离散型制造企业多品种小批量的制造方式,使得生产、物流、质量管理的复杂性日益提高,面临的生产管 理方面的主要问题有:
离散型制造模式——概念
离散型制造是指生产过程中基本上没有发生物质改变, 只是物料的形状和组合发生改变,即产品是由各种物料装配 而成,并且产品与所需物料之间有确定的数量比例,如一个 产品有多少个部件,一个部件有多少个零件,这些物料不能 多也不能少。按通常行业划分属于离散行业的典型行业有机 械制造业、汽车制造业、家电制造业等等。
离散型制造模式——特点
离散型制造型企业的生产特点明显区别于 流程型制造企业,主要表现为:
• 生产模式——按定单生产、按库存生产; • 批量特点——多品种、小批量或单件生产; • 产品的质量和生产率很大程度上依赖于工人
离散型智能制造模式——目标
在机械、航空、航天、汽车、船舶、轻工、服装、医 疗器械、电子信息等离散制造领域,开展智能车间/工厂的 集成创新与应用示范,推进数字化设计、装备智能化升级 、工艺流程优化、精益生产、可视化管理、质量控制与追 溯、智能物流等试点应用,推动企业全业务流程智能化整 合。
(3)在制品管理困难。由于零件品种多,工艺路线长,给人工管理在制品带来诸多困难,现场生产情况得
不到及时反馈。
(4)质量管理采取事后检验为主的管理方式。废品率得不到有效控制。
•由于我国离散制造领域的智能制造渗透较低,因此离散型智能制造系统解决方案需求缺口较大。
离散型智能制造——方法
在机械、汽车、航空、船舶、轻工、家用电器和电子信息等离散制造领域,企业发 展智能制造的核心目的是拓展产品价值空间,侧重从单台设备自动化和产品智能化入 手,基于生产效率和产品效能的提升实现价值增长。因此其智能工厂建设内容为:
(1)生产准备周期长。由于制造资源优化调度手段落后,导致生产准备周期相对过长,在单件小批量的生
产模式下,生产准备时间时常大于加工时间,造成设备的极大浪费。
(2)生产计划协调性差,作业调度困难。生产作业计划主要依靠调度员经验制定,计划协调性不好,导
致设备利用率低,设备效能得不到充分发挥;任务执行进度难以监控,物料状态难以跟踪,任务拖期/ 赶工频 繁发生,紧急插单普遍、生产过程不确定性多,导致作业计划安排赶不上变化,计划任务执行失控现象严重。
试点示范+引领,前四个省份占比过半
实施智能制造的效果——“两提高,三降低”
5种智能制造新模式
离散型智能制造
流程型智能制造 智
能
制
造
网络协同制造
新
模
式
大规模个性化定制
远程运维服务
制造模式 核心问题:什么是
?
模式:指事物的标准样式;
制造模式:是指企业体制、经营、管理、生产组织和技术系统的形
态和运作的模式。从更广义的角度看,制造模式就是一种有关制造过程和制 造系统建立和运行的哲理和指导思想。现代制造过程虽然比较复杂,但它必 须按照一定的规律运行,确定制造过程运行规律的就是制造模式;