一题多解与一题多变知识讲解

合集下载

浅谈初中《几何》习题一题多解与多变

浅谈初中《几何》习题一题多解与多变

浅谈初中《几何》习题一题多解与多变当前学校教育改革的重点之一,就是实施素质教育,让学生具备更强的科学素养,着重发展学生的独立思考、分析和解决问题的能力,使其不断地拓宽认知,进行创造性思维的培养。

而学科数学,更是教育改革必不可少的学科,针对不同年级的学生,设计合适的、有效的教学内容与形式,是一项重要的工作。

本文就以学科数学几何中的一个典型习题“一题多解与多变”为研究对象,探讨这一习题的学习价值,与初中学生学习几何数学的深入性、逻辑性和创新性。

一、一题多解及其学习意义一题多解是指,某一问题接受着不同的解决方式,这样的习题有可能会有许多不同的结果,但这些结果依然正确无误。

学习数学的关键是搞清楚问题本身是什么这里,也就是在一个特定的几何图形中,求解某个特定的元素。

如果能够发现一个问题有多种解法,意味着学生正在思考、联想,它们有可能想出新的解法,这样的习题就有助于培养学生的创新能力。

二、一题多变及其学习意义一题多变指的是一道数学习题有多种变形,不只是改变原有问题的内容,而是根据原题的各个环节的条件变化,将该题的变化体现在这个新的习题上,新的习题和原题拥有同样的解法,但是有不同的答案。

如果学生能在解题过程中发现一题有多变,并能灵活运用多种方法把握不同情况、不同条件下的答案,这将有助于学生在解题中学习数学的逻辑性及深度,从而更好的处理复杂的数学问题。

三、适应初中学生的教学模式要想培养学生的独立思考、分析和解决问题的能力,应采取针对性的教学模式。

在几何习题中,能给学生更多的探究机会,鼓励他们更主动地发现规律,解题思路更加清晰。

教师在提问、引导学生探究过程中,可以发挥出归纳、说明、示范等方式,对学生异思维技能,如设计思维、模式匹配、解决冲突等的培养,具有重要的作用。

本文再次强调,一题多解与多变的几何习题,有助于培养学生的独立思考、分析和解决问题的能力,提高学生的科学素养,是改革初中数学教学的重要内容之一。

通过改进教学方式,让学生发现习题的多样性和多变,对于学生的学习有很大的帮助,以此来激发学生进行更多创新性和分析性的思维、解题,从而提高学生的学习能力。

圆的一题多解一题多变

圆的一题多解一题多变

亲爱的同学们:数学常常一题多解,在多解的探索过程中,犹如一次历险记,本期我们将通过答案的展示再次一起去感受题目的构造美、图形美、因果美、推理美、创造美、对称美!已知在圆O中,A为优弧BC的中点,且AB=BC,E为弧BC上的一点,求AE=BE+CE.【分析】本题知识点(1)等边三角形和全等的相关知识;(2)利用截长补短的解题方法.1.一题多解(1)利用截长方法的方法解题解析:在AE上取点F,使得AF=BE,(AFC BECAF BEFAC EBCAC BC∆∆=⎧⎪∠=∠⎨⎪=⎩在和中作法可得)(同弧所对的圆周角相等)(等边三角形边相等)AFC∆≌BEC∆(SAS)∴CF=CE60AEC ABC∠=∠=︒∴ECF∆是等边三角形∴EF=ECAE=AF+EF∴AE=BE+CE(2)利用补短的方法解题解析:延长EB至点F,使BF=EC,BF ACEB C(ABF ACE ABEB AAF EA C∆∆=⎧⎪∠=∠∠⎨⎪=⎩在和中作法可得)(同角的补角相等)(等边三角形边相等)ABF∆≌ACE∆(SAS)FE∴BAF=CAE ∠∠ AE=AFCAE+EAB=60∠∠︒∴+EAB=60BAF ∠∠︒ ∴AFE ∆是等边三角形 ∴AE=EF=BE+BF 即AE=BE+CE(3)利用旋转的方法解题解析:将ACE ∆顺时针旋转60︒,则ABF ∆≌ACE ∆∴AEF ∆是等边三角形,ACE ABF ∠=∠+ABE=180ACE ∠∠︒(圆内接四边形对角互补)∴BF+ABE=180A ∠∠︒ 即点F 、B 、E 三点共线 ∴AE=EB+BF 即:AE=EB+EC(4)利用平行的方法解题解析:过点C 作AE 的平行线CF 交圆于点F ,连接AF.(5)利用托勒密定理解题解析:利用托勒密定理可得+EC AB=AE BC BE AC ⋅⋅⋅ ABC ∆是等边三角形∴AB=AC=BC ∴BE+EC=AE九年级版ECF//AEFCE+18060+CFB=180CE//FGCEGF BEG AFG BE=EG,CF=GF=AG BF+CF=GE+AG=AECEA BFC CEA FCE ∴∠∠=︒∠==︒∴∠∠︒∴∴∆∆∴∴即四边形是平行四边形和是等边三角形F。

新 2019-2020 一题多解、一题多变、一题多问 述职

新 2019-2020 一题多解、一题多变、一题多问 述职

一题多解、一题多变、一题多问这几年的教学中我一直在思考一个问题:学生掌握了知识点,但做题的过程中为什么总是犯错误?慢慢地我意识到仅靠课堂上以及学习辅导几道基础练习,只能是“纸上谈兵”,要通过周周清、周末作业来将理论知识充分实践应用,因此在习题教学中我注意以下三个教学策略:一题多解、一题多变、一题多问。

一、“一题多解”“一题多解”是指引导学生就不同的角度、不同的观点审视分析同一来源材料中的数量关系,用不同解法求得相同结果。

“一题多解”可以帮助学生改变思维的方向,调节思维角度,从狭窄的思维模式中解放出来。

其次提供更多机会加深学生对各种解法的认识,进而对已有的信息进行分析、归纳、整理、储存,形成顿悟。

还可以提供分析比较的机会,提高解决问题的能力。

例题1:一篇作文有3268个字,小张每分钟能打76个字,他45分钟能打完这篇作文吗?方法一:比较工作总量45分钟的工作总量:76×45=3420(个)比较总量:3268个<3420个,能方法二:比较工作时间小张打完3268个字需要的时间:3268÷76=43(分)比较时间:45分>43分,能例题2:《格林童话》每本21元,“六一”优惠买五本送一本。

黄老师带300元钱,最多可以买多少本?方法一:买完再送300元能买几本:300÷21=14(本)……6(元)14本里有几个5:14÷5=2(组)……4(本)最多买几本:14+2=16(本)方法二:捆绑法1组有几本:5+1=6(本)1组的单价:21×5=105(元)300元能买几组:300÷105=2(组)……90(元)剩下48元还能买几本:90÷21=4(本)……6(元)最多买几本:2×6+4=12+4=16(本)通过一题多解,训练学生对数学思想和数学方法的娴熟运用,有利于提高学生学习的主动性,启发学生思维,开阔视野,培养学生全方位的思考问题、分析问题的能力,发展创造性思维。

一题多问、一题多变、一题多解的运用与思考

一题多问、一题多变、一题多解的运用与思考

一题多问、一题多变、一题多解的运用与思考题目:如何使用人工智能来保护环境?一题多问:1. 人工智能有什么样的作用,可以帮助我们保护环境吗?2. 运用人工智能技术如何能够保护环境?3. 人工智能技术是怎么应用于环境保护方面的?一题多变:1. 如何利用人工智能技术来减少环境污染?2. 人工智能在环境管理中有什么作用?3. 如何利用人工智能来改善环境质量?一题多解:对于如何使用人工智能来保护环境这一问题,有不同的应用方法。

首先,人工智能可以帮助我们准确快速的监测环境变化,这样就可以及时发现污染源,减少环境污染。

其次,人工智能技术可以支持环境保护组织、政府部门精确及时的实施环境治理项目,这样可以更好更快的改善环境质量。

此外,人工智能技术还可以提供减少水污染的策略,以及在城市规划上的改善措施,从而减少城市污染。

通过以上几个方面,我们可以看出人工智能在环境保护方面具有十分重要的作用,它可以帮助我们及时有效地管控环境污染,更好地保护我们的生态环境。

另外,人工智能还可以帮助我们减少废弃物和食品浪费。

例如,人工智能技术可以分析消费者的购买偏好,并预测未来消费趋势,这样可以减少废弃物和食品在供应链中的浪费。

而且人工智能技术可以实时监控垃圾和环境的变化,及时采取必要的应对措施,这样可以有效地减少垃圾污染环境。

同时,利用人工智能技术建立虚拟示范园,可以加快社会的环保意识的形成,从而让更多的人了解环境保护的重要性。

此外,人工智能技术还可以帮助拆解复杂的环境随机性,能够更好地识别环境变化,并提供有效的解决方案。

未来,人工智能将继续作为重要的手段,来充分应用技术优势,以便提高实现环境的可持续发展的水平。

通过运用人工智能技术,我们可以快速、有效地实现环境保护的目标,构建一个可持续发展、美丽宜居的社会。

当前,人工智能的发展正在加快,正逐步为环境保护作出巨大贡献。

以人工智能技术为基础的环境监测系统,可以预测环境变化,帮助政府优先处理环境问题,这也是环境保护的重要手段。

在习题教学中注意一题多解、一题多变、 一题多问

在习题教学中注意一题多解、一题多变、 一题多问

在习题教学中注意一题多解、一题多变、一题多问
1 “ 一题多解” 是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。

它有利于培养学生辨证思维能力,加深对概念、规律的理解和应用,提高学生的应变能力,启迪学生的发散性思维。

在物理解题过程中,我们可以通过“ 一题多解” 训练拓宽自己的思路,在遇到新的问题时能顺利挖掘出物理量间的相互关系和物理规律间的内在联系,培养求异思维,使自己的思维具有流畅性。

2 注意一题多变诱导学生思路
在习题课中的“ 一题多变” 是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,使知识进一步精化的教学方法.思维的变通性是指摆脱定势的消极影响,不局限于问题的某一方面,能够随机应变,举一反三,触类旁通。

在二轮复习的解题过程中主动出击,运用变式,通过“ 一题多变” 演绎问题的产生过程,能够摆脱由生活习惯中原有思维方式和平时解题所带来的思维定势,使思维具有变通性。

3 “ 一题多问” 培养思维的严密性
思维的严密性,主要表现在通过细致缜密的分析,从错综复杂的联系与关系中认识事物的本质。

在题目解完后再通过“ 一题多问” 自己考虑问题更全面细致,让自己的思维具有严密性。

这种“ 多题归一” 的方法还可以培养思维的概括性。

思维的概括性是指思维能够反映一类事物的共同的本质的特征,以及事物之间的本质联系和规律。

许多物理习题具有物理过程、规律和性质类似的问题,它们间只有不同程度的量的差异而无质的区别,在复习过程中做过一定量的习题后进行反思,通过“ 多题归一” ,进行有的放矢的精解和拓宽,可以使思维具有概括性。

一题多解与一题多变

一题多解与一题多变

一题多解与一题多变一题多解:开拓学生解题思路,沉淀学生的严谨思维;一题多变:引导学生知识联系,培养学生的发散思维。

在高中数学教学中,对例题的讲解,要做到一题多解和一题多变。

也就是先要做到从不同的角度进行分析,用不同的方法来解决问题,这样能够开拓学生的解题思路,培养学生分析问题和解决问题的能力。

还要进行拓展廷伸,使学生掌握知识间的联系,培养学生的发散思维。

问题一:设AB 是抛物线px y 22=的弦,O 为原点,若OA ⊥OB ,则直线AB 恒过定点。

证明之。

分析:1、若过定点,则定点应在何处?——根据对称性,应可猜想到定点应在x 轴上。

2、怎样利用已知条件? 主要是OA ⊥OB 的作用:①1-=⋅OB OAk k②设()()2211,,y x 、B y x A,则02121=+y y x x3、可从那些方面入手? ①从设点的坐标入手由点A 、B 在抛物线上,可设点A ⎪⎪⎭⎫⎝⎛a p a ,22、B ⎪⎪⎭⎫⎝⎛b p b ,22, ②从设直线AB 的方程入手1)设直线AB 的方程为x=my+b 2)设直线AB 的方程为ax+by=1 ③从OA ⊥OB 入手 设OA 的斜率为k ,则OB 的斜率为k1- 方法一:设A ⎪⎪⎭⎫⎝⎛a p a ,22、B ⎪⎪⎭⎫⎝⎛b p b ,22,则OA 、OB 的 斜率分别为a p 2、bp 2,由OA ⊥OB 得:24p ab -=,又AB 的斜率为∶ba pk +=2,∴AB 方程为∶ ⎪⎪⎭⎫ ⎝⎛-+=-p a x b a p a y 222,即()p x b a py 22-+=, 显然AB 过定点(2p ,0)。

ABO方法二∶设直线AB 的方程为x=my+b ,(注意这样设直线方程有两大优点:①不必考虑斜率不存在,②代入消x 简便),代入抛物线的方程消x 得:0222=--pb mpy y又设A ()11,y x 、B ()22,y x ,则pb y y 221-=,又,2121px y =,2222px y = ∴()()222222121424b ppb py y x x =-==,由OA ⊥OB 得02121=+y y x x ,∴022=-pb b,∵b ≠0,∴b=2p ,即AB 的方程为x=my+2p ,显然AB 过定点(2p ,0)。

浅析一题多解与一题多变

浅析一题多解与一题多变

{ + s Ⅱ 2 2 f £ 0 j + l2
tI t≥0 t ・2
或 △< j 2— <口< 2 o 2 2+
从而, 方程有根的实数 n的取值范围为(一 。2— √ 。 , 2 习
方程可进一步转化为 n=一
:一
。 =
表示 点 a xy 与 ( 一1 两点连线 的斜 率 ( ,) 2, )
浅 析 一 题 多解 与 一题 多变
泰兴 市扬子 江高级 中学 袁 小武
【 摘 要】 随着素质教育的不断深入, 江苏省 2 4号文件的实施, 培养学生分析问题、 解决问题的能力显得越来越重要. 而能力
的提 高必须依 靠方 式方 法, 我们认为“ 一题 多解与一题 多变” 可以很好地培养 学生 的解题能力. 一题 多解是从 不同的角度 、 同的 不 方位去审视 分析 问题 , 是一种发散 思维, 而一题 多变则是创造性思维的体现 , 通过题设 的变化 、 结论的变化、 引申新 问题让 学生对 知识的理 解更深刻. 通过变发现 不变的 东西 , 从而总结 出解决一类 问题的一种方法 , 是凝 聚思维的一种体现.
① 方程有两个正根 , 则必须 满足条 件 f △>u

值围 范为
( : 孚) 答 】 案
3 2
2 已知 函数 f( 、 )=s 在 闭 区间 i n

t 2>0
② 方程有一个正根一个负根 , 则必须满足条件
t ・t l 2<O 8 < 一 1
③ 方程有一个正根一个零根 , 则必须满足条件
△ 0
【 变式训练】
1 变 目标 函数分别为 z J
大值. 说 明: 这类 问题 考查 目标 函数 的几何 意义 : z + 表 示 a( , ) B 0,) 点 间 距 离 的平 方 = xy 与 ( 0 两

一题多解和一题多变

一题多解和一题多变

2024年1月上半月㊀解法探究㊀㊀㊀㊀一题多解和一题多变:一道有关抛物线焦半径问题的探究∗◉江苏省新沂市第一中学㊀吴玉章㊀苗庆硕㊀㊀抛物线的焦半径问题是抛物线综合问题中的一类特殊类型,其可以联系起抛物线的定义(问题的本质)㊁几何性质( 数 的属性)与几何特征( 形 的特征)㊁焦半径公式(三角形式)等, 串联 起平面解析几何㊁平面几何㊁函数与方程㊁三角函数等众多相关知识,为问题的切入与解决提供较多的思维视角,给问题的解决提供更多的方案与技巧方法,是有效发散数学思维,考查学生 四基 ㊁数学能力以及数学思想方法等方面比较有效的一个重要载体,备受各方关注.1问题呈现问题㊀已知抛物线y2=8x的焦点为F,准线与x 轴的交点为C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A F|=.此题以抛物线为问题场景,通过设置过准线与x 轴交点的直线l与抛物线交于两点,利用两个角相等来创设定交点问题,进而求解相应焦半径的长度.涉及抛物线的焦半径问题,可以从解析几何的实质入手,利用解析几何思维来合理进行数学运算与分析处理;也可以从平面几何的图形入手,利用平面几何思维进行逻辑推理与分析处理;还可以从焦半径的公式入手,利用三角函数思维来合理数学运算㊁逻辑推理与综合应用等.不同思维视角的切入,都给问题的解决提供了切实可行的技巧与方法,实现问题的巧妙解决.2问题破解2.1解析几何思维解法1:设线法.依题意可得p=4,则F(2,0),C(-2,0).根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图1所示.设直线l的方程为x=m y-2,其中m>0.设A(x1,y1),B(x2,y2),y1>y2>0.图1联立x=m y-2,y2=8x,{消去参数x并整理,可得y2-8m y+16=0.利用韦达定理,可得y1+y2=8m,y1y2=16,则|A B|=1+m2|y1-y2|=1+m2 64m2-64=8m4-1,|B C|=1+m2|y2|=1+m2 y2.由抛物线的定义,可得|A F|=x1+p2=m y1-2+2=m y1.由于øA F B=øC F B,则F B是øA F C的角平分线.由三角形内角平分线定理,得|C F||A F|=|B C||A B|,即4m y1=1+m2 y28m4-1.整理并化简,可得m y1y2=32m2-1,即16m=32m2-1,则m2=43,解得m=233.所以y1+y2=8m=1633,又y1y2=16,解得y1=43,则|A F|=m y1=233ˑ43=8.解后反思:设线法是借助解析几何思维处理问题的一种 通性通法 ,成为解决直线与圆锥曲线位置关系问题时首选的一种基本方法.2.2平面几何思维解法2:几何法.依题意可得,p=4.根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图2所示.过点A,B作抛物线准线的垂线,垂足分别为D,38∗课题信息:江苏省教育科学 十四五 规划普教重点课题 指向关键能力的高中数学主题单元式教学的实践研究 ,课题编号为B/2021/02/34;江苏省教研室第十一期立项课题 差异教学在课程基地中应用的实践研究 ,课题编号为2015J K11GL O42.解法探究2024年1月上半月㊀㊀㊀图2E,延长E B交A F于点G.由于E GʊC F,因此øG B F=øC F B,又øA F B=øC F B,所以øA F B=øG B F,可得|B G|=|F G|.由øA F B=øC F B,则F B是øA F C的角平分线,利用三角形内角平分线定理可得|A B||B C|=|A F||C F|.结合抛物线的定义有|A D|=|A F|,可得|A B||C F|=|B C| |A D|.由于E GʊC FʊD A,因此|B G||C F|=|A B||A C|,|B E||A D|=|B C||A C|.所以有|B G| |A C|=|B E| |A C|,可得|B G|=|B E|,又结合抛物线的定义有|B E|=|B F|,故|B G|=|F G|=|B F|,即әB F G是正三角形,从而øB F G=60ʎ,可得øA F x=60ʎ.利用抛物线的焦半径公式,可得|A F|=p1-c o sθ=41-c o s60ʎ=8.解后反思:平面解析几何侧重 数 与 形 的结合与转化,借助代数思维中的数学运算来处理几何图形中的逻辑推理问题等,实现问题的突破与应用.2.3三角函数思维解法3:性质法.依题意可得,p=4.图3根据已知可得直线l的斜率存在且不为0,利用图形的对称性,不失一般性,设点A,B位于x轴的上方,如图3所示,过点A,B作抛物线的准线的垂线,垂足分别为D,E.设øA F x=θ,其中θ为锐角.结合øA F B=øC F B,利用抛物线的焦半径公式可得|A F|=p1-c o sθ=p2s i n2θ2,|B F|=p1-c o s(θ+π-θ2)=p1+s i nθ2.由øA F B=øC F B知,F B是øA F C的角平分线,则利用三角形内角平分线定理可得|C F||A F|=|B C||A B|.结合比例性质,可得|C F||A F|+|C F|=|B C||A B|+|B C|=|B C||A C|.而由E BʊD A,可得|B E||A D|=|B C||A C|.结合抛物线的定义有|A D|=|A F|,|B E|=|B F|,即|B C||A C|=|B E||A D|=|B F||A F|,所以|C F||A F|+|C F|=|B F||A F|,即pp2s i n2θ2+p=p1+s i nθ2p2s i n2θ2,整理可得s i nθ2-2s i n2θ2=0.解得s i nθ2=12,或s i nθ2=0(舍去),结合θ为锐角,解得θ=60ʎ.所以|A F|=p1-c o sθ=41-c o s60ʎ=8.解后反思:抛物线的焦半径三角公式|A F|=p1-c o sθ(θ为直线A F的倾斜角),是解决与抛物线的焦半径相关问题常用的结论.借助三角函数思维,结合三角函数的相关知识来巧妙综合与应用.3变式拓展3.1同源变式变式1㊀己知抛物线y2=8x的焦点为F,准线与x轴的交点为C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|B F|=.在此基础上,可以对问题进行一般化的归纳与总结.结论:已知抛物线y2=2p x(p>0)的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A F|=2p,|B F|=2p3.变式2㊀己知抛物线y2=8x的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则|A B|=.3.2同阶变式变式3㊀已知抛物线y2=8x的焦点为F,准线与x轴交于点C,过点C的直线l与抛物线交于A,B两点,若øA F B=øC F B,则直线A F的斜率为.变式1,2,3的参考答案分别为:83,873,ʃ3.4教学启示此类涉及抛物线的焦半径问题,往往是多知识点交汇与融合的产物,这样的创设契合高考数学命题精神,而多知识点交汇也为问题的切入提供了更多的思维视角,给各层面的学生提供了更多的机会,从而更加有效地体现数学试题的选拔性与区分性.在数学学习中,针对此类涉及圆锥曲线的焦半径问题,要深刻体会并加以系统学习,把握问题的实质与内涵,构建知识体系,理解技巧方法,形成解题习惯,培养数学品质.Z48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师 余先文 班级 职高二(4) 时间 2016.5.25
教学目的:
数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们 在学习每一分支时,如果能注意知识的横向联系,把亲缘关系结成一张 网,就可覆盖全部内容,使之融会贯通,这里所说的横向联系,主要是 靠一题多变和一题多解来完成的。通过一题多变和一题多解变式教学, 既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极 性,达到开发潜能,发展智力,提高能力的目的,从而培养创新精神和 创造能力。数学题是做不完的。我认为要使学生学好数学,还是要从提 高学生的数学思维能力和学习数学的兴趣上下工夫。要利用书本上有限 的例题和习题来提高学生的学习兴趣和能力。在数学教学过程中,通过 利用一切有用条件,进行对比、联想,采取一题多解与一题多变的形式 进行教学。这对培养学生思维的广阔性、深刻性、探索性、灵活性、独 创性无疑是一条有效的途径。另外,能力提高的过程中,学生的成就感 自然增强,并且在不断的变化和解决问题的不同途径中,兴趣油然而生。
x 1

x 1
x 1
单调递增区间为 ,1,1,
log 变题 4: 求函数 f (x)
( x 1) 的单调递增区间
2 x 1
log 解: 由 x 1 0 x 1或x 1,所以函数 f (x)
( x 1)
x 1
2 x 1
的单调递增区间为 1,, ,1
例 3:解不等式 3 < 2x - 3 < 5
例 1:已知 sin α = 4 且 α 是第二象限角,求 tanα 5
解: α 是第二象限角, sin α = 4 ⇒cosα = 一 1一sin 2 α = 一 3 , tan α = 一 4
5
5
3

1:
sin
α
=
4 5
,求
tan α
解: sin α = 4 > 0 ,所以 α 是第一或第二象限角 5
解法二:转化为不等式组求解 原不等式等价于
2x - 3 > 3且 2x - 3 < 5⇒3 < x < 4或 1< x < 0
{ 综上:解集为 x 3 < x < 4或-1< x < 0 }
解法三:利用等价命题法 原不等式等价于
3 < 2x - 3 < 5或 - 5 < 2x - 3 < -3 ,即 3 < x < 4或 -1< x < 0
解答此题的方法比较多,下面给出几种常见的思想方法,以作示例。
解法一:(函数思想)由 x+y=1 得 y=1-x,则
x2+y2= x2+(1-x)2=2x2-2x+1=2(x-21 )2+21
由于 x∈[0,1],根据二次函数的图象与性质知

1 x=2
时,x2+y2 取最小值21
;当 x=0 或 1 时,x2+y2 取最大值 1。
若是第一象限角,则 cosα = 3 , tan α = 4
5
3
若是第二象限角,则 cos

4 5
,tan
一4 3
变 2:已知 sin α = m(m > 0) 求 tanα
解:由条件 0 < m ≤1,所以 当 0 < m <1 时, α 是第一或第二象限角 若是第一象限角时 cos α = 1一m2 , tan α = m 1一m 2 若是第二象限角 cos α = 一 1一m2 , tan α = 一 m 1一m 2 当 m =1时 tanα 不存在
求所得图象的函数表达式。
解 : 将 函 数 f (x) 1 中 的 x 换 成 x+1 , y 换 成 y-1 得 x
f (x) 1 1 f (x) 1 1 f (x) x
x 1
x 1
x 1
变题 1:作出函数
f (x)
x 1
的图象
x 1
解: 函数 f (x) x 1 =1 2 ,它是由函数 f (x) 2 的图象向左平移 1 个单位,再向上平移
评注:函数思想是中学阶段基本的数学思想之一,揭示了一种变量之间的联系,往往用函数观点来探求变 量的最值。对于二元或多元函数的最值问题,往往是通过变量替换转化为一元函数来解决,这是一种基本 的数学思想方法。解决函数的最值问题,我们已经有比较深的函数理论,函数性质,如单调性的运用、导 数的运用等都可以求函数的最值。
解法二:(三角换元思想)由于 x+y=1,x、y≥0,则可设
x=cos2θ,y=sin2θ
π 其中θ∈[0,2 ]
则 x2+y2= cos4θ+sin4θ=(cos2θ+sin2θ)2-2 cos2θsin2θ
=1-12 (2sinθcosθ)2=1-21 sin22θ
=1-12
1-cos4θ ×2
变 3:已知 sin α = m( m ≤1) ,求 tanα
解:当 m =1, 一1时, tanα 不存在 当 m = 0 时, tan α = 0 当 α 时第一、第四象限角时, tan α = m 1一m 2 当 α 是第二、第三象限角时, tan α = 一 m 1一m 2
例 2: 将函数 f (x) 1 的图象向左平移 1 个单位,再向上平移 1 个单位, x
{ 解集为 x 3< x < 4或-1< x < 0 }
解法四:利用绝对值的几何意义意义
原不等式可化为
3
<x-3来自<5,不等式的几何意义时数轴上的点
x到
3 2
的距离大于
3 2
5 ,且小于 2
,由图得,
解集
2
22
为 {x 3< x < 4或-1< x < 0 }
解法五:平方法,化为一元二次不等式
例 4:已知 x、y≥0 且 x+y=1,求 x2+y2 的取值范围。
x 1 x 1
x
1 个单位得到。图象为:
变题 2:求函数
f
(x)
x
1
的单调递增区间
x 1
解: 由图象知 函数 f (x) x 1 的单调递增区间为: ,1, 1,
x 1
变题 3:求函数 f (x)
x 1
的单调递增区间
x 1
解: 由 x 1 0 得 x 1或x 1 所以函数 f (x)
解法一:根据绝对值的定义,进行分类讨论求解
(1)当 2x - 3 ≥ 0 时,不等式可化为 3 < 2x - 3 < 5 ⇒3 < x < 4 (2)当 2x - 3 < 0 时,不等式可化为 3 < -2x+3 < 5⇒-1< x < 0
{ 综上:解集为 x 3 < x < 4或-1< x < 0 }
3 =4
相关文档
最新文档