地铁列车牵引计算算法
城轨列车的牵引计算

式 中R 一 基 本 阻力 ( k g f ) , V一 列车速度 ( k m / h ) , M 一
牵 引力 由动车 动力 装 置传 给 动 轮 以旋转 力 矩 , 通 过 动轮 与钢 轨 的相 互粘 着 作用 而 产 生 , 用大 写 字
动 车总重 量 ( t ) , 一 拖 车总 重量 ( t ) , n 一 列车 编组 车 辆数 , M一 列 车总重 量 ( t ) , g 一 重 力加 速度 = 9 . 8 1 i r d s 。 ’ 1 . 2 . 2 附加 阻力
引计算是解决 列车在各种外力作用下运行 的实际
问题 。如 分 析 列 车配 置 参 数 , 为 列 车研 制 及 电机 、
逆变器选型提供设计参 考。计算列车在不 同编组 下 起 动性 能 、 爬 坡及 制 动 能力 、 速度 、 时 间及 电能消
耗 。列车运 行工 况 的实时模 拟计算 。
d v / d t = (( 1 + ) ) ( 3 - 1 )
式 中d v / d t 一 列 车速 度 对 时 间 的导 数 , 即列 车 加 ( 减)
式 中r r 一 单 位 曲线 阻力 , R 一 曲线 半 径 ( m) , k 一 系数 , 一
速度 , c 一 运行合力 , M 一 列车总质量 , 一 列车回转质 量 系数 ( 一般 取 0 . 0 6 — 0 . 1 0 ) 。
同, 因而 两侧 车 轮在 轨 面 上 滚动 时产 生相 对 滑 动 造 成 的附加 阻力 。单 位 曲线 阻力 计算 :
r , = k / R( N / k N) 般取 6 0 0 。 1 . 2 . 2 . 3 起 动阻 力 ( 2 — 5 )
动 。通 过数 学推导( 推导过程 略) 的列车运动方程 的一般 形式 如 下 :
地铁列车牵引计算算法

1
列 车 合 力 计 算
在研究隧道附加阻力对列车运行时 间的影响时,应用最快速牵引策略
算法,在算法中尽可能发挥列车的
牵引和制动能力,即牵引力采用最 大牵引力,制动力采用最大制动力。
2
启 动 过 程
在列车启动过程中,列车受到的合力如下:
C=Wf 2-Wqz-Ws
Ws 为隧道附加阻力,它由试验确定,目前尚
列车速度和列车合力有如下关系: 列车的当前位置和列车速度之间存在如下关系:
Vi+1=Vi+C t/Mh
Si+1=Si+(Vi+1+Vi)Δt/
6
计 算 中 的 关 键 算 法
二 分 法 得 到 加 速 与 制 动 交 叉 点 位 置
在确定加速与制动交叉点的过程中,实际上 是确定一个速度 ( 该速度小于该段的限速), 使从前一个速度加速到该速度,然后再减速到 下一个限速段,能满足下一个限速段的速度要 求。确定这个速度的过程,实际上是一个求解 非线性方程的过程,在该过程中用到了二分法。
为隧道附加
4
制 动 过 程
根据不同列车的制动特性,采取不同的进站制 动方式,其制动合力的形式为:
C=Wf 2-Wz d 2-Wjz-Wfz-Ws
(3)
式(3)中:Wf 2为牵引力;Wz d2为制动力, Wj z为列车基本阻力;Wf z为列车坡度与曲线 附加阻力的和;Ws为隧道附加阻力。
5
计 算 中 的 关 键 算 法
地 铁 列 车 牵 引 计 算 算 法
地 铁 车 的 工 况 不 同 导 致 的 阻 力 增 加
地铁列车在隧道中行驶时,作用在列车上的 空气动力比在地面线路上行驶时大得多,在列 车头部产生很大的正压区,而在列车尾部会出 现负压区,从而使压差阻力增大。因此,一般
《列车牵引计算》课件

02
动力学方法
利用列车动力学原理,通过列车的加速度、速度和位置等参数计算阻力。
04
CHAPTER
列车运动方程式与平衡速度
1
2
3
在列车牵引计算中,牛顿第二定律是建立列车运动方程式的基础,即合力等于质量乘以加速度。
牛顿第二定律的应用
在建立列车运动方程式时,需要考虑列车的阻力以及阻力系数,以更准确地描述列车的运动状态。
平衡速度的意义
03
平衡速度是列车牵引计算中的一个重要参数,它反映了列车在无外力作用下的运动状态,对于列车的安全运行和节能减排具有重要意义。
阻力系数是影响平衡速度的关键因素之一,阻力系数越大,平衡速度越小。
阻力系数的影响
列车质量也会影响平衡速度,质量越大,平衡速度越小。
列车质量的影响
线路条件如坡度、曲线半径等也会对平衡速度产生影响。例如,下坡路段的坡度越大,平衡速度越高;曲线半径越小,平衡速度越低。
02
CHAPTER
列车牵引力计算
列车牵引力的来源
列车牵引力主要来源于机车或动车组的牵引电机,通过传动装置将动力传递至车轮,从而驱动列车前进。
列车牵引力定义
列车牵引力是列车车轮与钢轨之间的摩擦力,用于克服列车行驶过程中的阻力,使列车能够前进。
列车牵引力的特点
列车牵引力具有方向性,始终与列车前进方向相反,同时大小受机车或动车组的功率限制,并与运行速度成反比关系。
线路条件的影响
05
CHAPTER
列车牵引计算的实践应用
列车牵引计算是铁路运输中不可或缺的一环,它涉及到列车的牵引力、阻力以及运动方程等计算。
在铁路运输中,列车牵引计算主要用于指导列车的编组、运行和调度,确保列车安全、高效地运行。
城市轨道交通的牵引能耗估算方法

[ J ] ・ 交通运输工程学报, 2 0 0 , ( 4 ) : 2 0 - 2 6 .
[ 6 ]黄德胜 , 张巍- 地 下铁道供 电[ M] ・ 北京 : 中国电力 出版
苎 对 来 说 苎 结 果 之 兰 间 的 误 差 兰 要 大 些 效 能 耗 的 方 法 , 所 以 相 [ 7 ] 。 车
,
,
。
3 ・ 3 各种测算方法对 比
综上所述 , 以北 京 地 铁 某 线 路 2 0 1 0年 数 据 为 基 础 进行估算 , 得 到 如 下结 果 : 用 本 研 究 所 建 立 的 牵 引 能 耗 模 型 测 算 得 到 牵 引 能 耗为 6 0 7 9 ・ 8 1×1 0 k W・ h , 与 实 际 运 营 数 据 误 差 为
调研得 到的数据取值 , 由式 ( 6 ) 可得该线路单位公 里用
电量 , 乘 以线路长 度 , 最 终可 得全 线年 用 电量 , 即 牵 引 能 耗 量 A∑ 为7 0 8 5 . 8 3 1 0 4 k W' h o
模型
同时介绍并 使用 另外 3种牵 引能耗 的测算 方法 与之 对 比 对模 型进 行 了验证 , 为 轨 道 交 通 的 节 能 设 计 提 供 了参 考 同时 , 由 于不 同城 市 的客 流不 同 , 以
可以看到 , 单 位 指 标 法 测 算 得 到 的 结 果 与 模 型 测 算 的结 果 有 差 距 , 因 为 这 种 方 法 主 要 用 于 地 铁 建 设 前 期, 适 宜 在 可行 性 研 究 阶 段 、 总 体 设 计 阶 段 来 确 定 一 条 线 路 的年 用 电 量 , 而模 型 测 算 主 要 基 于 运 营 数 据 , 考 虑 的影 响 因 素 不 同 。 同 时 , 该 方 法 在 列 车 自重 取 值 时 用 的是 满 载 人 数 时 的值 , 也会 使 总 量 相 对 偏 大 , 但 整 体 偏 f 8 ] 徐安
第3章 轨道车辆牵引计算

2017/3/12
城市轨道交通车辆
10
μmax的确定 影响μmax的因数太多,很难准确计算,故用计算粘 着系数μj来作为计算依据。 电力机车 μj=0.24+12/(100+8V) 欧州铁路 μj=0.161+7.5/(44+V) 当R<600m μr=μj(0.67+0.00055R)
2017/3/12 城市轨道交通车辆 11
2017/3/12
城市轨道交通车辆
19
2、列车平均起动牵引力F 牵引力F=加速力+阻力 F=9.81G[102(1+γ)a+ω0+ωq+i+ωr] 3、列车牵引运行所需功率P P=FVA 4、每台牵引电动机所需功率Pm Pm=P/n/η
2017/3/12 城市轨道交通车辆 20
三、按加速到Vmax时的平均加速过程估算
单位基本阻力的计算公 式
0 a bv cv2
地铁车辆
0 2.27 0.00156 v2
广州地铁车辆
0 2.75 0.000428 v2
上海明珠(轻轨) F 3100 M ges (0.000637 0.000329 v) 11.187v 2 天津快速轨道 F M m (1.65 0.0247v) M t (0.79 0.0028 v) 9.8 [0.028 0.0078 (n 1)]v 2
2017/3/12 城市轨道交通车辆
F
即为驱动力。
5
所有驱动轮总驱动力
2017/3/12
F 即为牵引力。
城市轨道交通车辆
6
以一个动轴为隔离体进行受力分析则有:
M F R J
地铁的功率计算公式

地铁的功率计算公式地铁是一种重要的城市交通工具,它能够快速、高效地运输大量的乘客。
地铁的运行需要消耗大量的能量,而地铁的功率计算公式则是用来计算地铁所消耗能量的重要工具。
本文将介绍地铁的功率计算公式及其应用。
地铁的功率计算公式可以用来计算地铁列车在运行过程中所消耗的能量。
地铁的功率可以通过以下公式来计算:P = Fv。
其中,P代表功率,单位为瓦特(W);F代表牵引力,单位为牛顿(N);v代表速度,单位为米每秒(m/s)。
牵引力是地铁列车在运行过程中所需要的力量,它可以通过列车的加速度和质量来计算。
速度则是地铁列车在运行过程中的速度。
通过这个公式,我们可以计算出地铁列车在运行过程中所需要的功率。
地铁的功率计算公式对于地铁公司来说是非常重要的。
通过计算地铁列车在运行过程中所需要的功率,地铁公司可以更好地安排列车的运行计划,合理分配能源资源,从而提高地铁的运行效率。
此外,地铁的功率计算公式还可以用来评估地铁列车的性能,帮助地铁公司选择更加节能高效的列车型号。
除了对地铁公司有重要意义外,地铁的功率计算公式还对于城市交通规划和能源消耗有重要影响。
通过计算地铁列车在运行过程中所需要的功率,城市交通规划者可以更好地规划城市的交通系统,优化地铁线路布局,提高城市的交通效率。
此外,地铁的功率计算公式还可以帮助城市规划者评估地铁系统对能源的消耗情况,为城市能源规划提供重要参考。
地铁的功率计算公式还可以用来指导地铁列车的设计和制造。
通过计算地铁列车在运行过程中所需要的功率,地铁制造商可以更好地设计和制造节能高效的列车,从而降低地铁的运行成本,提高地铁的竞争力。
此外,地铁的功率计算公式还可以用来评估不同列车型号的性能,为地铁制造商提供重要参考,帮助他们选择更加节能高效的列车型号。
总之,地铁的功率计算公式是地铁运行和规划中的重要工具,它对于地铁公司、城市交通规划者和地铁制造商都具有重要意义。
通过计算地铁列车在运行过程中所需要的功率,我们可以更好地安排地铁的运行计划,优化城市的交通系统,降低能源消耗,提高地铁的运行效率。
地铁列车牵引计算算法及程序实现

动 和 制 动 频 繁 以 及 对 于 启 动 和 制 动
加 速 度 的 严 格 要 求 等 ,对 此 ,一 些
1 列车合力计算
在 研 究 隧 道 附加 阻 力 对 列 车 运
研 究 者 给 出 了一 些 有 益 的探 索 , ’
式 ( )中: 2
, 牵 引力 ; 为
但 是 ,专 门针 对 地 铁 列 车 的计 算 算 行 时 间 的 影 响 时 ,应 用 最 快 速 牵 引
为列 车 重量 ,a c 为 列 +b 为 列 车坡
作 用 在 列 车 上 的 空 气 动 力 比在 地 面 用 最 大 牵 引力 ,制 动 力 采 用 最 大 制 度 ,
线 路 上 行 驶 时大 得 多 ,在 列 车 头 部 动力 。
车运 行 单 位基 本 阻力 ;
. 产 生 很 大 的正 压 区 ,而 在 列 车 尾 部 11 启 动过 程
式 ( )中: 1
为 牵 引 力 ,由
文献 [ ] 6 中的 牵 引特 性 曲线 取 差 值 得 到; 为 启 动 阻力 , 由于 地 铁 列车
牵 引 中启 动 比较 频 繁 ,根 据 计 算 精 度 以 及 经 验 取 值 为 W。 5 k N/ N
,
关 键词 :地下 铁道 ;牵引 计算 ; 隧道 附加 阻 力;计算 模 型
面线 路 上 要 高 出 l , 占列 车 总 阻力 倍
路 系 统 。对 于 城 市 轨 道 交 通 , 由于
为此 ,应 用Ma La 程 序 建立地 的9 %左 右 ,所 以 ,在 列 车 启 动过 t b 0
I 其 在 运 输 方 式 和 线 路 条 件 等 多 方 面 铁 列 车 牵 弓计 算 模 型 ,研 究 隧道 附 程 中 ,取 为 的整倍 数 。
列车牵引计算范文

列车牵引计算范文引言列车牵引计算是列车运行中的一项重要工作,其目的是确定列车所需的牵引力,保证列车能够顺利运行。
在牵引计算中,需要考虑列车的重量、行车线路的斜坡、阻力及曲线半径等因素。
本文将对牵引计算的基本原理和步骤进行分析和探讨。
一、列车牵引计算的基本原理1.1牵引力的定义列车的牵引力是指牵引车辆所能产生的购物力。
它的大小与列车的质量、速度、行车线路的坡度、风阻、摩擦力和曲线半径等因素有关。
1.2牵引力计算的基本公式列车的牵引力F可以通过以下公式计算得到:F=Fg+Ff+Fr+Fa其中,Fg是重力产生的牵引力;Ff是风阻产生的牵引力;Fr是曲线阻力产生的牵引力;Fa是其他阻力产生的牵引力。
二、列车牵引计算的步骤2.1列车的重力产生的牵引力计算列车的重力产生的牵引力Fg可以通过以下公式计算得到:Fg = m * g * sinθ其中,m是列车的质量,g是重力加速度,θ是行车线路的坡度。
2.2列车风阻产生的牵引力计算列车的风阻产生的牵引力Ff可以通过以下公式计算得到:Ff=0.5*ρ*S*Cd*v^2其中,ρ是空气密度,S是列车的正投影面积,Cd是阻力系数,v是列车的速度。
2.3列车曲线阻力产生的牵引力计算列车的曲线阻力产生的牵引力Fr可以通过以下公式计算得到:Fr = m * v^2 / (R * g * cosθ)其中,R是曲线半径,θ是行车线路的坡度。
2.4列车其他阻力产生的牵引力计算列车的其他阻力产生的牵引力Fa包括轮轴阻力、轴承阻力等,可以通过经验公式或试验方法进行计算。
2.5牵引力总和计算将各项牵引力相加,即可得到列车所需的总牵引力。
三、应用实例以一个20节车厢组成的货车为例,所载重量为1000吨,行车线路有10‰的上坡,速度为20m/s,段曲线的半径为1000m。
已知空气密度为1.2 kg/m³,列车的正投影面积为100m²,阻力系数为0.3、则根据上述计算方法,我们可以得到:重力产生的牵引力Fg = 1000 × 9.8 × sin(10°) ≈ 1700kN风阻产生的牵引力Ff=0.5×1.2×100×0.3×20²≈720N曲线阻力产生的牵引力Fr = 1000 × 20² / (1000 × 9.8 ×cos(10°)) ≈ 430kN其他阻力产生的牵引力Fa根据实际情况进行计算,假设为300kN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
列 车 合 力 计 算
在研究隧道附加阻力对列车运行时 间的影响时,应用最快速牵引策略
算法,在算法中尽可能发挥列车的
牵引和制动能力,即牵引力采用最 大牵引力,制动力采用最大制动力。
2
启 动 过 程
在列车启动过程中,列车受到的合力如下:
C=Wf 2-Wqz-Ws
Ws 为隧道附加阻力,它由试验确定,目前尚
地 铁 列 车 牵 引 计 算 算 法
地 铁 车 的 工 况 不 同 导 致 的 阻 力 增 加
地铁列车在隧道中行驶时,作用在列车上的 空气动力比在地面线路上行驶时大得多,在列 车头部产生很大的正压Байду номын сангаас,而在列车尾部会出 现负压区,从而使压差阻力增大。因此,一般
列车在隧道中行驶时,气动阻力比在地面线路
列车速度和列车合力有如下关系: 列车的当前位置和列车速度之间存在如下关系:
Vi+1=Vi+C t/Mh
Si+1=Si+(Vi+1+Vi)Δt/
6
计 算 中 的 关 键 算 法
二 分 法 得 到 加 速 与 制 动 交 叉 点 位 置
在确定加速与制动交叉点的过程中,实际上 是确定一个速度 ( 该速度小于该段的限速), 使从前一个速度加速到该速度,然后再减速到 下一个限速段,能满足下一个限速段的速度要 求。确定这个速度的过程,实际上是一个求解 非线性方程的过程,在该过程中用到了二分法。
7
计 算 中 的 关 键 算 法
应 用 反 算 法 得 到 制 动 距 离
为了使列车能够准确停靠站台,需要确定正 确的制动点。先假设列车以匀速运行,计算列 车制动减速到零需要经过的距离,再用该区段 末尾点的坐标减去该距离,得到的值即为制动 点的坐标。
8
为隧道附加
4
制 动 过 程
根据不同列车的制动特性,采取不同的进站制 动方式,其制动合力的形式为:
C=Wf 2-Wz d 2-Wjz-Wfz-Ws
(3)
式(3)中:Wf 2为牵引力;Wz d2为制动力, Wj z为列车基本阻力;Wf z为列车坡度与曲线 附加阻力的和;Ws为隧道附加阻力。
5
计 算 中 的 关 键 算 法
无正式的试验公式,由于一般列车在隧道中行
驶时,气动阻力比在地面线路上要高出 1倍, 占列车总阻力的 90% 左右 [7] ,所以,在列车 启动过程中,取Ws为Wqz的整倍数。
3
加 速 过 程
在列车加速过程中,列车受到的合力如下:
C=Wf 2-Wjz-Wfz-Ws
Wf z为列车坡度与曲线附加阻力的和,其形 式为W f z=(i+d/R)×M h,该式中i为相应区段 的坡度千分数,d为常数,根据列车长度是否 大于曲线长度分别取值,R为曲线半径;W s
迭 代 法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法, 即一次性解决问题。迭代法又分为精确迭代和近似迭代。迭代算法是用计算机解决问题的一种 基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一 定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一 个新值。