历年行列式考研真题精选

历年行列式考研真题精选
历年行列式考研真题精选

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

线性代数行列式经典例题22998

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察德蒙行列式: =

行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于 D 1= x + a 1,2 21 1x D a x a -= +,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1-n D 1+ a 2x 2-n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1010010000n n n n x x x a xa a a x a -----++K K K M M M M K 213 c x c += 3212 1231 010*********n n n n n n x x x a xa x a a a a x a --------+++K K K M M M M M K =L L = 11 1x f x ---O O O n r = 按展开 1(1)n f +-1 11 1n x x x ----O O = 111n n n n x a x a x a --++++L

行列式的例题

行列式的例题 一.直接用行列式的性质计算行列式 1.试证明 2 2 2 111 2 22 22 21111112c b a c b a c b a b a a c c b b a a c c b b a a c c b =+++++++++证明:先用行列式的加法性质拆第一列,再用初等变换化简得 2 22 22 11111 2 22 22 11111 b a a c c b a a c c b a a c c b a a c b b a a c b b a a c b +++++++++++++=左 2 22 2 1111 2 2 22 1111 b a a c b a a c b a a c a a c b a a c b a a c b +++++++= 222111 222111 b a c b a c b a c a c b a c b a c b += 22 2 111 2 2 2 111 a c b a c b a c b a c b a c b a c b += 2 2 2 1112a c b a c b a c b ==右 2.计算n 阶行列式 n n n n n n n b a b a b a b a b a b a b a b a b a D +++++++++= Λ ΛΛΛ Λ21222121211 1 解:当n=1时,D 1=a 1+b 1 , 当n=2时,D 2=(a 1+b 1)(a 2+b 2)-(a 1+b 2)(a 2+b 1) =(a 1-a 2)(b 1-b 2) 当n≥3时,将第一行乘(-1)加到其余各行后,可得这些行对应成比例,即 01 111313131 2121212111=---------+++=a a a a a a a a a a a a a a a a a a b a b a b a D n n n n n Λ M M M Λ ΛΛ 综上所述

行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 3332 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133312221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解.

( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 =-0 10000200 0010Λ ΛΛΛΛΛΛn n . 3.行列式 =--0 01)1(2211)1(111Λ ΛΛΛ Λn n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λ λλ 111 1 11111Λ ΛΛΛ Λ. 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 . 9.设行列式5 678123487654 321= D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,

行列式练习题

说明:黄色高亮部分是必做题目,其他为选作 第一章 行 列 式 专业 班 姓名 学号 第一节 行 列 式 一.选择题 1.若行列式x 52231 5 2 1- = 0,则=x [ ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组???=+=+4733 221 21x x x x ,则方程组的解),(21x x = [ ] (A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--) 3.方程09 3 142 112 =x x 根的个数是 [ ] (A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5(A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式 1 2 21--k k 0≠的充分必要条件是 23.已知排列397461t s r 为奇排列,则r = s = ,t =

三、计算下列行列式(要写计算过程): 1.1 32213 3 21 2.598413 1 11 3. y x y x x y x y y x y x +++ 4. 001 100000100100 5. 00100002000010 n n -

行列式测试题(有答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = 10.当 k= 2 2 ± 时,5 42 k k k =。

二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D 2211D ,.221 2222111211 = .)1() (21n j j j π-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 1213132333 2122 23122223 3132 3311 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+ 中的数1与其余数形成的反序个数为( A ) (A )k-1 (B) n-k-1 (C) k n C (D) 2 n C k - 2.设12n i i i 是奇排列,则121n n i i i i - 是(C ) (A )奇排列; (B ) 偶排列;

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 ( 1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 11 12,,1 j j c c b j n -+ =+= 1 1121 1 1210000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 其中12 0n a a a ≠. 解 这道题有多种解法. 方法1 化为上三角行列式 其中11211n i i b a a a ==++∑1111n i i a a =?? =+ ?? ?∑,于是n D 12111n n i i a a a a =??=+ ?? ?∑. 方法2 升阶(或加边)法 方法3 递推法.将n D 改写为

(完整word版)行列式习题1附答案

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名: 《线性代数》第一章练习题 一、填空题 1、_____________)631254(=τ8 2、要使排列(3729m14n5)为偶排列,则m =___8____, n =____6_____ 3、关于x 的多项式x x x x x 22 1 11 ---中含23,x x 项的系数分别是 -2, 4 4、 A 为3阶方阵,2=A ,则____________3* =A 108 5、四阶行列式)det(ij a 的次对角线元素之积(即41322314a a a a )一项的符号为 + 6、求行列式的值 (1) 469 24692341234=__1000___; (2)13 14102421 21=_0___ ; (3) 2005 200410020030102002 200120001--=___2005____; (4) 行列式2 430123 21---中元素0的代数余子式的值为___2____ 7、64 81497125 51 = 6 ; 125 27864259416 5 324 1111 --= 1680- 8、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1 5 。 9、0 111011 10= 2 ; =0 0010 0310 2222210 12 。 10、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 11、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 值不变 。 12、行列式 中在项的项共有 214312344214231144 43 42 41 343332312423222114131211,,24 !4a a a a a a a a a a a a a a a a a a a a a a a a =, 21431234a a a a 是该行列式的项,符号是 + 。 13、当a 为 1或2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解。 14、设=-+----=31211142,4 101322 13A A A D 则 0 15、若n 阶行列式中非零元素少于n 个,则该行列式的值为 0 。 16、设A ,B 均为3阶方阵,且,2,2 1 == B A 则=-)(21A B T 32 二、单项选择题

行列式练习题及答案

第1章行列式(作业1) 一、填空题 1 ?设自然数从小到大为标准次序,则排列 1 3…(2n 1) 2 4…(2n )的逆序数为 排列1 3…(2n 1) (2 n)(2 n 2)…2的逆序数为 3.所有n 元排列中,奇排列的个数共 个. 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列 四、若n 阶行列式中,等于零的元素个数大于 n 2 n ,则此行列式的值等于多少?说明理由 2.在6阶行列式中, 823842831 a 56aga 65这项的符号为 0 0 0 0 0 2 1 0 0 0 1?由定义计算行列式 =( n 1 0 0 0 0 n (n 1)(n 2) (C ) ( 1)n! ( D ) ( 1)n(n "n! 2.在函数f (x ) x x 1 1x23 2 3x2 1 1 2 x x 3的系数是( (A) 1 (B ) -1 (C ) 2 (D ) 3 3.四阶行列式的展开式中含有因子 a 32的项,共有 )个. (A) 4; (B ) 2; (C ) 6; ( D ) 8. 、请按下列不同要求准确写出 n 阶行列式D det (a j )定义式: 、选择题 n( n 1) (A) n! ( B ) ( 1)^ n!

第1章 行列式 (作业2) 、填空题 =0的根为 2 二、计算题 a 11 a 12 a 13 4a 11 2a 11 3a 12 a 13 a 21 a 22 a 23 1,则 D 1 4a 21 2a 21 3a 22 a 2 3 a 31 a 32 a 33 4a 31 2a 31 3a 32 a 3 3 1?若 D= 2 1 3 4 a 1 0 0 4 1 9 16 2. 1 b 1 0 30 15 45 60 0 1 c 1 11 7 1 8 1 d 1. 3. D n 2.方程

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101a a a a - =1 1()n a a a --=n a -2 n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a -- 1n c c +=1 1 1 a a a +- =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a - +1 1 0010 (1) 0n n a a +-- 而 1 1 001 0(1) 0n n a a +-- 最后列展开=21 (1)n +-2 n a a - =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a - =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 11 21221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠ ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 1211212212 1 00 n n n n n n a a a a b a a D a a b a a a a b +=++ 升阶 213111 n r r r r r r +---= 12121 1001001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 111211 1210000000 0n n a a a a a b b b b b + ++ =1121(1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= + =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

行列式练习题及答案

$ 第1章 行列式 (作业1) 一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2 ) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- ~ 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; @ 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少说明理由. 《

第1章 行列式 (作业2) 一、填空题 1.若D=._____324324324,1333231312322212113 1211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 1 4 4312----- 2. d c b a 100 1100 11001--- … { 3.a b b b a b b b a D n =

行列式练习题及答案教学提纲

行列式练习题及答案

收集于网络,如有侵权请联系管理员删除 一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0 0000010 020 001000Λ ΛΛΛΛΛΛ ΛΛΛ -= ( ). (A )!n (B )!)1(2 )1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数 x x x x x x f 2 1 1 232 321 01)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

收集于网络,如有侵权请联系管理员删除 一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2 913 2 5 1 3 232213211x x --=0的根为___________ . 二、计算题 1. 8171160451530169144312----- 2. d c b a 1 0011001 10 01--- 3.a b b b a b b b a D n Λ ΛΛΛΛ ΛΛ=

相关文档
最新文档