格构柱的验算
钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算◆钢结构连接计算一、连接件类别不焊透的对接焊缝二、计算公式1.在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:2.在其它力或各种综合力作用下,σf,τf共同作用处。
式中N──-构件轴心拉力或轴心压力,取 N=100N;lw──对接焊缝或角焊缝的计算长度,取lw=50mm;γ─-作用力与焊缝方向的角度γ=45度;σf──按焊缝有效截面(helw)计算,垂直于焊缝长度方向的应力;hf──较小焊脚尺寸,取 hf=30mm;βt──正面角焊缝的强度设计值增大系数;取1;τf──按焊缝有效截面计算,沿焊缝长度方向的剪应力;Ffw──角焊缝的强度设计值。
α──斜角角焊缝两焊脚边的夹角或V形坡口角度;取α=100度。
s ──坡口根部至焊缝表面的最短距离,取 s=12mm;he──角焊缝的有效厚度,由于坡口类型为V形坡口,所以取he=s=12.000mm.三、计算结果1. 正应力:σf=N×sin(γ)/(lw×he)=100×sin(45)/(50×12.000)=0.118N/mm2;2. 剪应力:τf=N×cos(γ)/(lw×he)=100×cos(45)/(50×12.000)=0.118N/mm2;3. 综合应力:[(σf/βt)2+τf2]1/2=0.167N/mm2;结论:计算得出的综合应力0.167N/mm2≤对接焊缝的强度设计值ftw=10.000N/mm2,满足要求!◆钢结构强度稳定性计算一、构件受力类别:轴心受弯构件。
二、强度验算:1、受弯的实腹构件,其抗弯强度可按下式计算:Mx/γxWnx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.800×106 N·mm,10.000×106 N·mm;γx, γy──对x轴和y轴的截面塑性发展系数,分别取 1.2,1.3;Wnx,Wny──对x轴和y轴的净截面抵抗矩,分别取 947000 mm3,85900 mm3;计算得:Mx/(γxWnx)+My/(γyWny)=100.800×106/(1.2×947000)+10.000×106/(1.3×85900)=178.251 N/mm2受弯的实腹构件抗弯强度=178.251 N/mm2 ≤抗弯强度设计值f=215N/mm2,满足要求!2、受弯的实腹构件,其抗剪强度可按下式计算:τmax = VS/Itw ≤ fv式中V──计算截面沿腹板平面作用的剪力,取V=10.300×103 N;S──计算剪力处以上毛截面对中和轴的面积矩,取 S= 947000mm3;I──毛截面惯性矩,取 I=189300000 mm4;tw──腹板厚度,取 tw=8 mm;计算得:τmax = VS/Itw=10.300×103×947000/(189300000×8)=6.441N/mm2受弯的实腹构件抗剪强度τmax =6.441N/mm2≤抗剪强度设计值fv = 175 N/mm2,满足要求!3、局部承压强度计算τc = φF/twlz ≤ f式中φ──集中荷载增大系数,取φ=3;F──集中荷载,对动力荷载应考虑的动力系数,取 F=0kN;tw──腹板厚度,取 tw=8 mm;lz──集中荷载在腹板计算高度上边缘的假定分布长度,取lz=100(mm);计算得:τc = φF/twlz =3×0×103/(8×100)=0.000N/mm2局部承压强度τc =0.000N/mm2≤承载力设计值f = 215 N/mm2,满足要求!4、在最大刚度主平面内受弯的构件,其整体稳定性按下式计算:Mx/φbWx ≤ f式中Mx──绕x轴的弯矩,取100.8×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;Wx──对x轴的毛截面抵抗矩Wx,取 947000 mm3;计算得:Mx/φbwx = 100.8×106/(0.9×947000)=118.268 N/mm2≤抗弯强度设计值f= 215 N/mm2,满足要求!5、在两个主平面受弯的工字形截面构件,其整体稳定性按下式计算:Mx/φbWx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.8×106 N·mm,10×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;γy──对y轴的截面塑性发展系数,取 1.3;Wx,Wy──对x轴和y轴的毛截面抵抗矩,分别取 947000 mm3, 85900 mm3;Wny──对y轴的净截面抵抗矩,取 85900 mm3计算得:Mx/φbwx +My/ γyWny =100.8×106/(0.9×947000)+10×106/(1.3×85900)=207.818 N/mm2≤抗弯强度设计值f=215 N/mm2,满足要求!◆钢筋支架计算公式一、参数信息钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。
格构柱轴压检算

《钢结构设计规范》P65 《钢结构设计规范》P18
角焊缝最小尺寸 通过 通过
缀板强度验算
σ= τ = 67.61 34.7645 通过 通过
格构柱重量
2
∠160×16
缀板间净距离(cm) 50 计算长度(cm) 50 y0-y0截面回转半径(cm): 6.12 y0-y0截面惯性矩(cm4): 2865.262 回转半径(cm):i1= 6.12 λ 1(cm)= 8.17 λ 0y= 63.356 查表υ y= 0.788 N/(υ y×A)= 206.04 分肢稳定性检算 8.17 31.678
轴心压杆
截面估算
柱长(cm) l= 计算长度系数:μ 计算长度(cm):l0= 轴力代表值(kN):Nd= 荷载分项系数:γ G= 荷载设计值(kN):N= 假设长细比: λ = 查表υ y= 选用钢材 角钢屈服强度(N/mm2):fy= 角钢强度设计值(N/mm2):f= 厚度(cm): 所需截面面积(cm2)A= 1575 1 1575 4823.5 1.03 4968.205 70 0.839 Q235 345 310 1.6 191.019
计算λ
1
通过
λ 1(cm)= 判定条件
通过
缀板尺寸确定及刚度检算
缀板钢材屈服强度(N/mm ):fy= 缀板钢材强度设计值(N/mm2):f= 缀板钢材抗剪强度设计值(N/mm3):f= 分肢轴心纵向间距(cm)a= 2a/3= a/40= 缀板长(cm): 缀板厚(cm): 缀板高(cm): 缀板间净距(cm):129 《钢结构设计规范》P17
柱截面检算
单肢角钢截面面积(cm ): A= 4肢角钢截面面积(cm2): A= 相邻角钢最外边缘距离(cm) 单肢截面惯性矩 (cm4)Ic= 单肢重心距(cm)Z0= 76.5 306 60 2867 5.69 截面惯性矩(cm4) I= 192306.688 回转半径(cm)i= 25.069 λ y= 62.827
格构柱整体稳定验算2015.6.11

π2EA/(1.1λ2x)=
6428514.86
N'Ex=
π2EA/(1.1λ2x)=
5279795.67
N/φx+(βmx*Mx/WX(1-φx*N/N'Ex))+(βty*Mx/ Wy)=
153.98 ≤f
满足设计要求
56200 mm
长细比λx= 52.72 长细比λy= 58.17
截面类型为b类 由钢规表C-2查得 截面类型为b类 由钢规表C-2查得
稳定系数φx 0.842 稳定系数φy 0.818
格构柱内力计算
恒载标准值= 229
活载标准值= 145 风荷载标准值= 1.04 风荷载下格构柱MX 格构柱整体稳定计算
f=
215 mm2
极惯性矩Ip= 惯性矩Iy=
回转半径iy= 截面模量Wy=
面积距Sy=
20007508508 mm4 9022271600 mm4
966.0895 9022271.6 mm3 4665744.2 mm3
格构柱计算长度计算
稳定系数计算
柱高H=
计算长度系数μ= 计算高度H0
28100 mm 2
KN KN KN 410.5972 KN·m
恒载设计值= 320.6
活载设计值= 203 风荷载设计值=1.46 风荷载下格构柱My
KN KN KN 410.5972 KN·m
由钢规表5.2.2计算得 由钢规表5.2.2计算得
N'Ex=
平面内等效弯矩系数βmx= 1 平面内等效弯矩系数βty= 1
构件编号 设计假定
格构柱整体稳定性计算
ZJ-2 假定格构柱上端自由,下 端与基础刚接
格构柱截面特征值
钢结构格构柱分析

x f 174N / mm2
< x f
(可 )
4、计算缀条
fy Af 8000 215 Vmax 20235 N 85 235 85
缀条按=45º 布置
Nt V1 / cos 20235/(2 0.707) 14310 N
最后得二肢缀板柱绕虚轴的换算长细比
x x
2 x
2 1
④ 计算 l x
2 l x l x l x 1 1 2 x 设计时应先假设单肢节段长细比1才能计算换算长 细比。用换算长细比查x ,再按实腹式构件相同的公 式验算稳定性: N x f
b1
1 2 a 且 6mm b1 a , t 40 3
b1 ——缀板宽度 a ——肢件间距离(形心轴至形心轴) t ——缀板厚度
1
x y
1
a
作用:保证与柱肢刚性连接;对柱肢屈 曲起支承作用;使 λy的计算误差在 5%以内。
② 缀板用角焊缝与肢件连接 ,搭接长度 20 ~ 30cm。 ③ 应设置横隔(联),间距不大于 8m 且不大于 杆件较大宽度的9倍,每个发送单元不少于2个。 作用:保证柱子变形过程中截面几何形状的稳定 性;公式=M/W才能使用。截面抗弯模量W才能用材 料力学公式计算。
④ 计算 l x
A l x 1 27 2 A1x
l x
设计时,应先假设(斜)缀条面积,然后,用式(4- 15)算 ,再根据 查x。稳定验算公式同实腹式 x x 构件。
4.7.2缀板式柱
a)
b)
V/2=1/2 l1/2 1/2
δ
•一般各缀板等距离布置, 刚度相等。缀板内力按 缀板与肢件组成的多层 框架分析。屈曲时,除 发生格构柱整体弯曲外, 所有肢件也都发生S形弯 曲变形,如图4-9所示。
格构柱胎架计算

9. 施工验算9.1屋面梁支承台架根据屋面梁支承台架的平面布置情况和受力情况,屋面梁支承台架拟采用截面形式为Φ609×12的焊接钢管。
9.1.1截面特性A=πdt=π×597×12=22506mm2i x=i y=0.35d=0.35×597=208.95mm=20.9cmλ=l/i,截面为b类。
9.1.2承载力计算l=15m时, λ=l/i=1500/20.9=71.8, 查表得φ=0.74N=φAf=0.74×22506×215=3580745N=3580.7KNl=20m时, λ=l/i=2000/20.9=95.7, 查表得φ=0.583N=φAf=0.583×22506×215=2821015N=2821KNl=25m时, λ=l/i=2500/20.9=119.6, 查表得φ=0.439N=φAf=0.439×22506×215=2124229N=2124.2KNl=30m时, λ=l/i=3000/20.9=143.5, 查表得φ=0.331N=φAf=0.331×22506×215=1601639N=1601.6KNl=35m时, λ=l/i=3500/20.9=167.5,查表得φ=0.255N=φAf=0.255×22506×215=1233891N=1233.9KN9.2主拱支承台架根据主拱的分段情况和主拱支承台架的平面布置情况,主拱支承台架拟选用由角钢组成的格构式支架,如图所示:9.2.1组合截面规格为1000×1000组合截面规格为1000×1000,单肢采用L90×8的角钢、缀条采用L63×8的角钢,缀条间距为1m。
①截面特性角钢L63×8的截面特性:A=9.51cm2、I x=34.5cm4、i x=1.90cm、i x0=2.4cm、i y0=1.23cm、z=1.85cm角钢L90×8的截面特性:A=13.9cm2I x=109cm4 、i x=2.76cm、i x0=3.48cmI y=I xi y=i x=√(长细比A/A1x=(4×A/A1y=(4×λ1max②承载力计算l=15m时, λx=λy=l/i=1500/47.6=31.5换算长细比λ0x=λ0y=33.3, 查表得φ=0.924N=φAf=1104549N=1104.5KNl=20m时, λx=λy=l/i=2000/47.6=42换算长细比λ0x=λ0y=43.4, 查表得φ=0.885N=φAf=1057929N=1057.9KNl=25m时, λx=λy=l/i=2500/47.6=52.5换算长细比λ0x=λ0y=53.6, 查表得φ=0.84N=φAf=1004136N=1004.1KNl=30m时, λx=λy=l/i=3000/47.6=63换算长细比λ0x=λ0y=63.9, 查表得φ=0.786N=φAf=939584N=939.6KNl=35m时, λx=λy =l/i=3500/47.6=73.5换算长细比λ0x=λ0y=74.3, 查表得φ=0.724N=φAf=865469N=865.5KN③单肢承载力λ1=l1/i1=1000/17.8=56.2,查表得φ1=0.827N1=φ1A1F=247149N=247.1KN9.2.2组合截面规格为1500×1500组合截面规格为1500×1500,单肢采用L90×8的角钢、缀条采用L63×8的角钢,缀条间距为1m。
3D3S双层吊车格构柱厂房分析验算演示

幸福作品大家好才是真的好!3D3S双层吊车格构柱厂房分析验算演示1,利用门钢模块建立模型,目的是利用程序参数化导荷载的功能,将恒载活载风载导入模型;可利用夹层命令在柱子上添加第二层吊车的牛腿节点,然后再删除夹层梁;1)填写相关参数;2)得到带恒、活、风载的模型;2,在原有模型的基础上,编辑模型1)增加吊车肢,添加吊车肢截面,并调整上柱对下格构柱屋盖肢的偏心;2)添加格构缀条(角钢、圆管、方管),肩梁(肩梁采用等截面H型截面,翼缘宽度可取与上柱翼缘等宽,肩梁截面高度取下格构柱整体截面高度一半左右,腹板厚度不宜小于10mm);3)定义柱脚为分离式铰接柱脚;4)对格构缀条以及肩梁两端约束释放,均改为两端铰接;3,添加吊车荷载1)吊车参数添加(大连重工T=100t,sn=31米,中级),最大轮压412KN,最小轮压98.6KN,横向水平刹车力14.45KN,双层吊车,吊车空载轮压的计算通过满载轮压换算所得,区别在于满载的时候吊车吊重满载(100T),空载的时候,吊车吊重为0;空载最大轮压211KN,最小轮压78.4KN,空载时无横向水平刹车力;2)通过吊车影响线计算得出的作用于牛腿上的反力,可编辑,可考虑附加荷载;附加荷载主要指制动系统,制动板等上面的活荷载(包括人行活荷载),一般取2.0KN,以及积灰荷载(金工车间有);可通过人为对轮压反力乘一个1.05左右的系数来代替;4,进行地震分析1)地震参数填写;2)振型观察,周期显示;5,荷载组合编辑1)注意吊车荷载的情况,可取最不利的8种情况:(1)下满载上空载时下层吊车最大轮压在左,上层空载吊车最大轮压在左(右);(2)下满载上空载时下层吊车最大轮压在右,上层空载吊车最大轮压在左(右);(3)下空载上满载时上层吊车最大轮压在左,上层空载吊车最大轮压在左(右);(4)下空载上满载时上层吊车最大轮压在右,上层空载吊车最大轮压在左(右);(5)在以上8种情况下,每种情况再分横向水平刹车力向左(右),一共有16种情况;6,工况组合内力分析1)查看工况组合位移;2)查看工况组合最大内力(最大最小轴力、弯矩M2 M3);7,定义上柱、格构下柱各分肢的绕2、3轴的计算长度1)定义上柱平面内为程序自动计算(填0),平面外取上柱整长,考虑柱顶系杆以及层吊车梁的作用;2)假定柱间支撑为三层支撑,6+6+6,则2阶格构柱的整体平面外计算长度为6米,对于屋盖肢和吊车肢来说,整体平面外就是单肢绕强轴(3轴)的计算长度;单肢绕2轴,由于缀条的作用,其计算长度取为缀条间距,也就是分段长度;定义格构下柱分肢计算长度(注意,此时分肢的2、3轴方向与上柱相反,也就是说与常规结构相反,分肢绕3轴实际为整榀结构的平面外,绕2轴为整榀结构的平面内),绕2轴,由于有格构缀条的布置,其计算长度为分段长度,所以计算长度系数填为1,绕3轴为整榀平面外,假设格构下柱设置柱间支撑以及通常系杆(采用双角钢,分别支撑屋盖肢和吊车肢),所以绕3轴计算长度为系杆到柱脚的间距和系杆到吊车梁间距两者的大者;3)格构缀条按照2力杆设计,计算长度系数为1,肩梁按照简支梁验算,绕2轴计算长度为平面外整长长度;8,定义各构件的验算规范1)定义所有柱采用钢结构规范验算,定义屋面梁采用门钢规范验算;2)定义验算参数:屋面梁挠度参考门钢规范,无吊顶采用1/180,有吊顶采用1/240;柱顶位移,有吊车带驾驶室,1/400;3)进行单元验算:单元校核(应力比下限0.6,应力比上限1),勾选结构为有侧移结构,程序会按照有侧移计算柱的计算长度(一般厂房平面内为有侧移结构);4)查看验算结果,并调整构件截面直至合理经济。
3D3S双层吊车格构柱厂房分析验算演示

幸福作品大家好才是真的好!3D3S双层吊车格构柱厂房分析验算演示1,利用门钢模块建立模型,目的是利用程序参数化导荷载的功能,将恒载活载风载导入模型;可利用夹层命令在柱子上添加第二层吊车的牛腿节点,然后再删除夹层梁;1)填写相关参数;2)得到带恒、活、风载的模型;2,在原有模型的基础上,编辑模型1)增加吊车肢,添加吊车肢截面,并调整上柱对下格构柱屋盖肢的偏心;2)添加格构缀条(角钢、圆管、方管),肩梁(肩梁采用等截面H型截面,翼缘宽度可取与上柱翼缘等宽,肩梁截面高度取下格构柱整体截面高度一半左右,腹板厚度不宜小于10mm);3)定义柱脚为分离式铰接柱脚;4)对格构缀条以及肩梁两端约束释放,均改为两端铰接;3,添加吊车荷载1)吊车参数添加(大连重工T=100t,sn=31米,中级),最大轮压412KN,最小轮压98.6KN,横向水平刹车力14.45KN,双层吊车,吊车空载轮压的计算通过满载轮压换算所得,区别在于满载的时候吊车吊重满载(100T),空载的时候,吊车吊重为0;空载最大轮压211KN,最小轮压78.4KN,空载时无横向水平刹车力;2)通过吊车影响线计算得出的作用于牛腿上的反力,可编辑,可考虑附加荷载;附加荷载主要指制动系统,制动板等上面的活荷载(包括人行活荷载),一般取2.0KN,以及积灰荷载(金工车间有);可通过人为对轮压反力乘一个1.05左右的系数来代替;4,进行地震分析1)地震参数填写;2)振型观察,周期显示;5,荷载组合编辑1)注意吊车荷载的情况,可取最不利的8种情况:(1)下满载上空载时下层吊车最大轮压在左,上层空载吊车最大轮压在左(右);(2)下满载上空载时下层吊车最大轮压在右,上层空载吊车最大轮压在左(右);(3)下空载上满载时上层吊车最大轮压在左,上层空载吊车最大轮压在左(右);(4)下空载上满载时上层吊车最大轮压在右,上层空载吊车最大轮压在左(右);(5)在以上8种情况下,每种情况再分横向水平刹车力向左(右),一共有16种情况;6,工况组合内力分析1)查看工况组合位移;2)查看工况组合最大内力(最大最小轴力、弯矩M2 M3);7,定义上柱、格构下柱各分肢的绕2、3轴的计算长度1)定义上柱平面内为程序自动计算(填0),平面外取上柱整长,考虑柱顶系杆以及层吊车梁的作用;2)假定柱间支撑为三层支撑,6+6+6,则2阶格构柱的整体平面外计算长度为6米,对于屋盖肢和吊车肢来说,整体平面外就是单肢绕强轴(3轴)的计算长度;单肢绕2轴,由于缀条的作用,其计算长度取为缀条间距,也就是分段长度;定义格构下柱分肢计算长度(注意,此时分肢的2、3轴方向与上柱相反,也就是说与常规结构相反,分肢绕3轴实际为整榀结构的平面外,绕2轴为整榀结构的平面内),绕2轴,由于有格构缀条的布置,其计算长度为分段长度,所以计算长度系数填为1,绕3轴为整榀平面外,假设格构下柱设置柱间支撑以及通常系杆(采用双角钢,分别支撑屋盖肢和吊车肢),所以绕3轴计算长度为系杆到柱脚的间距和系杆到吊车梁间距两者的大者;3)格构缀条按照2力杆设计,计算长度系数为1,肩梁按照简支梁验算,绕2轴计算长度为平面外整长长度;8,定义各构件的验算规范1)定义所有柱采用钢结构规范验算,定义屋面梁采用门钢规范验算;2)定义验算参数:屋面梁挠度参考门钢规范,无吊顶采用1/180,有吊顶采用1/240;柱顶位移,有吊车带驾驶室,1/400;3)进行单元验算:单元校核(应力比下限0.6,应力比上限1),勾选结构为有侧移结构,程序会按照有侧移计算柱的计算长度(一般厂房平面内为有侧移结构);4)查看验算结果,并调整构件截面直至合理经济。
格构式轴心受压构件

柱的整体稳定性,对于缀条柱应使 不大于整个构件
最大长细比 (即 和 中的较大值)的0.7倍;
对于缀板柱,由于在失稳时单肢会受弯矩,所以对
单肢 应控制得更严格些,应不大于40,也不大于
整个构件最大长细比 的0.5倍(当
时,
取
)。
(4)缀条、缀板设计
格构柱的缀条和缀板的实际受力情况不 容易确定。柱受力后的压缩、构件的初弯曲、 荷载和构造上的偶然偏心,以及失稳时的挠 曲等均使缀条和缀板受力。通常可先估算柱 挠曲时产生的剪力,然后计算由此剪力引起 的缀条和缀板的内力。
1)缀条的计算 缀条的内力可与桁架的腹杆一样计算。如图,一个
斜缀条的内力 Nt 为
式中: V1 ――分配到一个缀条面上的剪力; n ――承受剪力 V1的斜缀条数,对单缀条 n=1 , 对交叉缀条 n=2 ; ――缀条的倾角,见图。
• 由于剪力方向的不定,斜缀条可能受压也可能
受拉,设计时应按最不利情况,所以应一律按轴 心受压构件设计。
• 轴心压杆在受力弯曲后任意截面上的剪力 V
(图)为
因此,只要求出轴心压杆的挠曲线 y 即可求 得截面上的剪力V 。考虑杆件的初始弯曲和荷载 作用点的偶然偏心等因素,可求出挠曲线 y 。我 国钢结构设计规范根据对不同钢号压杆所做了计 算结果,经分析后得到了计算剪力 V 的实用计算 公式
• 所得到的 V 假定沿构件全长不变,如图示。 • 有了剪力后,即可进行缀条和缀板的计算
格构式轴心受压构件
轴心受压格构柱的设计包括以下一些主要内容: ① 截面选择; ② 强度验算 ③ 整体稳定验算; ④ 单肢验算; ⑤ 刚度计算; ⑥ 缀条或缀板设计; ⑦ 连接节点设计; ⑧ 柱脚设计。 本节主要介绍六项内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)截面形式
轴心受格构柱一般采用双轴对称对称截面。
常用的截面形式是用两根槽钢或工字钢作为肢件(图a~c),有时也采用四个角钢或三个圆管作为肢件(图d、e)。
格构柱的优点是肢件间的距离可以调整,能使构件对两个主轴的稳定性相等。
工字钢作为肢件的截面一般用于受力较大的构件。
用四个角钢作肢件的截面形式往往用于受力较小而长细比较大的构件。
肢件采用槽钢时,宜采用图a的形式,在轮廓尺寸相同的情况下,可得到较大的惯性矩 I
x
,比较经济而且外观平整,便于和其他构件连接。
缀条式格构柱常采用角钢作为缀条。
缀条可布置成不带横杆的三角形体系或带横杆的三角形体系。
缀板式格构柱常采用钢板作为缀板。
(2)截面的初步选择设计截面时,首先应根据使用要求、受力大小和材料供应情况等选择柱的形式。
中、小型柱可用缀条柱或缀板柱,大型柱宜采用缀条柱。
然后根据轴力 N 和两个主轴方向的计算长度( l
0x 和l
0y
)初步选定截面尺寸。
具体步骤如下:
①计算对实轴的整体稳定,用与实腹柱相同的方法和步骤选出肢件的截面规格。
②计算对虚轴的整体稳定以确定两肢间的距离。
为了获得等稳定性,应使λ
x = λ
y
( x为虚轴,y 为实轴)。
用换算长细比
的计算公式,即可解得格构柱的λ
x
,对于双肢格构柱则有缀条柱
缀板柱
由λ
x 求出对虚轴所需的回转半径i
x
= l
0x
/λ
x
,可得柱的h≈ i
x
/a
1。
(1)强度验算
强度验算公式与实腹柱相同。
柱的净截面面积 A
n
不应计入缀条或缀板的截面面积。
(2)整体稳定验算
分别对实轴和虚轴验算整体稳定性。
对实轴作整体稳定验算时与实腹柱相同。
对虚轴作整体稳定验算时,轴心受压构件稳定系数应按换算长细比λ
0x
查出。
换算长细比λ
0x
,则按相关知识表中的有关公式计算。
(3)单肢验算
格构柱在两个缀条或缀板相邻节点之间的单肢是一个单独的轴心受压实腹构
件。
它的长细比为λ
1=l
0l
/i
l
,其中 l
01
为计算长度,对缀条柱取缀条节点间的
距离,对缀板柱焊接时取缀板间的净距离(图);螺栓连接时,取相邻两缀板边
缘螺栓的最近距离; i
1
为单肢的最小回转半径,即图中单肢绕1-1轴的回转
半径。
为了保证单肢的稳定性不低于柱的整体稳定性,对于缀条柱应使λ
1
不
大于整个构件最大长细比λ
max (即λ
y
和λ
0x
中的较大值)的0.7倍;对于缀
板柱,由于在失稳时单肢会受弯矩,所以对单肢λ
1
应控制得更严格些,应不大
于40,也不大于整个构件最大长细比λ
max 的0.5倍(当λ
max
<50 时,取λ
max
=50)。
(4)缀条、缀板设计
格构柱的缀条和缀板的实际受力情况不容易确定。
柱受力后的压缩、构件的初弯曲、荷载和构造上的偶然偏心,以及失稳时的挠曲等均使缀条和缀板受力。
通常可先估算柱挠曲时产生的剪力,然后计算由此剪力引起的缀条和缀板的内力。
轴心压杆在受力弯曲后任意截面上的剪力 V (图)为
因此,只要求出轴心压杆的挠曲线 y 即可求得截面上的剪力V 。
考虑杆件的初始弯曲和荷载作用点的偶然偏心等因素,可求出挠曲线 y 。
我国钢结构设计规范根据对不同钢号压杆所做了计算结果,经分析后得到了计算剪力 V 的实用计算公式
(6-29)
所得到的 V 假定沿构件全长不变,如图示
有了剪力后,即可进行缀条和缀板的计算.
(5)刚度验算
刚度验算公式同式(6-2)。
(6-2)
为了增强杆件的整体刚度,保证杆件截面的形状不变,杆件除在受有较大的水平力处设置横膈外,尚应在运输单元的端部设置横膈,横膈的间距不得大于柱截面较大宽度的9倍和不得大于8m。
横膈可用钢板或角钢做成,如图所示。
4.6.2 格构式构件截面设计的特
点
1.通过调整肢件之间距离较易实现等稳定性。
2.格构式构件绕实轴的稳定计算与实腹式构件相同,而绕虚轴的稳定性比具有同样长细比的实腹式构件小,因为,格构式构件的肢件是每隔一定距离用缀材连系起来的,当构件绕虚轴屈曲时,引起的变形比实腹式构件大,此变形是由弯曲和剪力两个因素共同引起的。
对实腹式构件,由剪力产生的变形很小,一般可忽略不计,但对格构式构件绕虚轴屈曲时,就必须考虑剪力所产生的变形及其对临界力的影响。
设计计算时,采用加大的换算长细比来代替整个构件对虚轴的实际长细比,这样就相当于降低了虚轴方向的临界力,以达到等稳定性要求。
换算长细比按[表4-6-1]进行计算。
3.格构式构件在整体失稳前存在着单肢失稳的可能,因此,应进行单肢稳定计算。