氯乙烯合成工艺设计

氯乙烯合成工艺设计
氯乙烯合成工艺设计

氯乙烯合成工艺设计

一、氯乙烯的性质与用途

1. 常温常压下,氯乙烯(vinyl chloride,CH2=CHCl)是无色气体,具有微甜气味,微溶于水,溶于烃类,醇,醚,氯化溶剂和丙酮等有机溶剂中,氯乙烯沸点-13.9℃,易聚合,并能与乙烯、丙烯、醋酸乙烯酯,偏二氯乙烯、丙烯腊、丙烯酸酯等单体共聚,而制得各种性能的树脂,加工成管材、面膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等[1]。

氯乙烯的物理性质见下表[2]:

2. 氯乙烯是易燃易爆物质,与空气混合能形成爆炸性混合物,高温或遇明火能引起燃烧或无抑制剂时可发生剧烈聚合。在氯乙烯与空气的混合物中加入氮气或二氧化碳可使爆炸范围变窄,减少爆炸危险。危险性类别:第2.1类易燃气体,禁忌物是强氧化剂,灭火方式是切断电源,灭火剂用雾状水、二氧化碳、泡沫,泄漏应急处理:迅速撤离泄露污染区人员至上风处并进行隔离,严格限制出入,切断火源,应急处理人员戴好正压式呼吸器,尽可能切断泄漏源[3]。

[2]

3. 由于光和热可引发氯乙烯单体聚合,故存储时应避免日晒,常温下存储应加入阻聚剂(如对苯二酚)防止其自聚,一般以液体状态存储和运输[1]。

4. 氯乙烯在工业上的主要应用时生产聚氯乙烯树脂,故常称其为氯乙烯单体(VCM)所谓聚氯乙烯树脂是一类由氯乙烯单体衍生的均聚物和共聚物,其中氯乙烯占树脂组分质量的50%,因此VCM的生产质量和成本直接影响到聚氯乙烯树脂的质量和成本。目前用于制造聚氯乙烯树脂的氯乙烯约占其产量的96%,VCM的需求量和产量在很大程度上取决于聚氯乙烯树脂的需求量。聚氯乙烯为五大和成树脂之一,由于其价廉易得、应用广泛,因此需求量和产量逐年上升。氯乙烯是离分子材料工业的重要单体,产量很大,还可用于合成1,1,2-三氯乙烷和1,1-二氯乙烯等。故氯乙烯的生产在基本有机化学工业中占有重要的地位[7]。

二、氯乙烯生产工艺简介

氯乙烯是1835年由法国人V.Regnault首先在实验室中制得,他用氢氧化钾的乙醇溶液处理二氯乙烷得到了氯乙烯。1902年,Biltz 将二氯乙烷进行热分解也可制得氯乙烷。1911年,kiatte和Rollett 利用乙炔和氯化氢催化加成反应合成了氯乙烯。1913年,Griesheim -Elektron用氯化汞作催化剂,使氯乙烯合成技术进一步发展。1931年,德国首先实现了氯乙烯的工业化生产,原料是乙炔和氯化氢,催化剂是氯化汞。

20世纪50年代以前,氯乙烯主要采用电石乙炔和氯化氢制得,即电石乙炔法。其生产流程简单,副反应少,产品纯度高。它具有设备、工艺简单,投资低,可以小规模经营的特点。但由于汞催化剂有毒,不利环境保护,且生产电石要消耗大量电能,以后由于电力和焦炭提价,电石价格大幅度提高,严重影响到氯乙烯的生产。之后出现了原料的部分转换,产生了联合法和烯炔法。

石油化工的迅速发展给氯乙烯工业带来了重大影响。1955-1958年,道化学公司首先将以电石乙炔为原料的路线转变为以乙烯为原料的工艺路线,建成一套氧氯化法生产氯乙烯的工业装置。氧氯化法的成功,不仅使制造氯乙烯的原料从乙炔完全转变为乙烯,而且为平衡氧氯化法制造氯乙烯打下了基础[8]。

2.1用乙烯和氯气为他原料合成氯乙烯,要经过两步反应,第一步是乙烯与氯气加成生成1,2-二氯乙烷(EDC),第二步是EDC裂解脱氯化氢生成氯乙烯。这种方法仅有一半的氯气用于生产氯乙烯,另一半变成氯化氢,排放浪费大量的氯资源污染环境。因此如何利用副产物氯化氢时氯化工业必须解决的技术经济问题[1]。

2.2联合法是将氯化氢用于与乙炔反应

+

=

CH=

+

CHCl

CH

CH

Cl

CH

CH

2

2

2

2

此法的优点是利用已有的电石资源和乙炔生产装置,迅速提高氯乙烯的生产能力,因此,在电石原料向石油系原料变换的初期,曾有不少工厂采用,但是,这种方法不能完全摆脱电石原料,只是一种暂时的方法[1]。

联合法流程示意图

2.3烯炔法是由石脑油得到乙烯和乙炔裂解气,不经分解直接氯化生产氯乙烯,是对联合法的改进,这种方法摆脱了电石原料,省去了分离乙炔和乙烯的费用,但技术复杂,投资较高,成本较高[1]。

2.4平衡氧氯化法[1]

由乙烯氧氯化合成二氯乙烷的反应,虽然在1922年就已经提出,但利用此反应制备氯乙烯的技术,是在20世纪50年代才开始实验室研究工作,至60年代初开始工业化,并逐渐取代联合法。乙烯氧氯化反应的成功开发,解决了氯化氢的利用问题,使以乙烯和氯气为原料生产氯乙烯的方法显出极大地优越性。

乙烯氧氯化生产氯乙烯包括两个反应,第一个反应时乙烯在铜催化剂存在下与氯化氢进行氧氯化反应生成EDC ,第二个反应是EDC 裂解脱氯化氢生成氯乙烯。

由乙烯氧氯化法的俩个化学计量式可知,每生产1mol 二氯乙烷需要消耗2mol 氯化氢,而1mol 二氯乙烷裂解只生产1 mol 氯化氢,氯化氢的需要量和产生量不平衡,伴有净得氯化氢消耗。若将氧氯化法与乙烯直接氯化过程结合在一起,两过程所产生的二氯乙烷一并进行裂解得到氯化氢,则可平衡氯化氢,即为平衡氧氯化法。该法由乙烯、氯气和氧气生产氯乙烯,整个工艺过程既不产生氯化氢,也不消耗氯化氢。平衡氧氯化法包括三个反应:第一个反应是乙烯与氯气进行氯化反应生成EDC;第二个反应是乙烯与氯化氢和氧进行氧氯化反应生产EDC ;第三个反应时EDC 裂解脱氯化氢生成氯乙烯。该方法的物料平衡式为:

O

H CHCl CH O Cl CH CH O

H Cl CH Cl CH O HCl CH CH 222222222240

~22022222/122/12+=→++=+-???→?++=

该方法是目前世界公认的技术经济较合理的方法,全世界93%以上的氯乙烯是采取平衡氧氯化法生产的。

三、电石乙炔法生产氯乙烯工艺[4]。

3.1 我国由于乙烯资源匮乏,煤碳资源相对丰富,电石原料易得,为电石乙炔法的发展创造了较大的利润空间,因此氯乙烯的生产以电石乙炔法为主,氯乙烯原料路线相对比较落后。

3.2 乙炔与氯化氢反应机理 乙炔与氯化氢加成得氯乙烯

kJ CHCl CH HCl CH CH 8.1242+=→+≡

加成反应是在气相中进行。虽然从热力学分析此反应很有利,但由于反应速度慢,因此必须在催化剂存在下进行。工业上采用的催化剂是HgCI 2/活性炭,其活性随Hgcl 2含量的增高而增大,一般HgCl 2含量为10-20%。该催化剂的主要缺点是活性稳定性较差。据研究,当反应温度<140℃时,活性基本稳定。但温度低,反应速度太慢,乙炔转化率低。反应温度高于140℃,催化剂就出现明显的失活,并随温度的升高而加剧。使催化剂失活的主要原因是活性组分HgCl 2的升华。当温度高于200℃时,就会有大量HgCl 2升华而使催化剂的活性迅速下降故反应温度的控制十分重要,工业上一段控制在160-180℃,HgCl 2蒸汽压与温度关系如下图。也有使用(氯化汞-氯化钡)/活性炭作催化剂,据报道此类复合催化剂活性和选择性都很高,并可以减少HgCl 2的升华现象,而使稳定性得到改善。

据研究乙炔在HgCl 2/活性炭催化剂上与氯化氢加成的反应机理可能为

吸附空位

-------**+=→+**

?*+CHCl CH H C HCl HCl HCl 222

C 2H 2/HCl 的摩尔比对催化剂的活性和反应选择性也有影响。当用量比大时,过量的乙炔会与催化剂活性组分HgCl 2作用,生成1,2-二氯乙烯,并使HgCl 2转化为Hg 2C12或甚至析出汞。Hg 2C12和汞都无催化作用,从面使催化剂的活性下降。因此C 2H 2/HCI 摩尔比不宜过大。但太小也会降低反应选择性,因为过量的HCl 会与氯乙烯进一步发生加成反应而生成1,1-二氯乙烷。一般采用HCl 略为过量。

232CHCl CH HCl Cl CH CH →+-=

3.3 乙炔气相加氯化氢制氯乙烯工艺流程

乙炔加氯化氢是放热反应,局部过热会影响催化剂的寿命,因此必须及时地移出反应热。工业上常采用多管式的固定床氯化反应器,管内盛放催化剂,干燥和已净化的乙炔和氯化氢的混合气自上而下地通过催化剂层进行反应。管外用加压热水循环进行冷却。由于受到热点温度的限制,乙炔空速也受到限制。要充分发挥床层催化剂的效率,就必须使整个床层温度都接近最佳的允许温度。采取分段进气、分段冷却和适当调整催化剂活性等方法,可使床层温度分布得到改善,乙炔空速可以提高,因而催化剂的生产能力也可以显著提高。

乙炔加氯化氢制氯乙烯的工艺流程如图所示。乙炔可由电石水解得到,经净化和干燥后与干燥的HCl以1:1.05-1.1的比例混和进入反应器进行加成反应,乙炔转化率可达99%左右,副产物1,1-二氯乙烷的生成量约为1%左右。自反应器出来的气体产物中除含有产物氯乙烯和副产物1,1-二氯乙烷外,还含有5-10%HCl,和少量未反应的乙炔。反应气经水洗和碱洗除去HCl等酸性气体,并用固体KOH进行干燥,再经冷却冷凝得粗氯乙烯冷凝液。粗氯乙烯先经冷凝蒸出塔脱去溶于其中的乙炔等气体后,至氯乙烯塔进行积储,除去1,l-二氯乙烷等高沸点杂质,塔顶蒸出产品氯乙烯贮于低温贮槽。

四、电石乙炔法中电石渣的处理[6]

1. 电石渣一直都是电石法制取氯乙烯的生产者最烦恼的问题。电石渣由于含有大量的氢氧化钙固体,具有强烈的碱性,并含有较高的硫化物,以及其它微量的杂质。此外,电石渣作为副产物,在数量上却大大超过产品聚氯乙烯树脂。根据生产经验,每生产一吨树脂,可以得到含固量5~15%的电石渣浆9~15吨,或含固量50%的干渣3~5吨。因此,若对电石渣不予处理而直接排放,必将造成极大的污染,成为聚氯乙烯工厂最大的“三废”。1963年冬季,美国在肯塔基州路易斯维尔城的某广,堆积二十多年的、面积为5万多平方米、高度达30多米的电石渣,发生了大崩溃,吞没本厂和邻近的炼油广,污染了俄亥俄河,付出了极大的代价。

目前,多数工厂只将发生器排出的电石渣浆经过一级沉降分离,对干渣进行利用。而将分离后的沉清水直接排放,这是不妥当的,因为沉清水即使达到“眼见不混”,其pH值也高达14,硫化物含量等都超过国家的“三废”排放标难,因此有必要对电石渣浆沉清水进行中和及脱硫处理。

2.综合利用处理电石渣,一般来说,发生器排出的电石渣浆经过初步澄清分离后,可以得到含水45~60%的所谓干渣,以及“眼见不混”(含固量约500毫克/升)的澄清水。根据

各厂的经验,这两部分都可以综合利用,现分述如下。

(1)干渣多数利用其氢氧化钙(消石灰)组分

①加煤渣制作砖块或大型砌块;②作铺设地坪、道路的材料;③工业或农业的中和剂;

④代替石灰水用于生产漂白液和漂白粉;⑤代替石灰水用于生产氯仿;⑥代替石灰水用于生产三氯乙烯;⑦代替石灰生产水泥;⑧最近己试制成功一种质深、强度高的粉煤灰加气混凝土砌块,它是由电石渣、粉煤渣、石灰、石膏、水泥和废气为原科制成,可用于高层建筑施工。

(2)澄清水

①用作氯产品中含氯尾气的吸收液,生成有效氯在15%左右的漂白液;②部分循环用作发生器用水,某工厂已有生产试验数据;(有人认为全部循环利时,应注意硫化物的浓缩)③采取通氯氧化脱硫及中和处理后,全部循环用于发生器反应用水。

五、氯乙烯生产过程的安全防护[6]

(1)乙炔属微毒类化合物,具有轻微的麻醉作用。车间空气中最高允许浓度为500毫克/米,大量吸入乙炔后应及时呼吸新鲜空气,反应较严重的患者应采取人工呼吸或输氧治疗。

(2)氢氧化钠对皮肤有腐蚀和刺激作用,高浓度碱液引起皮肤及眼睛等灼伤或溃烂。操作或检修时必须戴涂胶手套、防护眼镜或面罩,如溅入皮肤或眼睛,应立即用大量冷水反复冲洗,或用硼酸水(3%)或稀醋酸(2%)中和,必要时再敷软膏。

(3)氯气对呼吸道及支气管有强烈的刺激和破坏作用,大量吸入时可引起中毒性肺水肿、昏迷、甚至死亡。车间空气中最高允许浓度限定为1毫克/米,当有氯气外溢时,应戴着防毒面具来处理事故。急性中毒者须立即呼吸新鲜空气,注意静卧保暖,并松解衣带,必要时输氧,轻微吸氯者可服“解氯药水”,患肺水肿者可采用每日吸几次5%碳酸氢钠雾化空气进行治疗。

(4)次氯酸钠对皮肤和眼睛有严重腐蚀和刺激作用,高浓度液体引起皮肤灼伤及眼睛失明。操作或检修时应戴涂胶手套和防护眼镜,如溅在皮肤上可用稀的苏打水或氨水洗涤,或用大量水冲洗。

(5)氮气氮气是窒息性气体,短时间内可使人由息而死亡,因为它属于无毒气体而常为人们所忽视。进入用氮排气过的发生器和气柜之前,应将人孔等打开,必要时用排风扇鼓风,使空气流通或水冲洗后方能进行操作。

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排: 三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这种简单的除尘方式很难达到环保要求,除尘效率不高。 ②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。 (3)袋式过滤除尘 布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程

氯化氢合成及盐酸合成技术方案

氯化氢合成及盐酸合成技术方案. 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案

天成化工氯化氢合成技术方案 编号:ntxqlhqhc-2012-12-30 买方:天成化工 卖方:南通星球石墨设备有限公司日期:二0一二年十二月三十日 一.装置配置描述 2 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案

1.1.根据用户的要求,为用户选用我公司生产的组合式二合一副产蒸汽石墨合成炉,生产HCl气体高纯盐酸及普通盐酸。 1.2.按SZL-1500型组合式二合一副产蒸汽石墨氯化氢合成炉。配置,数量:4台,开3备1。 1.3.设置配套盐酸吸收系统:5套其中一套是专门用来生产高纯盐酸,4套用来生产工业盐酸。采用二级降膜吸收+尾气塔吸收,满足高纯盐酸和普通盐酸的生产。 1.4操作弹性范围:30%~110%。 1.5年操作时间:按8000小时/年设计。1.6产能: (1)、高纯盐酸:35000吨/年 (2)、氯化氢:120000吨/年 3 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案 二.主产品及副产品技术规格 2、1,31%高纯盐酸规格: 指标名称单标准要求

总酸度HCmg31mg/LL钙质量浓(C计 mg0.2mg/LL镁质量浓(M计mg0.05mg/LL 铁质量浓度(F计mg0.3mg/LL游离 mg20mg/LL 蒸发残渣mg/ 15 ≤mg/L L 外观为无色透明液体

2.2.工业盐酸: 指标名称单位标准 要求31 )总酸度(HCl ≥0.006 铁质量浓度(以% ≤计)Fe 0.005 % 硫酸盐(以SO4≤计)0.0001 % 砷 4 南通星球石墨设备有限公司天成化工氯化氢合成及高纯盐酸合成技术方案 灼烧残渣≤% 0.08 0.005 %计氯化(C≤2.3.氯化氢气体:96%(vol) 纯度:≥

氯化氢合成与吸收工艺设计及运行总结

氯化氢合成与吸收工艺设计及运行总结 王真贝,黄建成 (江苏扬农化工集团,江苏扬州225000) [关键词]:氯化氢合成石墨二合一氯化氢吸收设备选型运行情况 [摘要]:对扬农化工集团产能扩建项目中盐酸合成工艺的设计过程进行了简要的概述。对于设备选型以及后期运行情况进行了分析,并对生产过程出现的异常现象以及处理办法进行了描述。 Hydrogen chloride synthesis and absorption of process design and operation summary Wang Zhenbei*,Huang Jiancheng (Jiangsu Yangnong Chemical Industry Co.,Ltd., Jiangsu Yangzhou 225000,China) [key words]: hydrogen chloride synthetic graphite hydrochloric acid absorption type equipment operation [Abstract]: the design process of the synthesis of hydrochloric acid production capacity expansion project Yangnong Chemical Industry Co.,Ltd., in brief. For equipment selection and post operation are analyzed, the abnormal phenomenon and appeared on the production process and processing method are described. 1、前言 盐酸是氯碱化工的主要产品之一,目前盐酸合成工艺多数采用合成和吸收两大操作单元组成。合成炉是制造氯化氢气体或盐酸的主要设备。过去工艺上应用比较广泛的是钢制合成炉,而近期均以石墨合成炉为主。由于石墨材料具有耐腐蚀、耐高温、传热效率高等优点,其应用越发广泛。配合夹套冷却的合成炉可以降低炉内氯化氢温度,提高生产能力,甚至可以利用反应热副产蒸汽。[1] 扬农化工集团氯碱分厂离子膜以及隔膜电解工艺碱产能为12万吨/年,配套产生氯气3.5万吨/年,盐酸工段作为氯气平衡的工段之一,采用氢气和氯气反应生成氯化氢,再用吸收水吸收产生32%盐酸作为产品出售。原来盐酸工段有φ700的合成炉2台,单套产能为1.5万吨/年,为满足集团产能扩大的发展需求,新增1台φ1200的石墨二合一氯化氢合成炉,炉体采用内衬石墨,外体钢制的合成炉,配套吸收系统。此类合成工艺具有以下特点:1、炉体温度低 (530±30)℃;2、设备寿命长,平均使用寿命约2年;3、制造及安装方便;4、吸收效率高;5、操作弹性较大;6、系统三废产生量少。 2、工艺设计要求 合成炉选用石墨合成炉。本次设计是在扬农集团多年积累的设计经验、运行的基础上,设计出工艺合理、设备优选、产能以及质量满足要求的φ1200石墨二合一氯化氢合成炉。 3、工艺参数计算 本合成工艺设计按照年产2.5万吨32%盐酸,年生产天数330天计算。合成炉系统工艺由合成炉本体、空冷管道(配马槽通冷水冷却)、石墨冷却器、三级吸收塔、水流泵等部分组成。具体工艺流程见图1。

制备氯乙烯方法比较

制备氯乙烯方法比较 班级:10化工(1)班姓名:吴倩学号2010115146 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。 乙烯、乙炔和混合烯炔法的特点如下: 一.乙烯氧氯化法 氧氯化法是利用氯化氢合成有机物的一般称呼。其反应如下 CH2=CH2 +2HCl+1/2 O2→ClCH2CH2Cl+ H2O ClCH2CH2Cl→CH2=CHCl +HCl 二.乙炔法 在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯: CH≡CH+H Cl→CH2=CHCl 其过程可分为乙炔的制取和精制,氯乙烯的合成以及产物精制三部分。 此法工艺和设备简单,投资低,收率高;但能耗大,原料成本高,催化剂汞盐毒性大,并受到安全生产、保护环境等条件限制,不宜大规模生产。电石乙炔法已基本被世界淘汰,但这是我国目前主要的氯乙烯的生产方法。该法的氯乙烯产量占总产量的50%以上。这种方法在我国煤炭和矿石资源丰富的地区,在当前石油涨价的世界经济背景下仍然可获得较高的经济效益。 三.乙烯直接氯化法 CH2=CH2+Cl2→CH2=CHCl+HCl 这是石油化工发展后以石油为基础开发的生产工艺。此法的最大缺点是伴随反应生成了大量的1,2-二氯乙烷,产率较低。该工艺比目前广泛采用的乙烯平衡氧氯化法流程短,能耗

聚氯乙烯氯乙烯合成实用工艺原理讲解

合成工艺讲解课件 1、合成工序的生产任务:本工序的主要任务是将盐酸工序送来的HCL和乙炔工序送来的C2H2经混合脱水、转化、清净、压缩、精馏过程生产出纯度为99.99%的氯乙烯单体供聚合使用。 合成工序是烧碱和PVC的衔接工序,前为盐酸工序和乙炔工序,后供聚合,是PVC的工艺核心。 2、氯乙烯 C2H3Cl 分子量:62.5 物理性质:在常温常压下氯乙烯是一种无色有乙醚香味的气体,其沸点为-13.9℃,凝固点为-159.7℃。 爆炸性: 氯乙烯易燃,与空气混合形成爆炸性混合物,爆炸范围4-21.7%(体积比)。 毒性:氯乙烯对人有麻醉作用,对肝脏有影响,可使人中毒。当其浓度在0.1%以上时,开始有麻醉现象,表现为困倦,注意力不集中,随后出现视力模糊,走路不稳,在其浓度达20-40%时,可使人产生急性中毒,呼吸缓慢以致死亡,长期接触能引起消化系统疾病。空气中允许浓度为30mg/m3 3、乙炔:C2H2 ,分子量:26 物理性质:在常温下纯乙炔为无色气体,工业乙炔因含有硫化氢、磷化氢等杂质,而具有特殊的刺激性的气味。沸点:-83.66℃凝固点:-85℃ 爆炸性:下列情况下可以爆炸: A:高温(550℃)加压(>1.5表压)或有某些物质存在时,如电石氧

化铝、铜屑、氢氧化铁等。 B:与空气混合在2.3-81%范围时,特别在含乙炔7-13%时。 C:与氧混合在2.5-93%范围时,特别在含乙炔30%时。 D:当乙炔和氯气混合时,在阳光下即能爆炸。 E:与铜、汞、银接触生成相应的金属化合物时。空气中允许浓度为500mg/m3。 4、氯化氢:HCl,分子量:36.46 物理性质:是一种无色有刺激性气味的气体。沸点:-84.8℃,极易溶于水 化学性质:性质活泼,除贵金属外能与大多数金属反应,生成金属氯化物,对各种植物纤维亦有强烈的腐蚀性。 空气中允许浓度为15mg/m3 5、阻火器及乙炔砂封的工作原理。 目前阻火器普遍使用的是金属丝网过滤器,筒体内部布置了较多的金属丝网, 目的是吸收热量,因为金属是热的良导体,从而阻断了燃烧三要素之一:燃烧所需要的热量。 燃烧三要素是可燃物、助燃物、燃烧所需的热量。由于吸收了大量的热量,使的即使存前两个因素都存在,但是由于热量不够,使得可燃物达不到燃烧(自燃)所需要的温度,自然就燃烧过程就无法继续进行,只能终止。 简单的说阻火器的灭火原理是当火焰通过狭小孔隙时,由于冷却

氯乙烯的制备

氯乙烯单体的制备 培训教材

第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 二、反应基本原理 三、产品说明 四、工艺流程简述 五、工艺流程方框图 六、生产中原辅材料和成品的性质 第二章工艺流程 第一部分混合脱水和合成系统 一混合脱水系统 二、氯乙烯的合成系统 三、氯乙烯合成对原料气的要求 四、氯乙烯合成反应条件的选择 五.混脱和合成系统工艺流程方框图 第二部分粗氯乙烯的净化和压缩 一、净化的目的 二、净化原理—水洗和碱洗 三、盐酸脱吸 四、粗氯乙烯的压缩 五、粗氯乙烯的净化和压缩系统工艺流程方框图 第三部分氯乙烯的精馏 一、精馏的目的和方法 二、精馏的一般原理 三、精馏操作的影响因素

四、单体质量对聚合的影响 五、先除低沸物后除高沸物精馏工艺的优点 六. 氯乙烯精馏系统工艺流程方框图 第四部分精馏尾气变压吸附回收 一. 工艺原理 二、吸附平衡 三、工艺生产过程 四、变压吸附部分操作条件表 第五部分氯乙烯的贮存及输送 第三章、安全技术措施:

氯乙烯的制备培训教材 第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 本工段的生产任务是将精制后的乙炔气(纯度≥98.5%)、与氯化氢工段送来的氯化氢气体(纯度≥93%)按一定量配比(1:1.05)混合,经混合脱水、预热后进入装有氯化高汞触媒的转化器合成粗氯乙烯气体,并经水洗、碱洗、加压、精馏制得纯度达99.9%以上的合格氯乙烯单体,供聚合聚氯乙烯树脂使用。 二、反应基本原理 HCL+C H≡CH→CH2=CHCL+124.6KJ/mol 氯乙烯的物化性质: 氯乙烯在常温、常压下是比空气重一倍的微溶于水的无色气体,带有一种麻醉性的芳香气味。氯乙烯分子式是C2H3CL,分子量62.51。 主要参数: 沸点:-13.9℃凝固点:-159℃ 爆炸范围(空气中)3.6%~32%(体积含量) 爆炸范围(氧气中)4%~70%(体积含量) 冲N2或CO2可缩小其爆炸浓度范围。 纯的氯乙烯气体加压到0.5MPa时,可用工业水冷却得到比水略轻的液体氯乙烯。 液态氯乙烯无论从设备或从管道向外泄漏,都是极其危险的,一方面它遇到外界火源会爆炸起火,另外,由于它是一种高绝缘性液体,在压力下快速喷射,就会产生静电积聚而自发起火爆炸。因此,输送液态氯乙烯时宜选用低流速(一般≤3m/s),并将设备与管道进行防静电接地。 +

乙烯氧氯化法生产氯乙烯[1]概要

乙烯氧氯化法生产氯乙烯 一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法

氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为:CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12 → CH 2C1—CH 2C1 CH 2C1—CH 2C1 → CH 2=CHC1十HC1 十HCl → CH 2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸

氯化氢合成

氯化氢合成、冷冻工艺介绍 第一章氯化氢合成岗位任务 1.氯化氢合成的任务 调节氢气与氯气配比,通过燃烧合成合格的氯化氢气体,供转化工序使用,或用水吸收制成合格的盐酸。 2.罐区岗位任务 将转化回收酸及二合一工业酸回收至罐区贮槽,然后利用二合一工业酸将回收酸配制成浓度≥28%的盐酸送盐酸解析。 第二章氯化氢合成岗位工作原理 1.反应方程式 H2+Cl2 2HCl↑+44.126J 2H2+O2 2H2O+Q 3Cl2+2Fe 2FeCl3+Q 2.氢气的纯度对合成反应的影响 如果氢气纯度低,氢气中必定含有较多的空气和水分。当氢气中含氧达到5%以上时则形成氢气与氧气的爆炸混合物,不利于安全生产。氢气中含少量水分,虽然可以促进氢气与氯气的合成反应,但含水分过高则会造成合成炉等设备的腐蚀。此外,更重要的是,氢气纯度(主要含氮气、氧气)将影响到合成和干燥后产品氯化氢的纯度,降低石墨换热器的传热系数,最终影响到氯乙烯合成和精馏系统的收率。造成精馏尾气放空惰性气体量和含氯乙烯与乙炔浓度的增加。 3.氯气的纯度对合成反应的影响 若氯气纯度低,氯气中必定含有较多的氢气与水分,当氯气中含氢量达到5%以上时,则形成氢气与氯气的爆炸混合物,不利于安全生产。含水分和纯度对氯乙烯生产的影响如2所述4.氢气与氯气的配比对合成反应的影响 根据氢气与氯气反应方程式,两者理论是按照1﹕1分子比合成的,但工业上都是控制氢气过量的。一般在氯化氢合成中控制分子比为氢气﹕氯气=(1.05~1.1)﹕1。在合成盐酸的合成炉中,氢气过量还多些。氢气过量最多不能超过10%,不然会造成产品氯化氢纯度下降,乃至影响氯乙烯收率。而氢气过量超过20%则有可能形成爆炸混合物,不利于安全生产。 但如果氯气过量,则游离氯易与炉壁以及冷却管等反应生成黄色结晶氯化铁而腐蚀设备。游离氯还将在降膜式吸收塔中与水反应生成次氯酸,对不透性石墨起缓慢的局部氧化作用。即使少量的游离氯,也将在氯乙烯合成的混合器中与乙炔发生气相反应,生成极易爆炸的氯乙炔,造成氯乙烯合成系统的爆炸。因此,为杜绝氯化氢中产生游离氯,合成反应中严格控制氢气过量并控制在5—10%,并随时注意氯、氢流量和视镜中燃烧火焰的颜色变化。 第三章工艺流程 1.氯化氢合成工艺流程 来自氯氢处理工序的氯气、氢气,经氯气、氢气缓冲罐、氢气阻火器进入二合一合成炉内燃烧,生成氯化氢气体自炉顶排出,经空气冷却管、氯化氢缓冲罐进入石墨冷却器,冷却后的氯化氢送至转化工序。 流程方框图 电解----氢气缓冲罐-----阻火器---(电解---氯气缓冲罐)合成炉----空冷管----氯化氢缓冲罐---石墨冷---转化&降膜吸收 2.制酸的工艺流程 合成的氯化氢气体从石墨冷却器出口经降膜吸收系统,大部分氯化氢被稀酸吸收,生成盐酸

氯乙烯合成与净化

沈阳化工大学 化工设计 氯乙烯合成与净化的工艺流程设计 说明书 专业:化学工程与工艺 班级:科化工0701 学生姓名:A于子钧,潘磊 B 邓小丹,刘莉,徐军军,李慧 指导教师: 设计时间: 2 010 年11 月 所属设计组:科化工1班(A、B)组 成绩:

目录 一、总论 (3) 1.1.氯乙烯简介 (3) 1.2.氯乙烯生产技术及进展 (3) 1.3.历史沿革 (4) 1.4.生产方法 (4) 1.4.1.乙烯氧氯化法 (5) 1.4.2.乙炔法 (6) 1.4.3.混合烯炔法 (7) 二、生产流程简述 (7) 三、生产流程图 (8) 四、操作条件 (8) 五、计算结果 (10) 六、结束语 (11)

一、总论 1.1.氯乙烯简介 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。 1.2.氯乙烯生产技术及进展 氯乙烯工业化生产始于20世纪20年代,早期生产方法采用电石为原料的乙炔法路线,电石水解生成乙炔,乙炔与氯化氢反应生成VCM。由于该工艺能耗较高,污染严重,因此自以乙烯为原料的工艺路线问世之后就逐渐被淘汰。目前全世界范围内95%以上的VCM产能来自乙烯法工艺。另外,为利用廉价的烷烃资源,Geon、Lummus、EVC(Ineos)等还开发了以乙烷为原料的VCM工艺路线。 乙烯氧氯化法由美国Goodrich公司于1964年首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产VCM的产能约占VCM总产能的95%以上。 乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC 和EDC裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC精制单元和VCM精制单元等工艺单元组成。乙烯和氯气在直接氯化单元反应生成EDC。乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。生成的粗EDC在EDC精制单元精制、提纯。然后在精EDC裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。 直接氯化有低温氯化法和高温氯化法;氧氯化按反应器型式的不同有流化床法和固定床法,按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。具有代表性的Inovyl公司的VCM工艺是将乙烯氧氯化法提纯的循环EDC和直接氯化的EDC在裂解炉中进行裂解生产VCM。经急冷和能量回收后,将产品分离出HCl(HCl循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。来自VCM装置的

氯化氢合成工段操作规程

第一章产品及原料概述 一原料氯气 1、分子式:Cl2 2、分子量:35.5 3、物理性质: 氯气在常温、常压下为黄绿色气体,具有强烈的刺激性气味,对肺和呼吸道粘膜有损害作用。略重于空气,微溶于水,氯气的水溶液叫氯水,氯水具有氧化性,氯气与水在低于9.6℃时形成黄色水合物(Cl·8H2O)。 4、化学性质: 氯气化学性质活泼,具有较强的氧化性,能与许多单质及化合物起反应,因此,具有强烈的腐蚀性。 二、原料氢气 1、分子式:H2 2、分子量:2 3、性质:氢气是一种无色、无味、易燃的气体,具有还原性,在水中及其它溶液中溶解度极小。液态氢具有超导性质。氢是最轻的物质,在空气中体积含量为4—74%时,即形成爆炸性混合气体。 三、产品氯化氢: 1、分子式:HCl 2、分子量:36.46 3、物理性质: 密度:气态氯化氢在标准状况下的密度为1.63Kg/m3,相对密度(与空气密度之比)为1.2679。 溶解度:气态氯化氢极易溶解于水,在20℃,101.325Kpa下,1体积水能溶解442体积的氯化氢气体,但氯化氢在水中的溶解度随温度的升高而逐渐下降。 表1—1 在不同的温度和压力下(101.325KP)下氯化氢在水中的溶解度

4、化学性质: (1)、氯化氢为共价极性分子,化学性质活泼,具有强烈的腐蚀性,但在较高温度特别是在最高露点108.65℃以上时,几乎对碳钢无显著腐蚀作用,若温度保持在108.65—250℃之间,氯化氢对碳钢的腐蚀速度可保持在适度的范围之内。另外,石英、石棉、酚醛树脂、耐酸陶瓷、耐酸人造树脂、塑料以及一些金属合金比较耐氯化氢气体的腐蚀。 (2)、加聚反应 氯化氢气体再有机合成中的一类主要反应为加成反应 ═CHCL→ CH—CHCL n CH≡CH+HCL→nCH 2 此反应为工业制PVC的基本反应,氯化氢工段合成氯化氢的目的也在于此。 四、产品盐酸 氯化氢的水溶液,即盐酸,是一种重要的工业原料和化学试剂,用于制造各种氯化物,常用的浓盐酸的质量百分数为37% ,密度1.1g.cm-1,浓度12mol.l-1.工业上生产的盐酸质量浓度为31% ,可广泛用于冶金工业中金属清洗,电力工业中锅炉除垢。采矿工业中矿产品精加工;石油工业中油井酸化;电子工业中集成块及印刷线路板去杂质,食品工业中调味品生产;纺织工业中织物漂白分解促进剂;印染工业中偶氮染料之胺化。 五、产品:高纯盐酸 1、区别: 普通盐酸和高纯盐酸的物理化学性质都相同,它们的区别仅仅在于:高纯盐酸是用高纯水吸收制得的盐酸,而普通盐酸是用普通水吸收制得的盐酸。高纯盐酸所含的杂质比普通盐酸少得多。 2、用途:高纯盐酸是离子膜制碱工艺不可缺少的化学品之一,它主要用于调整离子膜电解槽二次精盐水的PH值,鳌合树脂塔中树脂的再生和脱氯淡盐水的酸化。除用于离子膜制碱工艺外,还可以稍加处理制成试剂级盐酸。由于它的纯度高,在制造高品味的调味粉,酱油等食品工业及电子业中有这广泛的意义。 3、物化性质: (1)、高纯盐酸是无色、透明、有刺激性气味的液体。 (2)恒沸点——此乃盐酸的特性,浓盐酸在加热蒸馏时,其馏出物是含有少量水份的氯化氢气体,(此乃盐酸脱吸制氯化氢气体的依据。)在0.1Mpa情况下,这种蒸馏一直持续到浓度降低为20.24%,温度上升至108.65℃为止,达此温度之后不再上升,故称恒沸点。横沸溶液之比重仅为1.101。因此,决不可能借助于加热煮沸来完全除去溶液中的氯化氢。 第二章工艺原理

氯乙烯合成工艺设计

前言 氯乙烯单体(VCM)几乎全部(98%以上)都用来生产聚氯乙烯(PVC)。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。传统工艺的电石法精馏氯乙烯质量已不能满足PVC 树脂的生产要求,受其工艺流程及精馏塔塔型的限制,原氯乙烯精馏装置规模小,产品质量较差,尾气放空量大,造成氯乙烯、乙炔流失量大,导致生产成本较高,环境污染严重。 最初的氯乙烯生产全部以乙炔为原料。60年代后期,随着乙烯装置大型化及乙烯氧氯化技术的成熟,乙烯法在经济和环保等方面占有明显的优势,在世界范围内乙炔法迅速被乙烯法取代。迄今为止,全世界氯乙烯装置93%以上采用乙烯法,在工业发达国家如日本,以全部淘汰了乙炔法,仅在我国及其它发展中国家仍占有相当比重。目前国内比较先进而又经济可行的成熟工艺技术是电石乙炔法 本设计用美国ChemStations公司开发的流程模拟软件ChemCAD软件对电石乙炔法制备VCM进行了工艺模拟设计与计算,计算主要包括物料衡算和热量衡算,用计算所得到的相关数据对此工艺中所涉及到的设备进行选型,主要包括塔的选型、换热器的选型、泵的选型等,然后用PDSOFT三维软件对车间设备进行布置,为工业生产提供参考。 1

1 总论 1.1 概述 1.1.1 意义与作用 氯乙烯(简称VCM),是无色的、易液化的气体。易聚合,也能与丁二烯、乙烯、丙烯、丙烯睛、酷酸乙烯、丙烯酸醋和马来酸醋等共聚。主要用于制备PVC,也用于制备偏二氯乙烯、冷冻剂等。氯乙烯单体几乎全部(98%以上)都用来生产聚氯乙烯。余下的则用于生产聚氯乙烯氯化物和氯化溶剂。通过对二氯乙烷(EDC)裂解后脱除HCL,以及干燥精制可获得制造PVC级的VCM。由于资源结构的特点,世界上只有我国的氯碱行业有电石法生产PVC,其他国家都是通过乙烯法生产PVC,即乙烯直接氯化、氧氯化生产EDC,进而裂解生产VCM制造PVC。其中96%VCM均用于生产PVC。 聚氯乙烯(简称PVC)是五大热塑性合成树脂之一,以其价廉物美的特点,占合成树脂总消费量的29%左右,仅次于聚乙烯居第二位。由于PVC树脂具有优良的耐化学腐蚀性、电绝缘性、阻燃性、质轻、强度高且易加工、成本又低,因而PVC制品广泛用于工业、农业、建筑、电子电器及人们生活中的各个领域。PVC硬质制品可代替金属制成各种工业型材、门窗、管道、阀门、绝缘板及防腐材料等,还可作收音机、电话、蓄电池外壳及家俱、玩具等。PVC软质品可制成薄膜做雨披、台布、包装材料及农用薄膜,还可制成人造革、电线、电缆的绝缘层。另外,PVC树脂作为氯碱工业最大的有机耗氯产品,对氯碱工业的碱、氯平衡和发展起到重要的作用。PVC主要用于建筑业,制造管材、门窗和墙板等。作为第一大用户,建筑业约占聚氯乙烯消费总量的76%。其它方面的用量相对较少。包装薄膜和容器约占消费总量的6%,电气配件、电线电缆包皮约占消费总量的4%,涂料和粘合剂约占消费总量的4%,其他约占消费总量的10%。 1.1.2 氯乙烯生产的国内外现状及发展前景 (1)国外发展概况 氯乙烯(VCM)的合成始于1835年,由法国化学家Regnault用氢氧化钾的乙醇溶液将二氯乙烷脱氯化氢制得,并于1838年观察到了它的聚合体,这次的发现被认为是PVC 的开端。1902年,Biltz将1,2-二氯乙烷进行热分解也制得氯乙烯,但当时由于聚合物的科学和生产技术尚不成熟,他的发现没有导致工业生产的结束。Klatte于1912年通过乙炔与氯化氢的催化加成反应制得了氯乙烯,成为工业上氯乙烯合成的最初工艺,但在沿用将近30多年后,由于乙炔生产的高能耗而逐渐趋于淘汰。从1940年起,氯乙烯的生产原料,乙炔开始被乙烯部分取代,首先将乙烯直接氯化成1,2-二氯乙烷(EDC),再加以热裂解制得氯乙烯,裂解产生的氯化氢仍被用在乙炔-氯化氢法中。混合气体法制备氯乙烯采用石脑油作原料,将石脑油用燃烧气体裂解后,制成含乙炔和乙烯的混合气体,该混合气体先

氧氯制取氯乙烯

一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。 氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法 氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为: CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12→ CH2C1—CH 2C1 CH 2C1—CH 2C1→ CH2=CHC1十HC1 十HCl → CH2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种生产方法称为平衡法。 至今世界上虽仍有少量的氯乙烯来自于电石乙炔及乙炔—乙烯混合法,而绝大部分氯乙烯是通过基于乙烯和氯气的平衡过程生产。平衡氧氯化生产工艺仍是已工业化的、生产氯乙烯单体最先进的技术,在世界范围内,93%的聚氯乙烯树脂都采用由平衡氧氯化法生产的氯乙烯单体聚合而成。该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。 二、反应原理 乙烯氧氯化法生产氯乙烯,包括三步反应:

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸的问题。目前一般用氯化钾和氯化锌的融熔盐类作裁热体,使反应热很快移出。 此法主要的缺点是副反应多,产品组成复杂,同时生成大量的炭黑,反应热

氯化氢合成及盐酸合成技术方案

天成化工氯化氢合成技术方案 编号:ntxqlhqhc-2012-12-30 买方:天成化工 卖方:南通星球石墨设备有限公司 日期:二0一二年十二月三十日 一.装置配置描述 1.1.根据用户的要求,为用户选用我公司生产的组合式二合一副产蒸汽石墨合成炉,生产HCl气体

高纯盐酸及普通盐酸。 1.2.按SZL-1500型组合式二合一副产蒸汽石墨氯化氢合成炉。配置,数量:4台,开3备1。 1.3.设置配套盐酸吸收系统:5套其中一套是专门用来生产高纯盐酸,4套用来生产工业盐酸。采用二级降膜吸收+尾气塔吸收,满足高纯盐酸和普通盐酸的生产。 1.4操作弹性范围:30%~110%。 1.5年操作时间:按8000小时/年设计。 1.6产能: (1)、高纯盐酸:35000吨/年 (2)、氯化氢:120000吨/年 二.主产品及副产品技术规格 2、1,31%高纯盐酸规格: 2.2.工业盐酸:

2.3.氯化氢气体: 纯度:≥96%(vol) H2≤3.5%(vol) 水≤0.5% 压力:0.15-0.2MPa 2.4.副产蒸汽:压力:0.5MPa 三.合成炉及吸收器的能力描述 3.1.HCL合成炉:单台合成炉正常生产氯化氢能力120t/d,对应387td普通盐酸能力。 3.2.配套吸收系统,普通盐酸共4套,单套吸收装置吸收能力满足387t/d的盐酸产量,高纯盐酸一套,每天吸收能力满足:105t/d,年产高纯盐酸35000吨/年。 3.3.所有尾气达标排放,达到GB16297-1996标准的要求。 四.工艺情况及控制方案建议 4.1工艺简述: 干燥的尾氯(或原氯)经缓冲罐及稳压阀稳定压力在设定值,干燥的氢气经缓冲罐和稳压阀稳定在设定值,氯气、氢气以设定好的比例值进入合成炉进行燃烧反应,合成氯化氢。氢气与氯气流量分别自动检测并由比例调节器自动跟踪调节,确保氯氢配比,合成的氯化氢气体可以去界外也可以去降膜吸收器、尾气吸收塔吸收制普通盐酸,其中一部分氯化氢气体去高纯盐酸吸收系统制取高纯盐酸。当使用尾氯时,尾氯不足的情况下由原氯自动补充。 制取高纯盐酸的吸收水为纯水,吸收产出31%的高纯盐酸。 制取工业盐酸的吸收水为工业水。 合成炉夹套采用三段冷却,其中二段循环水冷却和一段热水(热水用来副产蒸汽)冷却。 当出现各种异常情况时,本装置的连锁装置将把原料切断,确保本装置的安全,避免安全环保事故的发生。 4.2.控制方案(自控系统由业主选择并确认) 石墨合成炉系统副产蒸汽,要求实现DCS集中控制,现场无人值守。主要的控制分为自动监测系统、自控联锁保护系统、氢气氯气自动配比、蒸汽汽包液位及压力自动控制、制酸自动控制。4.2.1自动监测系统 合成炉火焰检测、摄像、自动切断阀、氮气置换等组成。 4.2.2自动联锁保护系统

氯化氢合成及盐酸工序岗位安全规程

山东信发化工有限公司 氯化氢合成及高纯盐酸工序安全操作规程 编制:日期:年月日 审核:日期:年月日 批准:日期:年月日

目录 一、氯化氢合成及盐酸工段装置概况 (2) 二、危险区的划分及防范措施 (2) 三、各项规章制度 (3) 四、装置重大危险源及关键要害部位的分布和监控措施 (8) 五、本工段生产特点 (9) 六、安全操作要点 (11) 七、常见事故及预防 (14) 八、原料和化学品安全数据 (17) 九、酸碱作业岗位安全技术操作规程 (25) 十、氯化氢及盐酸岗位生产区内的安全要求 (26) 十一、防火与防爆 (28) 十二、各岗位人员安全责任 (28)

一、氯化氢合成及盐酸工段装置概况 1项目概况: 本装置由山东信发化工有限公司筹建,总体规划为25万吨/年烧碱,在总体上预留未来发展的用地。 氯化氢合成及盐酸工序为本项目的一个工段。 2厂址的地理位置 茌平县位于山东省聊城市东部的鲁西平原,东与德州接壤,西与东昌府区为邻。地理位置为北纬36.23至36.47,东经116.6到116.38之间,309国道与105国道交汇处。属温带季风型大陆性气候,四季分明,气候宜人,光照充足。夏季偏南风,冬季偏北风,全年主导风向为西南风。 厂址南侧有309国道,东侧紧邻茌新河,至茌平县城约3km,济邯铁路在厂区北由东北向西南与厂区呈26.8角斜穿而过。 本项目拟建地点位于茌平县城西、济邯铁路以南,该地区场地平坦开阔、拆迁量小,施工安装场地平整、充足,三通一平工作量较小,交通、供水、供电条件好。 3工艺技术方案: 氯气处理工序来的氯气及液氯工序的液化尾气经氯气缓冲罐和氯气管道阻火器进入二合一石墨合成炉;氢气处理工序来的氢气经氢气缓冲罐和氢气阻火器也送入二合一石墨合成炉,在炉内氯气和氢气进行燃烧,生成氯化氢气体。生成的氯化氢气体经氯化氢冷却水槽和氯化氢冷却器冷却后,通过氯化氢分配台大部分经再次冷却后,送聚氯乙烯装置作VCM合成原料,小部分送高纯盐酸吸收系统,用脱盐水吸收制成高纯酸供离子膜烧碱装置自用或外售。 4 生产规模: 为20万吨/年聚氯乙烯树脂聚合提供足量气体,年操作时间8000小时。此规模根据产品的市场情况确定。 二、危险区的划分及防范措施 1划分的依据:

氯乙烯概述

概述 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化,有醚样气味的气体。分子式: C2H3Cl,结构式: CHCl=CH2 ,爆炸上限%(V/V):31.0 ,爆炸下限%(V/V): 3.6 沸点-13.9℃,临界温度142℃,临界压力5.22MPa。相对密度(水=1):0.91,相对蒸气密度(空气=1):2.15。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。 氯乙烯是塑料工业的重要生产原料,用途非常广泛.主要用于以下几个方面: 1.主要用以制造聚氯乙烯的均聚物和共聚物。也可与乙酸乙烯酯、丁二烯等共聚,还可用作染料及香料的萃取剂。用作多种聚合物的共聚单体,塑料工业的重要原料,也可用作冷冻剂等 2.塑料工业的重要原料,主要用于生产聚氯乙烯树脂。与醋酸乙烯、偏氯乙烯、丁二烯、丙烯腈、丙烯酸酯类及其他单体共聚生成共聚物,也可用作冷冻剂等。 3.主要用于制造聚氯乙烯。也可与乙酸乙烯酯、丁二烯、丙烯腈、丙烯酸酯、偏氯乙烯等共聚,制造胶黏剂、涂料、食品包装材料、建筑材料等。还可用作染料及香料的萃取剂。 用电石法生产氯乙烯的主要工艺为:以电石为原料制乙炔,在以活性炭为载体氯化汞催化剂存在下,与氯化加成而得。我国具有丰

富廉价的煤炭资源,用煤炭和石灰石生成碳化钙(电石)、然后电石加水生成乙炔的VCM生产路线具有明显的成本优势 1.电石与水反应得乙炔 CaC2+2H2O=C2H2+Ca(OH)2 2.乙炔和氯化氢反应得氯乙稀 C2H2+HCL=C2H3Cl 赔料摩尔比为:乙炔:氯化氢=1:(1.08-1.1)。乙炔和氯化氢按上述配比混合物后进行列管装有催化剂,借列管外的循环冷却水带走。反应气体中还含有未反应的氯化氢、乙炔和生成的乙醛、1,1-二氯乙烷及顺二氯乙烯、反二氯乙烯等化合物。反应后的粗氯乙烯气体,经水洗塔、碱洗塔,洗去气体中氯化氢及二氧化碳。碱洗后气体,通过干燥塔进行压缩全凝、液化,液体氯乙烯分别送入低沸点塔及高沸点塔,去除高、低沸点物即得聚合级氯乙烯单体。 在通常条件下,乙炔与氯化氢加成合成氯乙烯的气相反应速率比较慢,常采用金属氯化物为催化剂,如氯化汞,载体为活性炭,催化反应条件为:温度130~180℃,绝对压力为0.12~0.15mpa,乙炔空速为:30~60/h。由于氯化汞易挥发,直接影响乙炔的转化率和氯乙烯的收率,而温度太低催化反应速率太低,因此工业上一般控制在 168~180℃。 氯乙烯的合成过程:HCL—→HCL缓冲罐—→HCL预冷器+乙炔沙封—→混合器—→石墨冷却器—→多孔过滤器—→预热器—→转化器 →除汞器—→冷却器—→水洗组合塔—→碱洗塔—→汽水分离器

相关文档
最新文档