weka
weka安装配置

一、WEKA的安装在WEKA的安装文件中有weka-3-5-6.exe和weka-3-5-6jre.exe,这两个软件我们安装一个即可,它们的区别是weka-3-5-6.exe只安装WEKA,而weka-3-5-6jre.exe是将WEKA 和JRE一起安装,所以在安装之前我们应该首先检查一下我们的电脑中是否安装了JRE,如果本机中已经安装了JRE,那么我们就选择weka-3-5-6.exe安装程序,如果没有安装JRE,我们就选择weka-3-5-6jre.exe安装程序,下面我们来分别介绍这两种安装方法。
1、weka-3-5-6.exe若本机中已经安装了JRE,那么我们就选择安装此文件,双击此文件开始进行安装,在出现的窗口中点击Next然后点击I Agree再点击Next此时出现如下窗口,Browse左边的区域是WEKA的默认安装路径,我们可以点击Browse选择我们想要安装WEKA的位置,然后点击窗口下方的NEXT,也可以不点击Browse直接将WEKA安装到默认的目录下,即直接点击窗口下方的NEXT,在新出现的窗口中点击Install开始安装,等待几秒种后点击Next在新窗口中会有一个Start Weka单选框(默认情况下是选中的),如果我们想安装完成后就启动WEKA,那么我们就直接点击新窗口下方的FINISH 完成安装,如果我们不想立即启动WEKA可以单击Start Weka前面的单选框,然后点击FINISH即可完成安装,此时WEKA已经安装到我们的电脑中。
2、weka-3-5-6jre.exe若本机中没有安装JRE,我们选择安装此文件,双击此文件开始进行安装,在出现的窗口中点击Next然后点击I Agree再点击Next此时出现如下窗口Browse左边的区域是默认安装WEKA的地方,我们可以点击Browse选择我们想将WEKA安装的位置,然后点击窗口下方的NEXT,也可以不点击Browse直接将WEKA安装到默认的目录下,即直接点击窗口下方的NEXT,在新出现的窗口中点击Install开始安装,等待几秒种后在新出现的窗口中直接点击下方的接受(此时进行的是典型安装模式),然后等待几分钟,此时正在安装的是J2SE Runtime Environment,待安装完毕我们点击完成,然后在新出现的窗口中点击NEXT,在新窗口中会有一个Start Weka单选框(默认情况下是选中的),如果我们想安装完成后就启动WEKA,那么我们就直接点击新窗口下方的FINISH 完成安装,如果我们不想立即启动WEKA可以单击Start Weka前面的单选框,然后点击FINISH即可完成安装。
weka实验总结

weka实验总结
Weka实验总结:
在数据挖掘和机器学习领域,Weka是一个广泛使用的开源软件工具,提供了
丰富的机器学习算法和数据预处理工具。
经过本次实验,我对Weka的功能和应用
有了更深入的了解。
首先,Weka提供了丰富的机器学习算法,包括分类、回归、聚类、关联规则等。
通过在实验中应用这些算法,我们可以通过输入数据来训练模型,然后利用模型对新数据进行预测和分类。
例如,在分类问题中,我们可以使用决策树算法来构建一个分类模型,然后利用该模型对未知数据进行分类。
其次,Weka还提供了数据预处理的功能,包括数据清洗、特征选择和特征变
换等。
在实验中我们可以使用Weka提供的数据预处理工具,对数据进行处理和准备。
例如,我们可以使用Weka中的缺失值处理工具来处理数据中的缺失值,在数
据清洗的过程中,我们还可以进行数据规范化、去除异常值等操作。
另外,Weka具有友好的用户界面,使得使用起来更加简单和直观。
无论是数
据导入、算法选择还是结果分析,Weka都提供了易于使用的界面。
这对于初学者
来说非常友好,也方便了快速上手和使用。
总之,Weka是一个功能强大且易于使用的数据挖掘和机器学习工具。
通过本
次实验,我发现Weka提供了丰富的算法和功能,能够满足不同实验和研究的需求。
我相信Weka将在我今后的学习和研究中发挥重要的作用。
weka实验报告

weka实验报告
Weka实验报告
Weka是一款流行的数据挖掘工具,它提供了丰富的机器学习算法和数据预处
理工具,使得数据分析和模型建立变得更加简单和高效。
在本次实验中,我们
将使用Weka工具进行数据分析和模型建立,以探索其在实际应用中的效果和
性能。
实验数据集选取了UCI机器学习库中的经典数据集“鸢尾花数据集”,该数据集
包含了150个样本,每个样本包括了4个特征和一个类别标签。
我们首先使用Weka进行数据预处理,包括缺失值处理、特征选择和数据变换等步骤,以保
证数据的质量和可用性。
接着,我们选择了几种常用的机器学习算法,包括决策树、支持向量机和K近
邻等,使用Weka进行模型建立和性能评估。
通过交叉验证和ROC曲线等方法,我们评估了不同算法在该数据集上的分类性能,并比较它们的准确度、召回率
和F1值等指标,以找出最适合该数据集的模型。
实验结果显示,Weka工具在数据预处理和模型建立方面表现出色,能够快速
高效地完成数据分析任务。
在鸢尾花数据集上,我们发现决策树算法和支持向
量机算法表现较好,能够达到较高的分类准确度和稳定性,而K近邻算法的性
能相对较差。
总的来说,Weka作为一款优秀的数据挖掘工具,具有丰富的功能和易用的界面,能够帮助用户快速建立和评估机器学习模型。
通过本次实验,我们对
Weka的性能和效果有了更深入的了解,相信它将在未来的数据分析工作中发
挥重要作用。
weka 数据挖掘实验报告

weka 数据挖掘实验报告Weka 数据挖掘实验报告引言数据挖掘是一种从大量数据中发现隐藏模式、关系和规律的技术。
Weka 是一款流行的开源数据挖掘软件,它提供了丰富的算法和工具,可以帮助用户进行数据挖掘分析。
本实验旨在使用Weka软件对一个真实数据集进行挖掘分析,并得出相关结论。
实验设计本次实验选择了一个关于房价预测的数据集,其中包含了房屋的各种属性(如面积、地理位置、建筑年代等)以及其对应的销售价格。
我们将使用Weka软件中的不同算法来对这个数据集进行挖掘分析,比较它们的效果和性能。
实验步骤1. 数据预处理:首先,我们对数据集进行了清洗和预处理,包括处理缺失值、标准化数据等操作,以确保数据的质量和一致性。
2. 特征选择:接着,我们使用Weka中的特征选择算法来确定哪些属性对于房价预测是最重要的,从而减少模型的复杂度和提高预测准确性。
3. 模型建立:然后,我们尝试了不同的机器学习算法(如决策树、支持向量机、神经网络等)来建立房价预测模型,并使用交叉验证等方法来评估模型的性能。
4. 结果分析:最后,我们对比了不同算法的预测效果和性能指标,得出了相关结论并提出了改进建议。
实验结果经过实验分析,我们发现决策树算法在这个数据集上表现较好,其预测准确性和泛化能力都较高。
而支持向量机和神经网络算法虽然在训练集上表现良好,但在测试集上的表现并不理想。
此外,特征选择对于模型的性能和复杂度也有着重要的影响。
结论与展望本实验通过Weka软件对房价预测数据集进行了挖掘分析,得出了不同算法的性能比较和结论。
未来,我们将进一步探索更多的数据挖掘技术和算法,以提高模型的预测准确性和实用性。
总结Weka 数据挖掘实验报告通过对房价预测数据集的挖掘分析,展示了Weka软件在数据挖掘领域的应用和优势。
通过本次实验,我们不仅对数据挖掘的流程和方法有了更深入的理解,也为未来的数据挖掘工作提供了一定的参考和借鉴。
weka算法参数整理

Output per-class stats
输出每类的统计信息 输出每个分类的 TP rate,FPrate,查准率/查全率以及 True/False 统计信息。
Output entropy evaluation measures ?输出熵评估量度 输出中包括熵评估度量
Output confusion matrix
取出特定百分比的数据作为训练数据集训练模型,其他数据作为 测试数据。
以上所述训练数据集和测试数据集均为模型验证时候的数据集,与模型的建立无关,模型建立均用实验提供的全部 训练数据集。
3.2. 分类算法输出选项界面
英文名称
中文翻译
配置说明
Output model
输出模型
输出通过完整训练集得到的分类模型,以便能够浏览、 可视化等。
EuclideanDistance
doNotCheckCapabilities
不检查适用范围
False
dontReplaceMissingValues
不替换缺失值
False
fastDistanceCalc
加速距离计算
False
initializationMethod
初始化质心方法
Random
maxIterations numClusters numExecutionSlots preserveInstancesOrder
最大迭代次数
100
maximumNumberOfClusters
最大的聚类数目
-1
minLogLikelihoodImprovementIter
ating
minLogLikelihoodImprovementCV
weka总结

Weka总结引言Weka是一个免费、开源的数据挖掘和机器学习软件,于1997年首次发布。
它由新西兰怀卡托大学的机器学习小组开发,提供了一系列数据预处理、分类、回归、聚类和关联规则挖掘等功能。
本文将对Weka进行总结,并讨论其主要功能和优点。
主要功能1. 数据预处理Weka提供了各种数据预处理技术,用于数据的清洗、转换和集成。
最常用的预处理技术包括缺失值处理、离散化、属性选择和特征缩放等。
通过这些预处理技术,用户可以减少数据中的噪声和冗余信息,提高机器学习模型的性能。
2. 分类Weka支持多种分类算法,包括决策树、贝叶斯分类器、神经网络和支持向量机等。
用户可以根据自己的需求选择适当的算法进行分类任务。
Weka还提供了交叉验证和自动参数调整等功能,帮助用户评估和优化分类器的性能。
3. 回归除了分类,Weka还支持回归问题的解决。
用户可以使用线性回归、多项式回归和局部回归等算法,对给定的数据集进行回归分析。
Weka提供了模型评估和可视化工具,帮助用户理解回归模型和评估其预测性能。
4. 聚类Weka的聚类算法可用于将数据集中相似的样本归类到一起。
Weka支持K-means、DBSCAN、谱聚类和层次聚类等常用的聚类算法。
用户可以根据数据的特点选择适当的算法并解释聚类结果。
5. 关联规则挖掘关联规则挖掘是一种常见的数据挖掘任务,用于发现数据集中的频繁项集和关联规则。
通过Weka,用户可以使用Apriori和FP-growth等算法来挖掘数据中的关联规则。
Weka还提供了支持多种评估指标的工具,用于评估关联规则的质量和可信度。
优点1. 易于使用Weka的用户界面友好且易于使用。
它提供了直观的图形界面,使用户可以快速上手并进行各种数据挖掘任务。
此外,Weka还支持命令行操作,方便用户在脚本中使用和集成Weka的功能。
2. 强大的功能Weka提供了丰富的数据挖掘和机器学习功能,涵盖了数据预处理、分类、回归、聚类和关联规则挖掘等领域。
!!!使用Weka进行数据挖掘

1.简介数据挖掘、机器学习这些字眼,在一些人看来,是门槛很高的东西。
诚然,如果做算法实现甚至算法优化,确实需要很多背景知识。
但事实是,绝大多数数据挖掘工程师,不需要去做算法层面的东西。
他们的精力,集中在特征提取,算法选择和参数调优上。
那么,一个可以方便地提供这些功能的工具,便是十分必要的了。
而weka,便是数据挖掘工具中的佼佼者。
Weka的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化的,基于JA V A环境下开源的机器学习以及数据挖掘软件。
它和它的源代码可在其官方网站下载。
有趣的是,该软件的缩写WEKA也是New Zealand独有的一种鸟名,而Weka的主要开发者同时恰好来自新西兰的the University of Waikato。
(本段摘自百度百科)。
Weka提供的功能有数据处理,特征选择、分类、回归、聚类、关联规则、可视化等。
本文将对Weka的使用做一个简单的介绍,并通过简单的示例,使大家了解使用weka的流程。
本文将仅对图形界面的操作做介绍,不涉及命令行和代码层面的东西。
2.安装Weka的官方地址是/ml/weka/。
点开左侧download栏,可以进入下载页面,里面有windows,mac os,linux等平台下的版本,我们以windows系统作为示例。
目前稳定的版本是3.6。
如果本机没有安装java,可以选择带有jre的版本。
下载后是一个exe的可执行文件,双击进行安装即可。
安装完毕,打开启动weka的快捷方式,如果可以看到下面的界面,那么恭喜,安装成功了。
图2.1 weka启动界面窗口右侧共有4个应用,分别是1)Explorer用来进行数据实验、挖掘的环境,它提供了分类,聚类,关联规则,特征选择,数据可视化的功能。
(An environment for exploring data with WEKA)2)Experimentor用来进行实验,对不同学习方案进行数据测试的环境。
weka简介

4.Help
1. Weka homepage 打开一个浏览器窗口,显示 WEKA 的主页。 2.HOWTOs, code snippets, etc. 通用的 WekaWiki,包 括大量的例子,以及开发和使用 WEKA 的基本知识 (HOWTO)。 3.Weka on Sourceforge WEKA 项目在 的主页。 4.SystemInfo 列出一些关于 Java/WEKA 环境的信息, 例如 CLASSPATH。
3.6.2 测试选项 应用选定的分类器后得到的结果会根据 Test Option 一栏中的选择来进行测试。共 有 四种测试模式: 1. Using training set. 根据分类器在用来训练 的实例上的预测效果来评价它。 2. Supplied test set. 从文件载入的一组实例, 根据分类器在这组实例上的预测效 果来评价它。点击 Set… 按钮将打开一个 对话框来选择用来测试的文件。 3. Cross-validation. 使用交叉验证来评价分类 器,所用的折数填在 Folds 文本框 中。 4. Percentage split. 从数据集中按一定百分 比取出部分数据放在一边作测试用,根 据分类器这些实例上预测效果来评价它。取 出的数据量模型 总是从所有训练数据中构建的。点击 More options 按钮可以设置更多的测试选项。
三. WEKA Explorer
3.1
标签页
在窗口的顶部,标题栏下是一排标签。当 Explorer 首次启动时,只有第一个标签页 是活动的;其他均是灰色的。这是因为在探索数据之前,必须先打开一个数据集(可能还要 对它进行预处理)。 所有的标签页如下所示: 1. Preprocess. 选择和修改要处理的数据。 2. Classify. 训练和测试关于分类或回归的学习方案。 3. Cluster. 从数据中学习聚类。 4. Associate. 从数据中学习关联规则。 5. Select attributes. 选择数据中最相关的属性。 6. Visualize. 查看数据的交互式二维图像。 这些标签被激活后,点击它们可以在不同的标签页面上进行切换,而每一个页面上可以 执行对应的操作。不管位于哪个页面,窗口的底部区域(包括状态栏、log 按钮和 Weka 鸟) 仍然可见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/ml/weka//~ml/weka/index.html/~ml/weka//ucp.php?mode=login原创]WEKA入门教程由C6H5NO2» 2006年 11月 19日 16:03目录1. 简介顶楼2. 数据格式顶楼3.数据准备 1楼4. 关联规则(购物篮分析) 1楼5. 分类与回归 2楼6. 聚类分析 2楼Weka入门教程,来自/viewtopic.php?f=2&t=9。
转载请注明出处。
1. 简介WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),它的源代码可通过/ml/weka得到。
同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看weka的接口文档。
在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka 小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习历史上的里程碑,是现今最完备的数据挖掘工具之一(已有11年的发展历史)。
Weka的每月下载次数已超过万次。
--整理自/computers/common/info.asp?id=2930 42. 数据格式巧妇难为无米之炊。
首先我们来看看WEKA所用的数据应是什么样的格式。
跟很多电子表格或数据分析软件一样,WEKA所处理的数据集是图1那样的一个二维的表格。
f1.jpg (34.05 KiB) 被浏览 3814 次图1这里我们要介绍一下WEKA中的术语。
表格里的一个横行称作一个实例(Instance),相当于统计学中的一个样本,或者数据库中的一条记录。
竖行称作一个属性(Attrbute),相当于统计学中的一个变量,或者数据库中的一个字段。
这样一个表格,或者叫数据集,在WEKA 看来,呈现了属性之间的一种关系(Relation)。
图1中一共有14个实例,5个属性,关系名称为“weather”。
WEKA存储数据的格式是ARFF(Attribute-Relation File Format)文件,这是一种ASCII文本文件。
图1所示的二维表格存储在如下的ARFF文件中。
这也就是WEKA自带的“weather.arff”文件,在WEKA 安装目录的“data”子目录下可以找到。
代码: 全选% ARFF file for the weather data with some numric features %@relation weather@attribute outlook {sunny, overcast, rainy}@attribute temperature real@attribute humidity real@attribute windy {TRUE, FALSE}@attribute play {yes, no}@data%% 14 instances%sunny,85,85,FALSE,nosunny,80,90,TRUE,noovercast,83,86,FALSE,yesrainy,70,96,FALSE,yesrainy,68,80,FALSE,yesrainy,65,70,TRUE,noovercast,64,65,TRUE,yessunny,72,95,FALSE,nosunny,69,70,FALSE,yesrainy,75,80,FALSE,yessunny,75,70,TRUE,yesovercast,72,90,TRUE,yesovercast,81,75,FALSE,yesrainy,71,91,TRUE,no需要注意的是,在Windows记事本打开这个文件时,可能会因为回车符定义不一致而导致分行不正常。
推荐使用UltraEdit这样的字符编辑软件察看ARFF文件的内容。
下面我们来对这个文件的内容进行说明。
识别ARFF文件的重要依据是分行,因此不能在这种文件里随意的断行。
空行(或全是空格的行)将被忽略。
以“%”开始的行是注释,WEKA将忽略这些行。
如果你看到的“weather.arff”文件多了或少了些“%”开始的行,是没有影响的。
除去注释后,整个ARFF文件可以分为两个部分。
第一部分给出了头信息(Head information),包括了对关系的声明和对属性的声明。
第二部分给出了数据信息(Data information),即数据集中给出的数据。
从“@data”标记开始,后面的就是数据信息了。
关系声明关系名称在ARFF文件的第一个有效行来定义,格式为@relation <relation-name><relation-name>是一个字符串。
如果这个字符串包含空格,它必须加上引号(指英文标点的单引号或双引号)。
属性声明属性声明用一列以“@attribute”开头的语句表示。
数据集中的每一个属性都有它对应的“@attribute”语句,来定义它的属性名称和数据类型。
这些声明语句的顺序很重要。
首先它表明了该项属性在数据部分的位置。
例如,“humidity”是第三个被声明的属性,这说明数据部分那些被逗号分开的列中,第三列数据 85 90 86 96 ... 是相应的“humidity”值。
其次,最后一个声明的属性被称作class属性,在分类或回归任务中,它是默认的目标变量。
属性声明的格式为@attribute <attribute-name> <datatype>其中<attribute-name>是必须以字母开头的字符串。
和关系名称一样,如果这个字符串包含空格,它必须加上引号。
WEKA支持的<datatype>有四种,分别是numeric-------------------------数值型<nominal-specification>-----分类(nominal)型string----------------------------字符串型date [<date-format>]--------日期和时间型其中<nominal-specification> 和<date-format> 将在下面说明。
还可以使用两个类型“integer”和“real”,但是WEKA把它们都当作“numeric”看待。
注意“integer”,“real”,“numeric”,“date”,“string”这些关键字是区分大小写的,而“relation”“attribute ”和“date”则不区分。
数值属性数值型属性可以是整数或者实数,但WEKA把它们都当作实数看待。
分类属性分类属性由<nominal-specification>列出一系列可能的类别名称并放在花括号中:{<nominal-name1>, <nominal-name2>,<nominal-name3>, ...} 。
数据集中该属性的值只能是其中一种类别。
例如如下的属性声明说明“outlook”属性有三种类别:“sunny”,“ overcast”和“rainy”。
而数据集中每个实例对应的“outlook”值必是这三者之一。
@attribute outlook {sunny, overcast, rainy}如果类别名称带有空格,仍需要将之放入引号中。
字符串属性字符串属性中可以包含任意的文本。
这种类型的属性在文本挖掘中非常有用。
示例:@ATTRIBUTE LCC string日期和时间属性日期和时间属性统一用“date”类型表示,它的格式是@attribute <name> date [<date-format>]其中<name>是这个属性的名称,<date-format>是一个字符串,来规定该怎样解析和显示日期或时间的格式,默认的字符串是ISO-8601所给的日期时间组合格式“yyyy-MM-dd T HH:mm:ss”。
数据信息部分表达日期的字符串必须符合声明中规定的格式要求(下文有例子)。
数据信息数据信息中“@data”标记独占一行,剩下的是各个实例的数据。
每个实例占一行。
实例的各属性值用逗号“,”隔开。
如果某个属性的值是缺失值(missing value),用问号“?”表示,且这个问号不能省略。
例如:@datasunny,85,85,FALSE,no?,78,90,?,yes字符串属性和分类属性的值是区分大小写的。
若值中含有空格,必须被引号括起来。
例如:@relation LCCvsLCSH@attribute LCC string@attribute LCSH string@dataAG5, 'Encyclopedias and dictionaries.;Twentieth century.' AS262, 'Science -- Soviet Union -- History.'日期属性的值必须与属性声明中给定的相一致。
例如:@RELATION Timestamps@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss"@DATA"2001-04-03 12:12:12""2001-05-03 12:59:55"稀疏数据有的时候数据集中含有大量的0值(比如购物篮分析),这个时候用稀疏格式的数据存贮更加省空间。
稀疏格式是针对数据信息中某个实例的表示而言,不需要修改ARFF 文件的其它部分。
看如下的数据:@data0, X, 0, Y, "class A"0, 0, W, 0, "class B"用稀疏格式表达的话就是@data{1 X, 3 Y, 4 "class A"}{2 W, 4 "class B"}每个实例用花括号括起来。
实例中每一个非0的属性值用<index> <空格> <value>表示。
<index>是属性的序号,从0开始计;<value>是属性值。