数据通信原理讲解

合集下载

《数据通信原理简介》课件

《数据通信原理简介》课件

传输层协议
01
02
03
传输层协议提供端到端 的数据传输服务,确保 数据完整性和顺序正确
性。
主要的传输层协议包括 TCP(Transmission Control Protocol)和
UDP(User Datagram Protocol)。
TCP协议提供可靠的、有 序的和错误校验的数据 传输,而UDP协议提供 无序的、不可靠的数据
THANKS
感谢观看
,满足各种无线应用需求。
未来数据通信的展望
更高速度和更低延迟
随着5G/6G等通信技术的发展,未来数据通信将实现更高速率和 更低延迟的数据传输。
更广泛的应用领域
随着物联网、人工智能等新兴技术的普及,数据通信将应用于更广 泛的领域,促进各行业的数字化转型。
更高级的安全保障
随着量子通信技术的发展,未来数据通信将提供更高级的安全保障 ,确保信息安全。
同步传输
数据块以连续的方式进行传送,传送 速率固定,字符之间无间隔。
基带传输与频带传
基带传输
在信道上直接传送数字信号的电脉冲,适合于近距离数据传 输。
频带传输
利用调制解调技术将基带信号转换为高频信号在信道上传输 ,然后再将其还原成原始信号,适合于远距离数据传输。
多路复用技术
时分多路复用(TDM)
广域网是一种覆盖广阔地理区域的计算机网 络,通常跨越城市、地区甚至算机、设 备和服务,以便实现跨地域的数据传输和资 源共享。广域网通常使用公共通信网络(如 电话线、光纤和卫星)来传输数据,并支持 各种不同的协议和技术。
互联网
总结词
互联网是一种全球性的、开放的计算机网络 ,由多个局域网、城域网和广域网互联而成 。
网络层协议

数据通信原理

数据通信原理

数据通信原理数据通信是指在计算机及网络领域中,通过合适的介质将信息从一个地方传输到另一个地方的过程。

数据通信原理是数据传输的基本理论和技术方法,它涉及到数据的编码、传输介质、传输速率、信道复用等方面的内容。

一、数据编码数据编码是指将信息转换为适合传输的信号的过程。

常见的数据编码方法有二进制编码、八进制编码和十六进制编码等。

二进制编码是将信息转换为只包含两种状态的信号,它是计算机中最基本也是最常用的编码方法。

八进制编码和十六进制编码则是将信息转换为8位或16位的信号,它们相对于二进制编码来说能够更有效地表示大范围的数据。

二、传输介质传输介质是指用于传输信息信号的物理媒介。

常见的传输介质有双绞线、同轴电缆和光纤等。

双绞线是应用最广泛的传输介质,它由两根绞合在一起的导线组成,能够较好地抵御干扰。

同轴电缆则由内导体、绝缘层、外导体和外护套组成,适用于高频率信号的传输。

光纤是最先进的传输介质,它利用光的传播特性进行信息传输,具有带宽大、传输距离远和免受干扰等优势。

三、传输速率传输速率是指在单位时间内传输的数据量。

数据传输速率常用的单位有bps(比特/秒)、Kbps(千比特/秒)、Mbps(兆比特/秒)和Gbps(千兆比特/秒)等。

传输速率的选择需要根据实际需求和传输介质的性能来确定。

在实际应用中,常见的传输速率包括10Mbps、100Mbps和1Gbps等。

四、信道复用信道复用是指将不同的信号通过同一物理通道进行传输的技术。

常见的信道复用技术有频分复用(FDM)和时分复用(TDM)等。

频分复用是将不同频率范围的信号分配到不同的子信道上进行传输,从而实现多个信号同时在一个物理通道上传输的目的。

时分复用则是将不同信号按照时间片的方式依次传输,使得多个信号在不同的时间段内共享一个物理通道。

总结:数据通信原理是实现数据传输的基本理论和技术方法。

其中包括数据编码、传输介质、传输速率和信道复用等方面的内容。

在实际应用中,根据需求和资源情况选择适合的编码方法、传输介质、传输速率和信道复用技术,能够有效地实现数据的传输和通信。

数据通信原理PPT课件(490页)

数据通信原理PPT课件(490页)
能够被通信双方理解 可以传递
上一页
下一页

2、信号
把消息转换成适合于信道传输的物理量,就是 信号。信号携带着消息,它是消息的运载工具。 通信中的信号有电信号和光信号两种。 信号可以分为模拟信号和数字信号。 模拟信号是指信号的某一参量可以取无穷多个 值,并且与原始消息直接对应的信号,如话音 信号及其按照抽样定理所得的PAM样值信号等;
1,„ ,M-1”个码元,且各码元出现的概率不相
等,分别为P0,P1,„,PM-1,此时每个码元包含的
信息量并不相等,分别为:
I j log 2
Pj
上一页
下一页
对上式求其期望,将其称作平均信息量H,表示平 均每个码元包含信息的多少,单位为bit/符号如下
式所示:
H Pj log 2
a=M
I= -logMP
单位为M进制信息单位
上一页
下一页
数据通信中若数据采用二进制传输,此时将二 进制的每个符号“0”或“1”称为码元。 当两个码元等概出现时,每个码元包含的信息 量为: I=log22=1 bit
因此通常常将二进制序列称为比特流,但若两 个码元出现的概率不等,此时每个码元包含的 信息量已不是1bit。 更一般的情况,当采用M进制传输时,此时共有“0,
所帮助。
上一页
下一页
数据通信的重要性:
计算机之间的通信:数据通信
通信网的发展趋势:
电话网 计算机网 有线电视网 三网融合 宽带IP网
就是数据通信 (可见它的重要性)
上一页
下一页
目录
第1章 绪论
第2章 数据通信基础知识
第3章 数据信号的基带传输
第4章 数据信号的频带传输
第5章 差错控制与信道编码

数据通信原理

数据通信原理

数据通信原理数据通信是信息时代的核心技术之一,它负责在计算机网络中传输和交换数据。

深入了解数据通信原理对于理解计算机网络的工作方式和性能优化至关重要。

本文将介绍数据通信的基本原理,并探讨数据传输中的关键概念和技术。

一、基本概念和分类数据通信是指通过一定的介质或信道,将数据从一个地方传输到另一个地方的过程。

数据通信系统通常由发送端、接收端、传输介质和信道构成。

根据数据传输的方式,可以将数据通信分为模拟通信和数字通信两种类型。

1. 模拟通信模拟通信是指将连续变化的模拟信号传输到接收端,如音频和视频信号。

模拟通信的关键问题是信号的采样、调制和解调。

数据在传输过程中会受到噪声的影响,因此需要采取一定的措施来保证接收端能够正确地还原原始信号。

2. 数字通信数字通信是将离散的数字信号传输到接收端。

数字通信的关键问题是信号的编码和解码。

数字信号通过调制技术转换为模拟信号,并在传输过程中受到噪声和失真的影响。

接收端需要根据事先约定的编码方式进行解码,以还原原始数据。

二、数据传输的方式和技术数据通信中常用的数据传输方式包括串行传输和并行传输。

串行传输是逐位地将数据按照顺序传输,而并行传输是同时传输多个数据位。

1. 串行传输串行传输具有简单、可靠、成本低等优点,广泛应用于现代数据通信中。

串行传输使用较少的物理线路,但传输速率较低。

为了提高传输速率,可以采用多路复用技术(如时分多路复用和频分多路复用)以及调制技术(如相位调制和频率调制)来实现。

2. 并行传输并行传输具有传输速率高的优点,但需要较多的物理线路。

并行传输常用于短距离高速数据传输,如计算机内部的数据传输。

在并行传输中,需要保证数据位之间的同步性,以确保数据的正确传输。

三、错误检测和纠正技术在数据传输过程中,由于噪声、干扰或信号失真等原因,数据可能会出现错误。

为了检测和纠正这些错误,常用的技术包括奇偶校验、循环冗余检验(CRC)和海明码等。

奇偶校验是最简单的错误检测技术,通过统计数据中1的个数来判断数据是否正确。

数据通信原理

数据通信原理

第一章:绪论:1、了解消息、信号、信息、数据的基本概念(1)消息定义:是指通信过程中传输的具体原始对象。

消息的分类:离散消息、连续消息。

(2)信号定义:把消息转换成适合于信道传输的物理量。

信号携带着消息,它是消息的运载工具。

信号的分类:模拟信号和数字信号。

(3)信息:信息就是包含在消息中对通信方有意义的那部分内容。

(4)数据:数据就是赋予一定含义的数字、字母、文字等符号及其组合,它是消息的一种表现形式。

数据的分类:模拟数据、数字数据。

2、信息量、信息熵(平均信息量的计算)信息的度量:度量信息多少的程度就称为信息量I。

信息量的计算:一则离散消息包含的信息量可表示为平均信息量(信息熵)H:可以证明上式中,当P0=P1= … =P M-1时,取最大值例1.2 某信源有8种相互独立的状态,其发生的概率分别是1/8、1/8、0、1/4、0、0、0、1/2, 则信源传递给信宿的平均信息量是多少?课后P30 1.83、通信系统的组成(一般通信系统、模拟、数字、基带、频带、数据通信系统的组成框图)P6、P7、P8、P10一般通信系统PIalog-=∑-=-=12logMjPjjPHMMMHMj212log1log1=-=∑-=模拟通信系统数字基带通信系统数字频带通信系统数据通信系统数据通信系统的组成:数据终端设备(DTE)、数据电路、中央计算机系统三大部分组成。

(填空)4、数据的传输方式(填空、简答)(1)基带传输与频带传输基带传输就是将DTE经过码型变换、电平转换等必要处理后直接在信道上传输,常用于短距离的数据传输系统中。

频带传输较复杂,传送距离较远,若通过市话系统配备Modern,则传送距离可不受限制。

(2)并行传输与串行传输并行传输是指将数据符号编码后,在两条以上的并行信道上同时传输,一般一次传输一个字符;如:采用8单位代码组成的字符时,可以用8条信道并行传输。

特点:(1)优点:对于每次只传输一个字符,因此它不需要额外的措施来实现收发双方的字符同步;(2)缺点:必须有多条并行信道,成本比较高,不适宜远距离传输。

数据通信原理(最终版)

数据通信原理(最终版)

数据通信原理(最终版)1)数据通讯:依照通信协议,利用数据传输技术在两个功能单元之间传递数据信息,他可以实现:计算机与计算机,计算机与终端,终端与终端之间的数据信息传递。

2)数据信号的基本传输方式:基带传输,频带传输,数字传输。

3)数据通信系统:是通过数据电路将分布在远地的数据终端设备与计算机系统连接起来,实现数据传输、交换、存储和处理的系统。

4)数据终端设备(DTE ):数据输入设备,数据输出设备和传输控制器组成。

5)传输信道:通信线路、通信设备(模拟通信设备、数字通信设备)。

6)通信控制器:数据电路和计算机系统的接口。

7)数据通信系统中的信道(按传输方式分):物理实线传输媒介信道(双绞线电缆、同轴电缆、光纤)、电话网传输信道、数字数据传输信道。

8)传输损耗:D=10 lg01P P 。

(P 0为发送功率,P 1为接收功率,单位dB )9)信噪比:(NS )dB =10 lg (s nP P )。

(P s 为信号平均功率,P n 为噪声平均功率)10)数据传输方式:??传输顺序:并行传输、串行传输同步方式:异步传输、同步传输数据传输的流向和时间关系:单工、半双工、全双工11)数据传输系统的有效性指标:调制速率,数据传信速率、数据传送速率。

12)调制速率:N Baud =)(1s T 。

(N Baud 为每秒传输信号码元的个数,又称波特率,单位Baud ,T(s)为码元持续时间。

13)数据传信速率:每秒所传输的信息量,单位bit/s (二进制)。

当信号为M 进制时,传信速率(R )与调制速率(N )的关系为R=Nlog 2M 。

14)频带利用率:η=频带速率符号速率(Baud/Hz ),η=频带宽度信息传输速率[bit/(s ·Hz)]。

15)差错率:用误码率、误字符率、误码组率来表示。

误码率:接收出现差错的比特数/总的发送比特数。

误字符率:接收出现差错的字符(码组)数/总的发送字符(码组)数。

数据通信原理

数据通信原理

数据通信原理
数据通信原理是指计算机网络中两台计算机之间如何传输数据信息的原理。

数据通信遵循四个基本步骤:发送,传输,接收和确认。

首先,发送方需要将数据编码成一种可以传输的格式,最常用的编码格式是ASCII(American Standard Code for Information Interchange),它是一种用于交换文本信息的格式,编码后的数据将被放入报文中,报文是一种能够被计算机识别和接收的消息单位。

其次,将报文传输到接收方,网络传输一般分为物理层、数据链路层、网络层、传输层和应用层,报文在这几个层之间传输,直至到达接收方。

然后,接收方收到报文,并将报文中的数据解码,这一过程称为解码。

解码后的数据可以被计算机识别,此时报文的传输任务就完成了。

最后,发送方和接收方之间进行确认,确认数据是否完整无误地传输到接收方,这一过程称为确认。

确认完成后,数据传输过程就完成了。

总之,数据通信原理包括发送,传输,接收和确认四个步骤,通过这些步骤可以将报文中的数据完整无误地传输到接收方。

数据通信原理

数据通信原理

数据通信原理数据通信原理是指通过传输介质将数据从一个地点传递到另一个地点的过程。

在数据通信中,数据被分割为一系列的数据包,并通过网络传输到目的地。

数据通信原理主要涉及以下几个方面:1.调制解调:调制解调是将要传输的数据从数字信号转换为模拟信号的过程,然后将模拟信号传输到接收方后再进行解调还原为数字信号。

调制的目的是将数字信号转换为适合传输的频率范围内的模拟信号,解调则是将接收到的模拟信号转换为可供使用的数字信号。

2.传输介质:数据通信中使用的传输介质有多种,包括电缆、光纤、无线信号等。

不同的传输介质具有不同的特点和适应场景,如电缆传输适合短距离高带宽传输,光纤传输适合长距离高速传输等。

3.编码和解码:为了提高数据传输的可靠性和效率,数据在传输过程中会进行编码和解码。

编码将原始数据转换为特定编码格式,使其具备一定的容错能力,能够纠正一定数量的传输错误;解码则是将接收到的编码数据转换为原始数据。

4.传输协议:数据通信中使用的传输协议规定了数据在网络中的传输方式和规则。

常见的传输协议包括TCP/IP协议,用于互联网传输;以太网协议,用于局域网传输等。

5.差错控制:在数据通信过程中,可能会因为传输噪声、干扰等原因导致数据传输错误。

差错控制技术可用于检测和纠正传输过程中的错误,常见的差错控制技术包括奇偶校验、CRC校验等。

6.流量控制:为了保证数据传输的平稳进行,需要对数据的传输速度进行控制。

流量控制技术可用于调节发送方的传输速度,防止接收方无法及时处理数据导致的数据丢失或堆积等问题。

7.路由选择:在数据通信中,如果传输路径有多个选择,需要选择最佳的传输路径。

路由选择技术可用于确定数据传输的最佳路径,提高数据传输的效率和稳定性。

数据通信原理包括调制解调、传输介质、编码和解码、传输协议、差错控制、流量控制和路由选择等方面的内容,对于数据的可靠传输和高效传输起着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学计算机与信息学院信息工程类实验报告课程名称:数据通信原理姓名:系:电子信息工程专业:电子信息工程年级:2010级学号:指导教师:薛岚燕职称:讲师2012年12月3日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程专业:电子信息工程年级: 2010姓名:学号: 10226000 实验课程:数据通信原理实验室号:_ 田C-405 实验设备号:实验时间: 2012.11.22 指导教师签字:成绩:实验一数字信号源实验1.实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握集中插入帧同步码时分复用信号的帧结构特点。

3、掌握数字信号源电路组成原理。

2.实验原理本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。

本单元产生NRZ信号,信号码速率约为170.5KB。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

图1-1 数字信源方框图(1)分频器74161进行13分频,输出信号频率为341kHz;74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号;40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q0和Q1端分别输出选通信号S4、S5。

(2)八选一采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,(3)三选一三选一电路原理同八选一电路原理。

(4)倒相与抽样倒相与抽样电路就是为了满足输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐而设计的,它们使NRZ-OUT及BS-OUT信号满足码变换电路的要求。

3.实验内容1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。

2、用示波器观察NRZ、FS、BS三信号的对应关系。

3、学习电路原理图。

4.主要仪器设备示波器、通信原理实验箱5.实验步骤1、熟悉信源模块的工作原理。

2、打开电源开关及模块电源开关,用示波器观察数字信源模块上的各种信号波形。

3、用同轴电缆将FS输出与示波器外同步信号输入端相连接,把FS作为示波器的外同步信号,进行下列观察:(1)示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用拨码K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

6.实验结果(1)通道探头分别接NRZ-OUT和BS-OUT相应图如下拨码K1产生代码相应图如下输入的K1为01110010 10110010 010100007.实验数据处理与分析<1>通过实验得出NRZ与RZ在波形上有区别,NRZ在一个码元周期内电位维持不变,而RZ在一个码元周期内,高电位只维持一段时间就返回零位。

<2>通过对NRZ,FS,BS三个波形的分析得出NRZ是由帧同步吗和数据共同决定的,BS是信源位同步,与码元周期同步,FS是信源帧同步,是与其帧周期同步。

8.质疑、建议、问题讨论1、时钟信号、信源信号、帧同步信号三者之间是什么关系?2、位同步信号与帧同步信号在整个系统中起什么作用?位同步的目的是确定数字通信中的各个码元的抽样时刻,帧同步的任务是把字、句和码组区分出来。

福建农林大学计算机与信息学院信息工程类实验报告系: 电子信息工程 专业: 电子信息工程 年级: 2010 姓名: 学号: 10226000 实验课程:数据通信原理实验室号:_ 田C -405 实验设备号: 实验时间: 2012.11.22 指导教师签字: 成绩:实验二 数字调制实验1.实验目的1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK 、2FSK 、2PSK 、2DPSK 信号的方法。

3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。

4、了解2ASK 、2FSK 、2PSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。

2.实验内容1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。

3. 实验原理(A )二进制数字调制原理一.2ASK 1.产生m(t)tcos )t (m )t (e c o ω=NRZ模拟法键控法cos c ωe o (t)1信息代码2ASK2.频谱)t (Cos )t (m )t (cos )t (m )t (e )t (e )(R c c o o eo τωτωττ++=+=]e e )[(R 41cos )(R 21)t (cos t cos )t (m )t (m c c j j m c m c c τωτωττωττωωτ+==+⋅+=-)]f f (P )f f (P [41)f (P c s c s eo -++=式中P s (f)为m(t)的功率密度谱零点带宽 B=2f s =2R B发滤波器最小带宽可为f s (理论值) 也可将基带信号处理后再进行2ASK 调制二.2FSK 1.产生2.频谱 键控法2FSK)]f f (P )f f (P [1)]f f (P )f f(P [41)f (P2c 2s 1c 2s 2c 1s 1c 1s eo -+++-++=式中)(1f p s 是m(t)2s)f (p 1s =)f (p 2ss 2c 1c f 2|f f |>-或1f c f c -f s /2 fc+f s /2相位连续⎥⎦⎤⎢⎣⎡+=⎰dt )t (m K t cos A )t (e F c o ω 相位不连续()tcos t m t cos 2c 1c ωω+s 2c 1c f 2|f f |<-2FSK 信号带宽s 2c 1c f 2|f f |B +-=三.2PSK (BPSK ) (绝对调相)⎩⎨⎧-=="0",t cos "1",t cos t cos )t (m )t (e c c c o ωωωTs )1kt 2(t kT 2,BNRZ :)t (m≤≤1. 产生信息代码→2PSK 规律:“异变同不变”,即本码元与前一码元相异时,本码元内2PSK 信号的初相相对于前一码元内2PSK 信号的未相变化180°,相同时则不变。

2.频谱)]f f (p )f f (p[41)f (P c s c s eo -++= ,P eo (f)中无离散谱f c)(f p s 为m(t)的频谱,当p(1)=p(0)时p s (f)中无直流, B=2fs 四.2DPSK (差分相位键控,相对调相) 1.产生 码变换—2PSK 调制法信息代码 cos ωc t 2PSK cos ωc t2PSK绝对码a k →相对码b k 变化规律:“1变0不变”。

b k =a k +b k-1,设b k 初 始值为1,各点波形如图所示:第一个码元内信号的初相可任意假设a k →2DPSK 规律:“1变0不变”,即信息代码(绝对码)为“1”时,本码元内2DPSK 信号的初相相对于前一码元内2DPSK 信号的未相变化180°,信息代码为“0”时,则本码元内2DPSK 信号的初相相对于前一码元内2DPSK 信号的末相不变化。

2.频谱 同2PSK (B )电路原理数字调制单元的原理方框图及电路图分别如图2-1,图2-2所示。

晶振放大器÷2 (A)滤波器A2PSK 调制射随器CAR÷2 (B) 滤波 器B2FSK 调制2ASK 调制码变换BK2ASK2FSK-OUTNRZ-INBS-INAK2DPSK-OUT图2-1 数字调制方框图下面重点介绍2PSK 、2DPSK 。

2PSK 、2DPSK 波形与信息代码的关系如图2-3所示。

图2-3 2PSK 、2DPSK 波形图中假设码元宽度等于载波周期的1.5倍。

2PSK 信号的相位与信息代码的关系是:前后码元相异时,2PSK 信号相位变化180︒,相同时2PSK 信号相位不变,可简称为“异变同不变”。

2DPSK 信号的相位与信息代码的关系是:码元为“1”时,2DPSK 信号的相位变化180︒。

码元为“0”时,2DPSK 信号的相位不变,可简称为“1变0不变”。

应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。

实际工程中,2PSK 或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。

但不管是哪种关系,上述结论总是成立的。

本单元用码变换——2PSK 调制方法产生2DPSK 信号,原理框图及波形图如图2-4所示。

相对于绝对码AK 、2PSK 调制器的输出就是2DPSK 信号,相对于相对码、2PSK 调制器的输出是2PSK 信号。

图中设码元宽度等于载波周期,已调信号的相位变化与AK 、BK 的关系当然也是符合上述规律的,即对于AK 来说是“1变0不变”关系,对于BK 来说是“异变同不变”关系,由AK 到BK 的变换也符合“1变0不变”规律。

图2-4中调制后的信号波形也可能具有相反的相位,BK 也可能具有相反的序列即“00100”,这取决于载波的参考相位以及异或门电路的初始状态。

2DPSK 通信系统可以克服上述2PSK 系统的相位模糊现象,故实际通信中采用2DPSK 而不用2PSK (多进制下亦如此,采用多进制差分相位调制MDPSK ),此问题将在数字解调实验中再详细介绍。

+2PSK 调制2DPSK(AK)2PSK(BK)T SA KB KB K -1图2-4 2DPSK 调制器2PSK 信号的时域表达式为S(t)= m(t)Cos ωc t式中m(t)为双极性不归零码BNRZ ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK 信号的频谱与2PSK 相同。

2ASK 信号的时域表达式与2PSK 相同,但m(t)为单极性不归零码NRZ ,NRZ 中有直流分量,故2ASK 信号中有载频分量。

2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。

时域表达式为t t m t t m t S c c 21cos )(cos )()(ωω+=式中m(t)为NRZ 码。

相关文档
最新文档