焊接结构课程设计—压力容器

合集下载

20g压力容器制造中的焊接工艺

20g压力容器制造中的焊接工艺

焊接综合课程实践——压力容器制造中的焊接工艺制定学院:专业:班级:学生:学号:指导老师:摘要压力容器是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。

而由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故,因此世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

同样的,对于它的生产要求也不能放松。

焊接作为压力容器生产的主要环节,可谓是重中之重。

本文从压力容器焊接接头设计、压力容器母材的焊接性分析、焊接材料的选择及常用的焊接方法及基本工艺过程等方面简单地介绍了压力容器焊接方面的基础知识。

基于手工电弧焊设备简单、工艺灵活及对各种刚适应性强等特点,手工电弧焊成为压力容器最主要的焊接方法,本文详细的介绍了手工电弧焊和埋弧焊在压力容器焊接中的应用及常见的焊接缺陷和预防方法及焊后检测处理方法。

当然编者水平有限,文中的错误或不足之处在所难免,望批评指正。

关键词:压力容器,手工电弧焊,埋弧焊,焊接性。

目录摘要…………………………………………………………………………………第一章概述……………………………………………………………………1.1 压力容器简介…………………………………………………1.2 产品结构分析…………………………………………………1.3 20g钢概述………………………………………………………1.4 元素对焊接性影响……………………………………………1.5 20g钢焊接性分析………………………………………………第二章压力容器的结构设计与生产工艺…………………………2.1 容器类别的确定…………………………………………………2.2 容器结构设计……………………………………………………2.2.1 圆筒的设计………………………………………………2.2.2 封头形状及尺寸设计…………………………………2.2.3 接管尺寸设计……………………………………………2.3 水压试验应力校核……………………………………………2.4 容器的生产工艺………………………………………………2.4.1 圆筒的生产………………………………………………2.4.2 封头的生产………………………………………………2.5 容器整体装配工艺……………………………………………第三章压力容器的焊接工艺设计……………………………………3.1 焊接方法的特点…………………………………………………3.1.1 焊条电弧焊………………………………………………3.1.2 CO2气体保护焊…………………………………………3.2 圆筒纵缝的焊接材料及工艺参数…………………………3.3 封头与圆筒焊缝的焊接材料及工艺参数…………………3.4 圆筒与接管焊缝的焊接材料及工艺参数…………………3.5 焊前准备…………………………………………………………3.5.1 坡口的选择………………………………………………3.5.2 坡口清理和焊材的使用………………………………3.6 焊接顺序…………………………………………………………第四章压力容器焊后检验………………………………………………4.1 焊后热处理………………………………………………………4.2 焊后检查…………………………………………………………4.3 无损检测…………………………………………………………4.4 压力试验…………………………………………………………4.5 气密性试验………………………………………………………结论…………………………………………………………………………………参考文献…………………………………………………………………………附录A ……………………………………………………………………………附录B ……………………………………………………………………………附录C ……………………………………………………………………………第一章概述1.1压力容器简介压力容器是内部或外部承受气体或液体压力的密封型结构件,用途十分广泛。

压力容器的焊接工艺

压力容器的焊接工艺

严格的限制,因为这种钢焊接热影响区脆化倾向较小,但对于含
钒、铌、钛等微合金化元素的钢,则应选用较小的焊接线能量。
(3)对于碳及合金元素含量较高、屈服强度也较高的低合金高强
钢,如18MnMoNbR,由于这种钢淬硬倾向较大,又要考虑其热影响
区的过热倾向,则在选用较小线能量的同时,还要增加焊前预热、
焊后及时后热等措施。
>> 压力容器的焊接技术
发布日期: 2008-10-10 9:17:00
随着工程焊接技术的迅速发展,现代压力容器也已发展成典型的全焊结构。压力容器的焊 接成为压力容器制造过程中最重要最关键的一个环节,焊接质量直接影响压力容器的质 量。
第一节 碳钢、低合金高强钢压力容器的焊接
一、 压力容器用碳钢的焊接 碳钢以铁为基础,以碳为合金元素,含量一般不超过1.0%。此 外,含锰量不超过1.2%,含硅量不超过0.5%,Si、Mn皆不作为合 金元素。而其他元素,如Ni、Cr、Cu等,控制在残余量限度内,更 不是合金元素。S、P、O、N等作为杂质元素,根据钢材品种和等 级,也都有严格限制。 碳钢根据含碳量的不同,分为低碳钢(C≤0.30%)、中碳钢(C= 0.30% ~ 0.60%)、高碳钢(C≥0.60%)。压力容器主要受压元件用 碳钢,主要限于低碳钢。在《容规》中规定:“用于焊接结构压力 容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于 0.25%。在特殊条件下,如选用含碳量超过 0.25%的钢材,应限 定碳当量不大于 0.45%,由制造单位征得用户同意,并经制造单 位压力容器技术总负责人批准,并按相关规定办理批准手续”。 常用的压力容器用碳钢牌号有Q235-B、Q235-C、10、20、20R等。 (一)低碳钢焊接特点 低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起 严重组织硬化或出现淬火组织。这种钢的塑性和冲击韧性优良,其 焊接接头的塑性、韧性也极其良好。焊接时一般不需预热和后热, 不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳 钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。

焊接结构制造压力容器生产工艺过程ppt课件

焊接结构制造压力容器生产工艺过程ppt课件
焊接结构制造
-压力容器生产工艺过程
制作:翟征
南阳市张衡中等职业学校
最新版整理ppt
1
一、压力容器简介
压力容器示意图
最新版整理ppt
2
压力容器实物图
最新版整理ppt
3
二、压力容器生产工艺过程
压力容器生产工艺过程实物图
最新版整理ppt
4
压力 容器 生产 工艺 流程 框图
最新版整理ppt
5
1. 封头生产工序
最新版整理ppt
21
超声波检验示意图
最新版整理ppt
22
(6)射线探伤
X射线探伤示意图
最新版整理ppt
23
(7)气密性试验
气密性试验示意图
最新版整理ppt
24
(8)水压试验
水压试验示意图
最新版整理ppt
25
谢 谢!
最新版整理ppt
26
最新版整理ppt
16
(5)人孔接管和法兰装配与焊接
最新版整理ppt
17
4. 总装配和焊接生产工序
(1)环焊缝对接缩口接头与衬板接头
最新版整理ppt
18
(2)焊环焊缝
最新版整理ppt
19
(3)压力容器接管装配与焊接
(4)压力容器消除应力退火
最新版整理ppt
20
5. 检验
(1)力学性能试验 (2)金相试验 (3)化学分析 (4)外观检查 (5)超声波检验
12
(6)去引弧板和引出板并清理 (7)筒体节校圆 (8)筒体节开接管孔
最新版整理ppt
13
(9)封头与筒体节及筒体节之间的装配和定位焊
压力容器装配和定位焊实物图

《焊接结构》课程设计说明、课程内容

《焊接结构》课程设计说明、课程内容

《焊接结构》课程设计说明一、课程基本信息课程名称:焊接结构学时:60授课对象:焊接专业学分:2课程性质:专业必修课二、课程定位《焊接结构》是焊接技术专业的一门主干专业课程,主要介绍焊接结构生产及现场管理方面的知识,要求具备一定的管理水平,又有较强的焊接结构现场生产实践性。

本课程采用“项目导向、任务驱动”理论实践一体化的教学方法,不单独开设实验课程,强调围绕企业生产为主,积累经验,学会在生产现场进行独立分析、创新设计各种焊接辅助设备,主要内容包括:引导项目:焊接结构(梁、柱、桁架、支架)的生产与管理,主导项目:焊接接头的质量控制(包括变形与应力控制);焊接接头的结构设计;焊接结构件的装配、定位、检测、焊接的全过程;焊接工艺的审定;典型案例的分析等。

通过对焊接结构件的生产管理,学会钢结构类、承压类设备的焊接设计、焊接工艺思路与程序,注重焊前准备、焊接过程控制、焊后检测等环节,生产中体现各种准备要素(包括相应文件资料),焊接结构生产的装配与焊接之间的关系,保证学生的实际动手能力三、课程设计1.能力目标(1)熟悉焊接结构课程的主题框架(2)能对焊缝、焊接接头的各种类型进行优势比较(3)熟悉焊接梁、柱、桁架等结构件的生产流程(4)熟悉焊接生产中注意的问题(焊接应力与变形)进行分析与控制(5)熟悉焊接结构件生产的装配、定位、检测要求(6)熟悉焊接工艺性审查的主要内容2、知识目标(1)熟悉各种焊接接头、基本符号、各种焊缝特点的基本知识(2)掌握焊接结构生产的工作流程与步骤(3)掌握控制焊接应力与变形的方法,了解形成的主要原因(4)熟悉焊接结构件装配、定位器的使用3、态度目标(1)具有勤奋学习的态度,良好的职业道德和爱岗敬业精神(2)具有认真、严谨、耐心、细致的工作作风4、工作目标能进行焊接生产项目的管理,利用各种知识形成体系,具备生产中设计简单夹具、定位机构、旋转机构的能力,对各种焊缝、焊接接头的布局能严格按照工艺要求进行合理的装配—焊接的顺序选择,熟悉承压类设备焊缝的代码编号,焊接工艺编码语言,能根据焊接装配图纸掌握焊缝、焊接位置的全局关系。

焊接结构课程设计_压力容器

焊接结构课程设计_压力容器

前言1第1局部储罐设计阐发2第1章储罐总体阐发21.1 储罐底子设计要求21.2 储罐材料21.3储罐用钢板31.4 配用锻件51.5 配用螺栓、螺母5第2章储罐罐底设计62.1 储罐罐底板尺寸62.2 罐底布局7第3章罐壁布局设计103.1 罐壁的排板与连接103.2 罐壁厚度113.3 罐壁加强圈12第4章罐顶布局设计13第2局部储罐的焊接工艺阐发14第5章压力容器的焊接接头145.1 压力容器焊接接头的分类145.2 圆筒形容器焊接接头的设计15第6章压力容器的焊接方法176.1 熔化极氩弧焊17CO气体庇护焊186.22埋弧焊19第7章压力容器的焊接工艺21第3局部储罐的组装与查验22第8章储罐的安装施工挨次22储罐底板的焊接挨次22储罐壁板的焊接挨次22储罐固定顶的焊接挨次23第9章储罐焊缝的查验与修补24焊缝检测24焊缝修补25设计体会26参考文献27前言大型油气储罐是油气产物储存运输最便利、廉价的方式之一。

储罐的形式可跟据盖顶的样式不同分为浮顶式储罐〔包罗气柜〕和固定顶式储罐〔包罗内浮顶式储罐〕,而固定顶式储罐又包罗锥顶式储罐和拱顶式储罐两种。

目前原油的储罐使用中浮顶式储罐在不竭减少,液化气储运主要是球罐和立式筒形低压储罐。

常用的几种灌顶形式为双子午线网客机构拱顶、辐射网壳布局拱顶、短程线网壳布局拱顶和梁柱支撑布局拱顶,见图1。

本次课程设计主要讨论立式固定顶筒形钢制焊接储罐的施工工艺。

此中包罗储罐的材料选择、加工工艺路线选择、相关组件形式选择、机械加工装配、施焊成型、焊后检测调试等相关出产内容。

第1局部储罐设计阐发第1章储罐总体阐发1.1 储罐底子设计要求由石油化工立式筒形钢制焊接储罐设计尺度SH 3046-1992,储罐的设计条件不得少于以下内容:(一)地动设防烈度、风载、雪载等气候条件及地质条件;(二)储罐的操作温度及操作压力〔正负压〕;(三)介质的种类及密度;(四)腐蚀裕量;(五)储罐的容积;(六)灌顶形式;(七)开口接管尺寸、形式、数量及法兰规格;(八)附件的安装位置。

压力容器焊接结构及工艺设计

压力容器焊接结构及工艺设计

综合性实验报告压力容器焊接结构及工艺设计实验者:指导老师溜达班级:o8hanie学号:10目录摘要 (2)关键字 (2)前言1概述 (3)1.1压力容的分类 (3)1.2 压力容器的结构特点 (4)2实验方案及方法 (4)2.1 材料的选则 (4)2.2 焊接性能分析 (6)2.2.1裂纹问题 (6)2.2.2脆化问题 (7)2.3 焊接方法及参数的确定 (7)2.3.1 焊接接头形式 (8)2.3.2 焊缝坡口的选择 (8)2.3.4 焊接方法的选择 (10)2.3.4 焊接材料的选择 (12)3实验过程 (12)3.1 焊前准备 (13)3.2 焊接操作 (13)3.3 焊后热处理 (13)3.3 焊缝机械性能检验 (13)4实验结果与分析 (14)4.1 焊接接头硬度分析 (15)4.2 焊接接头机械性能分析 (15)4.3 焊接接头金相图 (16)5结论 (18)6总结 (18)7 致谢 (18)8 参考文献 (19)摘要目前中国生产的电站锅炉、工业锅炉和各种石油化工容器均为焊接结构,其焊接工作量之大,对焊接质量要求之高居整个焊接结构制造业之首位。

目前中国的压力容器制造行业已经能够制造大型、超重型、高压和超高压容器。

本文主要介绍压力容器的结构、使用性能、材料的选择、焊接结构与工艺的设计、憨厚的热处理、失效形式等。

通过多步骤的实验得出了硬度数据、拉伸图、金相图片等资料,并就实验中出现的问题做了整理和分析,以供参考。

根据工件的工作环境、使用性能可知道工件的力学性能有高强度、好的塑性、韧性和焊接性。

根据其工作要求、性能要求、服役条件和经济状况决定零件素需要的材料为16MnR钢。

并根据工件的结构、性能要求以及材料确定工件的热处理工艺。

关键词:压力容器、手工电弧焊、坡口、金相图前言压力容器一般是指用于一定压力流体的贮存、运输或者是传质、传热、反应的密闭容器。

广泛应用于采矿、炼油、冶金、化工、医药等行业以及人民生活的很多方面。

《焊接结构与工艺》课程设计---压力容器

《焊接结构与工艺》课程设计---压力容器

《焊接结构与工艺》课程设计实训内容一、加氢反应器的焊接焊接结构设计简介1、加氢反应器结构的简介及设计要求该设计题目是:加氢反应器的焊接结构设计,压力容器的设计参数如表1所示。

表1. 设计数据2、加氢反应器结构的组成加氢反应器的结构如图1所示。

有顶部弯管、封头、筒节、热偶法兰、底部弯管、卸料管、冷氢法兰、裙底等几部分组成图1.加氢反应器压力容器结构示意图此压力容器焊缝有A、B、C、D类,各类焊缝的特点及要求;各焊缝的布置原则。

二、加氢反应器焊接结构材料选择及强度校核1、筒体及封头材料的选择、材料特点、力学性能、焊接性1)筒体及封头材料的选择序号项目数值单位备注1 名称加氢反应器的焊接结构设计2 用途普通低压压力容器3 最大工作压力0.8 MPa4 工作温度150 ℃5 公称直径600 mm6 壁厚8-10 mm2.9钢板厚度超过100毫米卷制时,需在加热炉升温到200度,出炉采用吊车4只板钩吊装,板钩在吊装过程中易发生滑脱现象,需要人工量尺寸或找吊装位置来掌握平衡。

卷制时,先进行板端压头,用样板测量弧度,板的两端达到标准要求后进行中间部位卷制。

卷制时开始水平部位使用普通钢管管辅助,吊车配合进行,板材的强度和厚度达到支持拱高塌陷幅度最小为止,卷制到可以合口的部位,吊车配合进行纵缝的点焊加固,吊装到焊接架上进行埋弧焊焊接。

3.1 钢板 80 毫米以下钢板卷制成筒节纵缝焊接好后,回圆时要比组对纵缝时多向下压。

2毫米,在卷板机上多转几圈,通过应力释放达到圆度值,回圆样板检查尤为重要,椭圆度最大值在焊道部分,直径超过4.5米的需要拼板形成两道纵缝,进行回圆必须进行焊道位置多方测量和压力调整,达到圆度值要求。

3.2 钢板厚度超过 100 毫米筒节焊接后还要进行二次加热,回圆时卷板机压力非常大,对钢板产生的外力会作用在筒体其它部位,所以要在钢板200度时尽快利用很短的时间回正、找圆。

3.3圆度达到标准规定(筒节内径的1%,尽量不大于15mm)或图样要求。

压力容器及管道焊接

压力容器及管道焊接
• 焊缝质量好,埋弧焊时焊接区受到焊剂和渣壳的 可靠保护,大大减少了有害气体侵入的机会,焊 接工艺参数自动调节焊接过程比较稳定,焊缝的 化学成分、性能及尺寸比较均匀,焊波光滑平整。
• 劳动条件好,焊接过程机械化、操作简单、 没有弧光的有害影响、减轻焊工的劳动强 度
优点
• 在有风的环境中焊接时,埋弧焊的保护效 果胜过其它焊接方法
压力容器及管道焊接
编写人:栗连英 李清元
1 焊接的基本概念
• 什么是焊接 • 焊接是用加热或加压,或加热又加压的方法,在
使用或不使用填充金属的情况下,使两块金属连 接在一起的一种加工工艺方法。 • 什么是焊接接头: • 用焊接方法连接的接头叫做焊接接头。焊接接头 包括: • 焊缝区:焊件经焊接后形成的结合部分。 • 热影响区:焊接过程中,母材因受热的影响(但 未熔化)金相组织和力学性能发生了变化的区域。
常用焊材烘干温度及保持时间
常用钢号的焊接材料表
材料的基础知识
• 钢的分类:钢是以铁为主要元素,含碳量 一般在2%以下,并含有其他元素的金属材 料。钢可按化学成分、用途、质量分类。
1、按化学成分分为碳素钢、合金钢。 1)碳素钢:是以铁为基本成分的铁
碳合金,碳素钢中除以碳为主要合金元素 外,还含有少量的有益元素锰和硅。锰含 量一般小于1%,硅含量都在5%以下。此外 碳素钢还含有少量杂质元素硫和磷,并限 制其含量。碳素钢按含量分低碳钢(含碳 量小于0.30%)、中碳钢(含碳量0.30%0.60%)、高碳钢(含碳量大于0.60%)。
• 2)钨极氩弧焊焊(GTAW)是利用惰性 气体氩气保护的一种电弧焊焊接方法。即 从喷嘴中喷出的氩气在焊接区造成一个厚 而密的气体保护层隔绝空气,在氩气层流 的包围之中,电弧在钨极和工件之间燃烧 利用电弧产生的热量熔化被焊处,并填充 焊丝把两块分离的金属连接在一起,从而 获得牢固的焊接接头。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言1第1部分储罐设计分析2第1章储罐总体分析21.1 储罐基本设计要求21.2 储罐材料21.3储罐用钢板31.4 配用锻件51.5 配用螺栓、螺母5第2章储罐罐底设计62.1 储罐罐底板尺寸62.2 罐底结构7第3章罐壁结构设计103.1 罐壁的排板与连接103.2 罐壁厚度113.3 罐壁加强圈12第4章罐顶结构设计13第2部分储罐的焊接工艺分析14第5章压力容器的焊接接头145.1 压力容器焊接接头的分类145.2 圆筒形容器焊接接头的设计15第6章压力容器的焊接方法176.1 熔化极氩弧焊17CO气体保护焊176.226.3埋弧焊19第7章压力容器的焊接工艺21第3部分储罐的组装与检验22第8章储罐的安装施工顺序228.1储罐底板的焊接顺序228.2储罐壁板的焊接顺序228.3储罐固定顶的焊接顺序23第9章储罐焊缝的检验与修补249.1焊缝检测249.2焊缝修补25设计体会26参考文献27前言大型油气储罐是油气产品储存运输最方便、廉价的方式之一。

储罐的形式可跟据盖顶的样式不同分为浮顶式储罐(包括气柜)和固定顶式储罐(包括内浮顶式储罐),而固定顶式储罐又包括锥顶式储罐和拱顶式储罐两种。

目前原油的储罐使用中浮顶式储罐在不断减少,液化气储运主要是球罐和立式筒形低压储罐。

常用的几种灌顶形式为双子午线网客机构拱顶、辐射网壳结构拱顶、短程线网壳结构拱顶和梁柱支撑结构拱顶,见图1。

本次课程设计主要讨论立式固定顶筒形钢制焊接储罐的施工工艺。

其中包括储罐的材料选择、加工工艺路线选择、相关组件形式选择、机械加工装配、施焊成型、焊后检测调试等相关生产内容。

第1部分储罐设计分析第1章储罐总体分析1.1 储罐基本设计要求由石油化工立式筒形钢制焊接储罐设计规范SH 3046-1992,储罐的设计条件不得少于以下内容:(一)地震设防烈度、风载、雪载等气候条件及地质条件;(二)储罐的操作温度及操作压力(正负压);(三)介质的种类及密度;(四)腐蚀裕量;(五)储罐的容积;(六)灌顶形式;(七)开口接管尺寸、形式、数量及法兰规格;(八)附件的安装位置。

对于固定顶式储罐,设计压力范围一般为-490Pa~6000Pa,设计温度不超过250°C,而最低设计温度应大于-2°C。

1.2 储罐材料储罐用钢的选择必须考虑到储罐的使用条件,材料的焊接性能、加工制造工艺以及经济的合理性.由液化石油气钢瓶国标GB 5842-2006一般规定钢瓶主体(指筒体、封头等受压元件)材料,必须采用平炉、电炉或氧气转炉冶炼的镇静钢,具有良好的冲压和焊接性能。

材料必须有相关制造许可证书和质量合格证书(原件)。

主体材料力学性能应符合国标GB 6654《压力容器用碳素钢和低合金钢厚钢板》的规定,主体材R R不得大于0.80。

主体材料的化学成分应符合料的屈强比()e L m下列范围:碳C ………不大于0.18% 硅Si ………不大于0.10%锰Mn ………0.70~1.50% 硫S ………不大于0.020%磷P ………不大于0.025% 硫S+磷P……不大于0.040%根据上述要求并考虑储罐压力不是很大和制造成本的问题,选择16MnR钢代替焊接钢瓶专用钢板。

它是一种普通低合金钢,是锅炉压力容器专用钢,锅炉压力容器的常用材料。

它的强度较高、塑性韧性良好。

常见交货状态为热轧或正火。

属低合金高强度钢,含Mn量较低。

性能与20G(412-540)近似,抗拉强度为(450-655)稍强,伸长率为19-21%,比20G的大于24%差。

它的主要化学成分如表1-1。

表1-1 16MnR低合金结构钢的主要化学成分1.3储罐用钢板储罐用钢板的适用范围应符合表1-2.表 1-2 钢板的适用范围16MnR钢的屈服强度见表1-3。

表 1-3 钢板的许用应力1.4 配用锻件储罐用锻件应符合JB 755《压力容器用锻件技术条件》的要求。

见表1-4。

表 1-4 锻件的许用应力1.5 配用螺栓、螺母螺栓、螺母的用钢标准及许用温度标准,见表1-5。

表 1-5 螺栓螺母材料的许用温度第2章储罐罐底设计2.1 储罐罐底板尺寸储罐罐底板尺寸不包括腐蚀裕量的罐底中幅板的钢板规格厚度应不小于一定尺寸,见表2-1。

表 2-1 螺栓螺母材料的许用温度不包括腐蚀裕量的罐底边缘钢板规格厚度应不小于表2-2的规定,其材质应与底圈罐壁相同。

表 2-2 螺栓螺母材料的许用温度罐底边缘板沿罐半径方向的尺寸应不小于700mm,对于软弱地基,边缘板的径向尺寸应适当加大。

2.2 罐底结构罐内径小于12.5m时,罐底宜采用条形排板,如图4-1。

图 2-1 条形排板罐底罐内径大于或等于12.5m时,罐底宜采用弓形边缘板,如图4-2。

图2-3 弓形边缘板罐底罐底边缘板伸出罐壁外表面的宽度应不小于50mm。

罐底板的焊接接头可采用搭接、对接或者搭接与对接组合,如图4-3。

图 2-4(a) 罐底板的搭接接头图 2-4(b) 罐底板的对接接头边缘板与罐壁相焊接的部分应做成平滑支撑面,如图4-5。

图2-5(a) 搭接罐底边缘板图2-5(b) 对接罐底边缘板三层底板重叠处,应将上层底板切角,如图4-6.图2-6 对接罐底边缘板罐底板任意两个相邻焊接接头之间的距离以及边缘板焊接接头距底圈罐壁焊缝的距离均不应小于300mm。

底圈罐壁板与边缘板之间的链接应采用两侧连续角焊,焊脚高度等于二者中较薄件的厚度,且不应大于13mm。

如图2-7图2-7 焊脚第3章罐壁结构设计3.1 罐壁的排板与连接上层壁板的厚度不得大于下层壁板的厚度,相邻两层壁板的纵向接头应相互错开,最小间距应大于下层壁板厚度的5倍,且不得小于100mm。

罐壁纵向接头、环向接头均应采用全熔透的对接形式,顶部包边角钢与最上一圈罐壁板之间可采用搭接接头连接。

对于固定顶罐及内浮顶罐的罐壁上端,应设的包边角钢的选用最小尺寸见表3-1。

表3-1 包边角钢最小尺寸包边角钢自身的对接焊缝必须全焊透、全熔合,接头对接、搭接均可。

对于浮顶罐,角钢的水平肢必须向外,而固定顶罐不做严格要求。

如图3-1图3-1 包边角钢3.2 罐壁厚度罐壁设计厚度按下列公式计算,且取其中较大值。

t1=0.0049+C1+C2 (3.2-1)t2=4.9+C1 (3.2-2)式中t1 ——储存介质时的设计厚度(mm)t2 ——储存水时的设计厚度(mm)ρ——储液密度(kg/m3)H ——罐高(m)D ——储罐内径(m)[σ]t——设计温度下罐壁钢板许用应力(MPa)[σ]——常温下罐壁钢板许用应力(MPa)φ——焊缝系数,一般取0.9罐壁的设计厚度应向上圆整至钢板的规格厚度,且不小于表3-2中的规定。

表3-2 罐壁最小壁厚3.3 罐壁加强圈罐壁筒体的临界压力计算:P cr=16000()2.5 (3.3-1)H E=ΣH ei (3.3-2)H ei=h i()2.5 (3.3-3)式中P cr——罐壁筒体的临界压力(Pa)H E——罐壁筒体的当量高度(m)t min——顶层罐壁板的规格厚度(mm)H ei——第i圈罐壁板的当量高度(m)h i——第i圈罐壁板的实际高度(m)t i——第i圈罐壁板的规格厚度(mm)加强圈取数目:n=INT(P0/P cr) (3.3-4)设置加强圈后每段罐壁高度:L e=H E/(n+1)(3.3-5)加强圈的最小截面,见表3-3.表3-3加强圈的最小截面尺寸第4章罐顶结构设计常用固定顶按其支柱可分为自支承拱顶、自支撑锥顶和柱支撑锥顶,顶板的规格厚度(不包括腐蚀裕量)和支撑构件的规格厚度不应小于4.5mm,罐顶和罐壁连接处的有效面积应满足下式要求:A>0.001PD2/tanθ(4.1-1)式中A—罐顶与罐壁连接处的有效面积(mm2)P—罐顶的设计压力(Pa)θ—罐顶起始角。

若选取的包边角钢不符合上式的要求应加大包边角钢的截面尺寸,或在距离角钢16倍罐壁厚度范围内的罐壁上增加环形加强构件,环形加强构件自身的拼接焊缝应全熔透。

如图4-1。

图4-1 罐顶与包边角钢连接处的有效面积罐顶板与包边角钢之间的连接应采用薄弱连接,外侧采用连续焊,焊脚高度不应大于顶板厚度的3/4,且不得大于4mm,内侧不得施焊。

顶板本身的拼接可采用对接,若搭接厚度不可超过5倍板厚,且不得小于25mm,罐顶板外表面的搭接焊缝应采用连续焊。

第2部分储罐的焊接工艺分析第5章压力容器的焊接接头5.1 压力容器焊接接头的分类图5-1 压力容器焊接接头的分类A类接头:圆柱形壳体筒节的纵向对接接头,球形容器和凸形封头瓜片之间的对接接头,球形容器的环向对接接头,与筒体封头之间的对接接头,大直径焊接三通支管与母管相接的对接接头。

B类接头:圆柱形、锥形筒节之间的环向对接接头,接管与筒节间及其与法兰相接的环向对接接头,除球形封头外的各种凸形封头与筒身相接的环形接头。

C类接头:法兰、平封头、端盖、管板与筒身、封头和接管相连的角接接头,内凹封头与筒身间的搭接接头以及多层包扎容器层板间纵向接头等。

D类接头:接管、人孔圈、手孔盖、加强圈、法兰与筒身及封头相连接的T形或角接接头。

E类接头:包括吊耳、支撑、制作及各种内奸与筒身或封头相接的角接接头。

F类接头:在筒身、封头、接管、法兰和管板表面上的堆焊接头。

5.2 圆筒形容器焊接接头的设计图5-2 立式储油罐(1)圆筒形容器的纵向焊缝必须与母材等强度,环向焊缝的工作应力只有纵向焊缝的一半,故对于环向焊缝的强度要求较低,可以采用较软的填充金属材料。

各筒节之间的环向焊缝以及筒节和封头间的环向焊缝一般都采用埋弧焊方法。

(2)对于容器上的支管连接,支管连接处开口后应力集中较大,对于大壁厚圆筒可采取贯穿型直接插入式,双面焊缝焊透为佳;也可以采取平置式安放支管,焊缝单面焊透。

(3)管板连接的焊接接头经常承受交变载荷。

在大多数焊接时是把管子插入管板的孔中,从外面施焊。

为了降低焊缝的拘束度,在管板上加工一个环形沟槽。

卫士管接头与管板更紧密结合,在施焊前吧管子前段向外扩张,焊后管子端部在进行一次扩张以消除残余应力。

(4)由于工艺要求和检修方便,石油化工的容器的筒体或封头上会开设很多孔洞,会减弱纵向断面的强度,则一般会对其进行补强。

为提高材料的利用率,空可以补强。

孔补强措施有管补强(增加管子壁厚)、基体补强(基体材料壁厚全部增加)、增设补强圈(外加钢圈)和孔补强(孔周边材料基体壁厚增加)。

如果不采取孔的补强措施,就必须增加壁厚才能保证生产要求。

在工作温度超过300°C或壁厚超过40mm的容器上不宜采用补强圈形式。

孔径在超过一定尺寸时必须进行补强,否则无法保证其强度,且此时增加壁厚效果不大。

如果管过于密集而必须避开A、B两类接头时,则必须对开孔部位的焊缝作探伤检测。

相关文档
最新文档