洛伦兹力

合集下载

洛伦兹力知识点

洛伦兹力知识点

洛伦兹力知识点洛伦兹力是描述带电粒子在电磁场中受力的一种力。

它是由荷质比和磁感应强度决定的,具体表达为洛伦兹力的大小与带电粒子的电荷量、速度以及磁感应强度之间的乘积有关。

洛伦兹力是电磁力的一种,它使带电粒子在磁场中发生偏转,从而产生一种力的效应。

洛伦兹力的产生是由于带电粒子在磁场中运动时受到了一种力的作用。

这种力的大小与带电粒子的电荷量、速度以及磁感应强度有关。

当带电粒子在磁场中沿着磁感应线方向运动时,洛伦兹力的方向垂直于带电粒子运动的速度方向和磁感应线方向,且方向遵循右手定则。

在电磁场中,洛伦兹力的大小可以通过洛伦兹力公式进行计算。

洛伦兹力公式为:F = q(v × B),其中F表示洛伦兹力的大小,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁感应强度。

根据洛伦兹力公式,可以看出洛伦兹力与带电粒子的电荷量成正比,与带电粒子的速度和磁感应强度的乘积成正比。

洛伦兹力的作用可以在许多物理现象中观察到。

例如,在粒子加速器中,带电粒子在强磁场中偏转,从而使其沿着特定轨道运动。

此外,在电磁铁中,电流通过线圈时,电流中的带电粒子会受到洛伦兹力的作用,从而产生磁场。

洛伦兹力还可以解释一些自然现象。

例如,地球的磁场对太阳风中的带电粒子起到了屏蔽作用,使它们在进入地球大气层之前发生偏转。

这种偏转现象被称为极光。

此外,洛伦兹力还可以解释一些电磁感应现象,如电动机和发电机的原理。

洛伦兹力的研究对于理解电磁现象和开发电磁技术具有重要意义。

在现代科学和技术中,洛伦兹力被广泛应用于物理学、工程学和医学等领域。

例如,在核磁共振成像(MRI)中,利用洛伦兹力原理可以对人体内部的结构和组织进行成像。

此外,在电子学中,洛伦兹力被用于设计和制造各种电子器件,如电子管和半导体器件。

洛伦兹力是描述带电粒子在电磁场中受力的一种力。

它的大小与带电粒子的电荷量、速度以及磁感应强度有关。

洛伦兹力的研究对于理解电磁现象和应用电磁技术具有重要意义。

洛仑兹力

洛仑兹力

据题意,小球P在球面上做水平的匀速圆周运动 在球面上做水平的匀速圆周运动, 解: 据题意,小球 在球面上做水平的匀速圆周运动 该圆周的圆心为O' 受到向下的重力mg、 该圆周的圆心为 。P受到向下的重力 、球面对它 受到向下的重力 方向的支持力N和磁场的洛仑兹力 f=qvB 沿OP方向的支持力 和磁场的洛仑兹力 方向的支持力 和磁场的洛仑兹力f = 式中v为小球运动的速率, 的方向指向O′, 式中 为小球运动的速率,洛仑兹力 f 的方向指向 为小球运动的速率 根据牛顿第二定律: 根据牛顿第二定律:
2m B≥ q g R cosθ
可见,为了使小球能够在该圆周上运动, 可见,为了使小球能够在该圆周上运动,磁感应强度 大小的最小值为
Bmin 2m = q g R cosθ
此时,带电小球做匀速圆周运动的速率为n R sinθ
v= 2a = 2m
N cosθ mg = 0
v2 f N sinθ = m R sinθ 由前面三式得: 由前面三式得: qBR sinθ gR sin2 θ v2 v+ =0 m cosθ
N P mg f R θ O O'
由于v是实数,必须满足: 由于 是实数,必须满足: 是实数 qBR sinθ 2 4 gR sin2 θ =( ) ≥0 m cosθ 由此得: 由此得:
若小球带负电, 解: 若小球带负电,带电小球受到的洛仑兹力向 试管底,不能从试管口处飞出, 错 试管底,不能从试管口处飞出,A错。 洛仑兹力与运动方向垂直,不做功, 错 洛仑兹力与运动方向垂直,不做功,C错。 小球带正电,受到洛仑兹向试管口作匀加速运动 小球带正电,受到洛仑兹向试管口作匀加速运动, 同时随试管向右匀速运动,合运动的轨迹是一条 同时随试管向右匀速运动, 抛物线, 正确 正确。 抛物线,B正确。 小球受到洛仑兹向试管口作匀加速 运动时,又受到洛仑兹力, 运动时,又受到洛仑兹力,方向向 且逐渐增大, 左,且逐渐增大,所以维持试管匀 速运动的拉力F应逐渐增大 正确. 应逐渐增大,D正确 速运动的拉力 应逐渐增大 正确

洛伦兹力

洛伦兹力

洛伦兹力知识框架知识讲解知识点1 洛伦兹力1.洛伦兹力的大小和方向(1)洛伦兹力大小的计算公式:sin=;F qvBθ=,式中θ为v与B之间的夹角,当v与B垂直时,F qvB当v与B平行时,0F=,此时电荷不受洛伦兹力作用.(2)洛伦兹力的方向:F v B、、方向间的关系,用左手定则来判断.注意:四指指向为正电荷的运动方向或负电荷运动方向的反方向;洛伦兹力既垂直于B又垂直于v,即垂直于B与v决定的平面.(3)洛伦兹力的特征①洛伦兹力与电荷的运动状态有关.当0F=,即静止的电荷不受洛伦兹力.v=时,0②洛伦兹力始终与电荷的速度方向垂直,因此,洛伦兹力只改变运动电荷的速度方向,不对运动电荷做功,不改变运动电荷的速率和动能.2.洛伦兹力与安培力的关系(1)洛伦兹力是单个运动电荷受到的磁场力,而安培力是导体中所有定向移动的自由电荷所受洛伦兹力的宏观表现.(2)洛伦兹力永不做功,而安培力可以做功.3.洛伦兹力和电场力的比较随堂练习【例1】试判断图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向.【例2】关于带电粒子所受洛仑兹力f、磁感应强度B和粒子速度v三者之间的关系,下列正确的是()A.f B v、、三者必定均相互垂直B.f必定垂直于B v、,但B不一定垂直vC.B必定垂直于f,但f不一定垂直于vD.v必定垂直于f,但f不一定垂直于B【例3】关于运动电荷和磁场的说法中,正确的是()A.运动电荷在某点不受洛仑兹力作用,这点的磁感应强度必为零B.电荷的运动方向、磁感应强度方向和电荷所受洛仑兹力的方向一定互相垂直C.电子射线由于受到垂直于它的磁场作用而偏转,这是因为洛仑兹力对电子做功的结果D.电荷与磁场力没有相对运动,电荷就一定不受磁场的作用力【例4】带电荷量为q+的粒子在匀强磁场中运动,下面说法中正确的是( )A.只要速度大小相同,所受洛伦兹力就相同B.如果把q+改为q-,且速度反向、大小不变,则洛伦兹力的大小不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子只受到洛伦兹力的作用,不可能做匀速直线运动【例5】在只受洛伦兹力的条件下,关于带电粒子在匀强磁场中运动,下列说法正确的有_______ A.只要粒子的速度大小相同,带电量相同,粒子所受洛伦兹力大小就相同B.洛伦兹力只改变带电粒子的运动轨迹C.洛伦兹力始终与速度垂直,所以洛伦兹力不做功D.洛伦兹力始终与速度垂直,所以粒子在运动过程中的动能、动量保持不变【例6】电子以速度v垂直进入磁感应强度为B的匀强磁场中,则()A.磁场对电子的作用力始终不做功B.磁场对电子的作用力始终不变C.电子的动能始终不变D.电子的动量始终不变3 / 18【例7】带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是()A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向【例8】有关电荷所受电场力和洛伦兹力的说法中,正确的是()A.电荷在磁场中一定受磁场力的作用B.电荷在电场中一定受电场力的作用C.电荷受电场力的方向与该处的电场方向一致D.电荷若受磁场力,则受力方向与该处的磁场方向垂直【例9】一个电子穿过某一空间而未发生偏转,则()A.此空间一定不存在磁场B.此空间可能有方向与电子速度平行的磁场C.此空间可能有磁场,方向与电子速度垂直D.以上说法都不对【例10】来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转【例11】有一匀强磁场,磁感应强度大小为1.2T,方向由南指向北,如有一质子沿竖直向下的方向进入磁场,磁场作用在质子上的力为9.6×10-14N,则质子射入时速度为多大?将在磁场中向哪个方向偏转?【例12】两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:4,电荷量之比为1:2,则两带电粒子受洛伦兹力之比为()A.2:1 B.1:1 C.1:2 D.1:4【例13】长直导线AB附近有一带电的小球,由绝缘丝线悬挂在M点,当AB中通以如图所示的恒定电流时,下列说法正确的是()Array A.小球受磁场力作用,方向与导线垂直指向纸里B.小球受磁场力作用,方向与导线垂直指向纸外C.小球受磁场力作用,方向与导线垂直向左D.小球不受磁场力作用【例14】电子束以一定的初速度沿轴线进入螺线管内,螺线管中通以方向随时间而周期性变化的电流,如图所示,则电子束在螺线管中做()4 / 18A .匀速直线运动B .匀速圆周运动C .加速减速交替的运动D .来回振动【例15】如图所示,M 、N 为两条沿竖直方向放置的直导线其中有一条导线中通有恒定电流,另一条导线中无电流.一带电粒子在M 、N 两条直导线所在平面内运动,曲线ab 是该粒子的运动轨迹.带电粒子所受重力及空气阻力均可忽略不计.关于导线中的电流方向、粒子带电情况以及运动的方向,下列说法中可能正确的是( )A .M 中通有自上而下的恒定电流,带负电的粒子从a 点向b 点运动B .M 中通有自上而下的恒定电流,带正电的粒子从a 点向b 点运动C .N 中通有自上而下的恒定电流,带正电的粒子从b 点向a 点运动D .N 中通有自下而上的恒定电流,带负电的粒子从a 点向b 点运动【例16】在图中,单摆的摆线是绝缘的,长为l ,摆球带正电,单摆悬挂于O 点,当它摆过竖直线OC 时,便进入或离开一个匀强磁场,磁场的方向垂直于单摆的摆动平面,在摆角小于5°时,摆球来回摆动,下列说法中正确的是( )A .A 点和B 点处在同一个水平面上B .在A 点和B 点,摆线的拉力大小是相同的C .单摆的摆动周期gLT π2= D .单摆向右或向左摆过D 点时,摆线的拉力一样大【例17】如图,质量为m ,带电量为+q 的P 环套在水平放置的足够长的固定的粗糙绝缘杆上,整个装置放在方向垂直纸面向里的匀强磁场中,现给P 环一个水平向右的瞬时冲量I ,使环开始运动,则P 环运动后( )A .P 环克服摩擦力做的功一定为22I mB .P 环克服摩擦力做功可能为零C .P 环克服摩擦力做的功可能大于零而小于22I mD .P 环最终所受的合外力不一定为零【例18】如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m 、带电量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是A .滑块受到的摩擦力不变B .滑块到达地面时的动能与B 的大小无关C .滑块受到的洛伦兹力方向垂直斜面向下D .B 很大时,滑块可能静止于斜面上知识点2 带电粒子在匀强磁场中的运动 1.几个重要的关系式:①向心力公式:2v qvB m r=②轨道半径公式:mv r Bq= ③周期公式:2m T Bq π=;频率12Bqf T mπ== ④角速度2qB T mπω==由此可见:A 、T 与v 及r 无关,只与B 及粒子的比荷有关;B 、荷质比qm相同的粒子在同样的匀强磁场中,T f 、和ω相同. 2.圆心的确定方法:①已知入射方向和出射方向:分别画出入射点和出射点的洛伦兹力方向,其延长线的交点即为圆心; ②已知入射方向和出射点:连接入射点和出射点,画出连线的中垂线,再画出入射点的洛伦兹力方向,中垂线和洛伦兹力方向的交点即为圆心.3.半径的确定和计算:圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识. 4.运动时间的确定:利用圆心角与弦切角的关系,或者是四边形内角和等于360︒计算出圆心角θ的大小,由公式360t Tθ=可求出运动时间.有时也用弧长与线速度的比.如图所示:知识讲解5.还应注意到:①速度的偏向角ϕ等于弧AB 所对的圆心角θ.②偏向角ϕ与弦切角α的关系为:180ϕ<︒,2ϕα=;180ϕ>︒,3602ϕα=︒-;③对称规律:A 、从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;B 、在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.【带电粒子在磁场中的运动】【例1】如图所示,在通电直导线下方有一质子沿平行导线方向以速度v 向左运动,则下列正确的是( )A .质子将沿轨迹Ⅰ运动,半径越来越小B .质子将沿轨迹Ⅰ运动,半径越来越大C .质子将沿轨迹Ⅱ运动,半径越来越小D .质子将沿轨迹Ⅱ运动,半径越来越大【例2】一电子以垂直于匀强磁场的速度A v ,从A 处进入长为d 宽为h 的磁场区域如图,发生偏移而从B 处离开磁场,若电量为e ,磁感应强度为B ,弧AB 的长为L ,则( ) A .电子在磁场中运动的时间为A dt v = B .电子在磁场中运动的时间为AL t v =C .洛仑兹力对电子做功是A Bev hD .电子在A B 、两处的速度相同【例3】如图,abcd 为矩形匀强磁场区域,边长分别是ab H =,bc ,某带电粒子以速度v 从a 点沿ad方向射入磁场,恰好从c 点射出磁场.求这个带电粒子通过磁场所用的时间.【例4】如图所示,在00x y >>、的空间中有恒定的匀强磁场,磁感应强度方向垂直于xOy 平面向里,大小为B .现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为0x 的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴方向射出此磁场.不计重力影响,由这些条件可知:( )随堂练习A .不能确定粒子通过y 轴时的位置B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对【例5】图中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B .一带电粒子从平板上狭缝O 处以垂直于平板的初速v 射入磁场区域,最后到达平板上的P 点.已知B 、v 以及P 到O 的距离l ,不计重力,求此粒子的电荷e 与质量m 之比.【例6】一束电子(电荷量为e )以速度v 垂直射入磁感应强度为B 、宽度为d 的匀强磁场中,穿透磁场时,速度方向与电子原来的入射方向的夹角是30°,则 (1)电子的质量是多少? (2)穿过磁场的时间是多少?【例7】一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示.磁感应强度B 的方向与离子的运动方向垂直,并垂直于图中纸面向里. (1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t的关系是2qBt mθ=.【例8】如图所示,一电子以速度1.0×107m/s与x轴成30°的方向从原点出发,在垂直纸面向里的匀强磁场中运动,磁感应强度B=1T,那么圆运动的半径为m,经过时间s,第一次经过x 轴.(电子质量m=9.1×10-31kg)【例9】如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度为B的匀强磁场中,速度方向与x 轴、y轴均成45°.已知该粒子电量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?【例10】如图所示,在xoy平面内,电荷量为q、质量为m的电子从原点O垂直射入磁感应强度为B的匀强磁场中,电子的速度为v,方向与x轴正方向成30 角,则:(1)电子第一次到达x轴所用的时间是多少?(2)此时电子在x轴的位置距原点的距离是多少?【例11】一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求匀强磁场的磁感应强度B和射出点的坐标.【不同带电粒子在磁场中的运动】【例1】质子和α粒子在同一匀强磁场中做半径相同的圆周运动,由此可知,质子的动能1E 和α粒子的动能2E 之比12:E E 等于( ) A .4:1B .1:1C .1:2D .2:1【例2】质子和α粒子以相同的动能垂直于磁场方向射入同一匀强磁场,它们的运动轨迹半径之比:____P R R α=,运动周期之比:____P T T α=.【例3】质子(11H )和α粒子(42He )以相同的速度垂直进入同一匀强磁场中,它们在垂直于磁场的平面内都做匀速圆周运动,它们的轨道半径和运动周期的关系是( ) A .:1:2H R R α=,:1:2H T T α= B .:2:1H R R α=,:2:1H T T α= C .:1:2H R R α=,:2:1H T T α= D .:1:4H R R α=,:1:4H T T α=【例4】质子(p )和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为p R 和R α,周期分别为p T 和T α,则下列说法正确的是( ) A .p p :1:2:1:2R R T T αα==,B .p p :1:1:1:1R R T T αα==, C .p p :1:1:1:2R R T T αα==, D .p p :1:2:1:1R R T T αα==,【例5】如图所示的匀强磁场中有一束质量不同、速率不同的一价正离子,从同一点P 沿同一方向射入磁场,它们中能够到达屏上同一点Q 的粒子必须具有( )A .相同的动量B .相同的速率C .相同的质量D .相同的动能【例6】两个粒子,带电荷量相等,在同一匀强磁场中只受磁场力而做匀速圆周运动,则( )A .若速度相等,则半径必相等B .若质量相等,则周期必相等C .若动量大小相等,则半径必相等D .若动能相等,则周期必相等【例7】如图所示,α粒子和质子从匀强磁场中同一点出发,沿着与磁感应强度垂直的方向以相同的速率开始反向运动.若磁场足够大,则它们再相遇时所走过的路程之比是(不计重力)( )A .1:1B .1:2C .2:1D .4:1【例8】如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成θ角.若不计重力,关于正、负离子在磁场中的运动,下列说法正确的是( )A .运动的轨道半径不相同B .重新回到边界的速度大小和方向都相同C .重新回到边界的位置与O 点距离不相同D .运动的时间相同【例9】如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为 .【带电粒子在圆形磁场中的运动】【例1】圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率沿着AO 方向对准圆心O 射入磁场,其运动轨迹如图2所示.若带电粒子只受磁场力的作用,则下列说法正确的是( )A .a 粒子速率最大B .c 粒子速率最大C .a 粒子在磁场中运动的时间最长D .它们做圆周运动的周期T a <T b <T c【例2】在半径为r 的圆形空间内有一匀强磁场,一带电粒子以速度v 从A 沿半径方向入射,并从C 点射出,如图所示(O 为圆心).已知120AOC ∠=︒.若在磁场中,粒子只受洛伦兹力作用,则粒子在磁场中运行的时间:( )A .23rvπ B C .3r vπ D【例3】如图所示,在半径为r的圆形区域内,有一个匀强磁场,一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心,∠MON=120°时,求:带电粒子在磁场区域的偏转半径R 及在磁场区域中的运动时间.【例4】如图所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里.电量为q、质量为m的带正电的粒子从磁场边缘A点沿圆的半径AO方向射入磁场,离开磁场时速度方向偏转了60°角.试确定:(1)粒子做圆周运动的半径;(2)粒子的入射速度;(3)若保持粒子的速度不变,从A点入射时速度的方向顺时针转过60°角,求粒子在磁场中运动的时间.【例5】如图半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T 垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【例6】在真空中,半径r=3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T ,一个带正电的粒子,以初速度0v =106m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷qm=108C/kg ,不计粒子重力,求:(1)粒子在磁场中作匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的 夹角θ及粒子的最大偏转角β.【带电粒子在磁场中的临界问题】【例1】如图所示,比荷为em的电子从左侧垂直于界面、垂直于磁场射入宽度为d 、磁感受应强度为B 的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为( )A .2BedmB .Bedm C .2BedmD【例2】如图所示,宽为d 的有界匀强磁场的边界为PQ 、MN ,一个质量为m ,带电量为-q 的微粒子沿图示方向以速度v 0垂直射入磁场(磁感线垂直于纸面向里),磁感应强度为B ,要使粒子不能从边界MN 射出,粒子的入射速度v 0的最大值是多大?【例3】长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度4BqLv m< B .使粒子的速度54BqLv m > C .使粒子的速度BqLv m> D .使粒子速度544BqL BqLv m m<<【例4】一个质量为m ,电荷量为q +的粒子(不计重力),从O 点处沿y +方向以初速度0v 射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是0y =,y a =, 1.5x a =-, 1.5x a =如图所示.改变磁感应强度B的大小,粒子可从磁场的不同边界射出,那么当B 满足条件_______时,粒子将从上边界射出;当B 满足条件_______时,粒子将从左边界射出;当B 满足条件_______时,粒子将从下边界射出.【例5】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光.MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P 为屏上的一小孔,PQ 与MN 垂直.一群质量为m 、带电荷量q +的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用.则以下说法正确的是( )A .在荧光屏上将出现一个圆形亮斑,其半径为mvqB B .在荧光屏上将出现一个半圆形亮斑,其半径为mvqBC .在荧光屏上将出现一个条形亮线,其长度为2(1cos )mvqBθ- D .在荧光屏上将出现一个条形亮线,其长度为2(1sin )mvqBθ-【例6】如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小0.60T B =.磁场内有一块平面感光板ab ,板面与磁场方向平行.在距ab 的距离为16cm l =处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =63.010m /s ⨯.已知α粒子的电荷量与质量之比75.010C /kg qm=⨯.现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.【带电粒子在磁场中的综合应用】【例1】一初速度为零的电子经电场加速后,垂直于磁场方向进入匀强磁场中,此电子在匀强磁场中做圆周运动可等效为一环状电流,其等效电流的大小 A .与电子质量无关 B .与电子电荷量有关 C .与电子进入磁场的速度有关 D .与磁场的磁感应强度有关【例2】质量为m ,带电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,其圆周半径为r ,则粒子受到的洛伦兹力为 ,表示这个带电粒子运动而形成的环形电流的电流大小为 .【例3】图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小,在x 轴上距坐标原点0.50m L =的P 处为离子的入射口,在y 上安放接收器,现将一带正电荷的粒子以43.510m/s v =⨯的速率从P 处射入磁场,若粒子在y 轴上距坐标原点0.50m L =的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不计其重力.32.010T B -=⨯(1)求上述粒子的比荷qm;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.【例4】在半径为r的圆筒中,有沿筒的轴线方向的匀强磁场,磁感应强度为B,一个质量为m、带电荷量为q的粒子以速度v从筒壁A处沿半径方向垂直于磁场射入筒中(如图),若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞绕筒壁一周仍从A处射出,则B必须满足什么条件?【例5】据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图所示是一个截面为内径R 1=0.6 m 、外径R 2=1.2 m 的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的比荷/q m =4.8×107C/kg ,磁场的磁感应强度B =0.4T ,不计带电粒子的重力. (1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射入磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射入磁场都不穿出磁场外边界,求氦核的最大速度.【例6】如图所示,在0x <与0x >的区域中,存在磁感应强度分别为1B 与2B 的匀强磁场,磁场方向垂直于纸面向里,且12B B >.一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,1B 与2B 的比值应满足什么样的条件?【例7】如图所示,绝缘劈两斜面光滑且足够长,它们的倾角分别为α、β(α<β),处在垂直纸面向里的匀强磁场中,将质量相等,带等量异种电荷的小球A 和B 同时从两斜面的顶端由静止释放,不考虑两电荷之间的库仑力,则( )A 、在斜面上两球做匀加速运动,且AB a a < B 、在斜面上两球都做变加速运动C 、两球沿斜面运动的最大位移A B s s <D 、两球沿斜面运动的时间A B t t <【例8】如图所示,一带电为-q 的小球,质量为m ,以初速度v 0竖直向上射入水平方向的匀强磁场中,磁感应强度为B .当小球在竖直方向运动h 高度时,球在b 点上所受的磁场力多大?【例9】质量m =0.1 g 的小物块,带有5×10-4C的电荷,放在倾角为30°的绝缘光滑斜面上,整个斜面置于B =0.5 T 的匀强磁场中,磁场方向如图所示.物块由静止开始下滑,滑到某一位置时,开始离开斜面(设斜面足够长,g 取10 m/s 2),求:(1)物体带何种电荷?(2)物体离开斜面时的速度为多少? (3)物体在斜面上滑行的最大距离.。

洛伦兹力

洛伦兹力
qB
五、带电粒子在磁场中的运动 ——极值多解问题 极值多解问题 (一)、带电粒子在有界磁场中运动的极值问题: )、带电粒子在有界磁场中运动的极值问题: 带电粒子在有界磁场中运动的极值问题 注意下列结论,再借助数学方法分析: 注意下列结论,再借助数学方法分析: 1、刚好穿出磁场边界的条件是带电粒子在磁场中 、 运动的轨迹与边界相切 边界相切。 运动的轨迹与边界相切。 2、当速度 一定时,弧长越长,轨迹对应的圆心 一定时, 、当速度v一定时 弧长越长, 角越大, 角越大,则带电粒子在有界磁场中运动的时间越 长。 3、注意圆周运动中有关对称规律: 、注意圆周运动中有关对称规律: 如从同一边界射入的粒子,从同一边界射出时, 如从同一边界射入的粒子,从同一边界射出时, 速度与边界的夹角相等;在圆形磁场区域内, 速度与边界的夹角相等;在圆形磁场区域内,沿 径向射入的粒子,必沿径向射出。 径向射入的粒子,必沿径向射出。
五、带电粒子在磁场中的运动 ——极值多解问题 极值多解问题 (二)、洛仑兹力的多解问题 )、洛仑兹力的多解问题 带电粒子在洛伦兹力作用下做匀速圆周运动, 带电粒子在洛伦兹力作用下做匀速圆周运动, 由于多种因素的影响,使问题形成多解, 由于多种因素的影响,使问题形成多解,多解形 成原因一般包含下述几个方面。 成原因一般包含下述几个方面。 (1)带电粒子电性不确定形成多解 ) 受洛伦兹力作用的带电粒子,可能带正电荷, 受洛伦兹力作用的带电粒子,可能带正电荷,也 可能带负电荷,在相同的初速度的条件下, 可能带负电荷,在相同的初速度的条件下,正负 粒子在磁场中运动轨迹不同,导致形成多解。 粒子在磁场中运动轨迹不同,导致形成多解。 (2)磁场方向不确定形成多解 ) 有些题目只告诉了磁感应强度大小, 有些题目只告诉了磁感应强度大小,而未具体指 出磁感应强度方向, 出磁感应强度方向,此时必须要考虑感应强度方 向不确定而形成的多解。 向不确定而形成的多解。

细谈洛伦兹力

细谈洛伦兹力

法拉第电磁感应定律应用
01
法拉第电磁感应定律内容
当一个回路中的磁通量发生变化时,就会在回路中产生感应电动势。感
应电动势的大小与磁通量的变化率成正比,即$e=-Nfrac{dPhi}{dt}$,
其中$N$为回路匝数,$Phi$为磁通量。
02
洛伦兹力与感应电动势关系
在电磁感应现象中,洛伦兹力作用于运动电荷上,使得电荷在磁场中发
电荷运动方向与磁场方向成任意角度
03
此时θ为v与B的夹角,洛伦兹力F=qvBsinθ,其大小随θ的变化
而变化。
03
洛伦兹力与电场关系
电场对运动电荷作用
电场力
电场对电荷的作用力,与电荷的电量和 电场强度成正比,方向沿电场线切线方 向。
VS
运动电荷在电场中的轨迹
运动电荷在电场中受到电场力的作用,其 运动轨迹与电场线的形状和电荷的初速度 有关。
粒子加速器还应用于材料科学 、化学、生物学等领域。例如 ,利用粒子加速器可以模拟太 空环境,研究材料在太空中的 性能变化;还可以用于研究化 学反应的动力学过程等。
06
总结与展望
洛伦兹力研究意义和价值
揭示电磁相互作用机制
洛伦兹力是电磁学中的基本力,研究 它有助于深入理解电磁相互作用的本 质和机制。
多场耦合效应的复杂性
在实际应用中,洛伦兹力往往与其他物理场(如电场、热场等)相互耦合,使得问题变 得更为复杂,难以精确求解。
高性能计算资源的需求
对洛伦兹力的精确模拟和计算需要高性能的计算资源,如何有效利用和优化计算资源是 当前面临的挑战之一。
未来发展趋势及前景预测
01
深入研究极端条件下 的洛伦兹力
洛伦兹
洛伦兹力的方向由左手定则判定。

洛伦兹力

洛伦兹力

带电粒子是以 B的正方向(负电荷)或负方 向(正电荷)为转轴作圆周运动的,角频率的 大小也与带电粒子的运动速度无关。
洛伦兹力演示仪
亥姆霍兹线圈
电 加速电压 选择挡


磁场强弱选择挡
c. v0 与 B斜交成 θ 角
把 0 分解成两个分矢量:平行于B的分矢量v// v0 cos 和垂直于B的分矢量 v v0 sin .由于磁场作用,带电 粒子在垂直于磁场的平面内以 v作匀速圆周运动 .但 由于同时有平行于B的速度分矢量v//不受磁场影响, 所以带电粒子合运动的轨迹是一螺旋线,螺旋线的半 径是 m v m v0 sin
t 2 qB
因此为了粒子和交变电场的频率仍能保持同步,必须使交变电场的角频率ω 同步降低
交变电场角频率应保持满足ωm=qB
qB 即其频率满足 f 2m
根据这个原理设计的回旋加速器,叫做同步回旋加速器。
北 京 正 负 粒 子 对 撞 机
实物图
高大上的比如这个(*´・ω・)ノ
蠢一点的比如这个(*´_⊃`)ノ
mv 随着粒子一次次被加速,粒子在盒中绕行的半径 R qB
也不断增大,最后以很高的速度由致偏电极引出,这样 就获得了高能粒子束。 若设粒子最后一次在D形盒内的绕行半径 为 qBR D 则粒子的出射速度: v max
RD
m
然而当粒子被加速到接近光速的时候,必须考虑相 对论效应,粒子的质量将随速度的增大而增加。由 T m 粒子在半盒内的运动时间也增加。 于
磁聚焦的应用:电真空器件中对电子束的聚焦 利用示波管和磁聚焦法可以测定电子的 荷质比
2.回旋加速器
回旋加速器是原子核物理、高能物理等实验中获得 高能粒子的一种基本设备。

洛伦兹力

洛伦兹力

答案 AD
[思考]
若没有轨道存在, 两小球运动的轨 迹如何? 答案 A球将沿直 线做匀加速运 动. B球的轨迹是摆线, 如下图所示.
三、带电体在洛伦兹力作用下的运动问题
洛伦兹力特点: 可能是恒力 也可能是变力
(匀速) (变速)
直线
曲线 变速运动中f洛大小、方向均有可能改变,与 速度有关。(状态)
洛伦兹力及其应用
磁场对运动电荷的作用 ---洛伦兹力
1.洛伦兹力的大小 F安是F洛宏观体现
F=Bqvsinθ, θ为v与B的夹角
v∥B时.洛伦兹力F=0 v⊥B时,洛伦兹力F=Bqv 2.洛伦兹力的方向 左手定则: 注意:1)F ⊥ B和v所决定的平面(因为它由B、V 决定),但B与V不一定垂直(因为它们由自身决 定) 2)四指的指向是正电荷的运动方向或负电荷 运动的反方向 3.洛伦兹力对运动电荷不做功,只改变运动电荷 速度的方向 .
aO' b 60

1 m t T 6 3qB
特点1 入射速度方向指向匀强磁场区域圆的圆心, 则出射速度方向的反向延长线必过该区域圆的圆心。
(3)圆形磁场区域 特点2 入射速度方向(不一定指向区域圆圆心) 初末速度方向的交点、轨迹圆的圆心、区域圆的 圆心都在弧弦的垂直平分线上。 (弦切角为 ),则出射速度方向与入射速度方向的 偏转角为 2 ,轨迹圆弧对应的圆心角也为 2
即V>Bed/m。
O
B
拓展:如已知带电粒子的质量m和电量e,若要带电粒 子能从磁场的右边界射出,粒子的速度V必须满足什 么条件?
(3)圆形磁场区域 例1。 如图1,圆形区域内存在垂直纸面向里的匀强 磁场,磁感应强度为B,现有一电荷量为q,质量为m 的正离子从a点沿圆形区域的直径入射,设正离子射 出磁场区域方向与入射方向的夹角为 60 求:此离子在磁场区域内飞行的时间。 由几何关系得出

洛伦兹力

洛伦兹力

dF sin IBdl sin IBdy
A
I
dF x Idl
B x
同理 dF dF sin IBdx y
dFx IBdy
Fx dFx IB dy 0 y l
yB
A
Id 问题:从A到B的载流直导 l A B x 线结果如何?





Idl
B

I
Idl


dF
安培力: 磁场对电流的作用力
L
安培力的基本计算公式: F Idl B
安培力应用
上海磁悬浮列车
安培定律的应用:
[例1]一载有, 磁场与导线平面垂直, 求 该导线所受安培力
解:建立如图坐标系
取电流元 Id l

l 2R
l
dFz dF Z dF//

I
方向竖直向上
2RIB sin
0
IB sin dl
二、磁场对载流线圈的作用
a
l2
Fad
l1
d
B
Fad Il1B sin
I
b
Fbc
I n c
Fbc Il1B sin
大小相等,方向相反, 且在同一直线上 ----相互抵消
显像管中电子束的磁聚焦装置示意图
B
2. 回旋加速器 回旋加速器是核物理、高能物理实验中用来获 得高能带电粒子的设备,下图为其结构示意图。 电磁铁
离 子 源
B
D1
D2
D形盒
电磁铁
装置
电磁铁 产生强大磁场
D1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案:(1)甲 (2)Bdv
(3)2ndqSBv2
课堂练习
5、图中是一种测量血管中血流速度的仪器
原理图,如图所示,在动脉血管两侧分别安
装电极并加磁场,设血管直径为2mm,磁场
的磁感应强感度为0.080T,电压表测出的电
压为0.10mV,则血流速度大小为多少
分析:
血液中有正、负离子,当血液流动时,血液中的正负离子受到洛
AD
ቤተ መጻሕፍቲ ባይዱ1)由静止可知:
,当小球恰好离开斜面时,对小球受力分析
,受竖直向下的重力、电场力和垂直于斜面向上的洛伦兹力,此时在垂 直于斜面方向上合外力为零。则有: 得: ,解得: ,且恒 ,由动能定理
(2)对小球受力分析,在沿斜面方向上合力为
定,故沿斜面方向上做匀加速直线运动。
由牛顿第二定律得: 得: ,由 ,
可以
从做往右
课堂练习
AC
洛伦兹力和电场力
磁流体发电机
课堂练习
4、磁流体发电机的原理图如图所示,设想在相距为d的两平行金属板 间加磁感应强度为 B 的匀强磁场,两板通过开关和灯泡相连。将一束电离 气体(等离子体且每个电荷带电量均为q),以速度v喷入甲、乙两板之间, 这时甲、乙两板就会聚集电荷,产生电压,这就是磁流体发电机的原理, 它可以直接把内能转化为电能,试问: (1)图中哪个极板是发电机的正极? (2)发电机的电动势为多大? (3)设喷入两极板间的离子流每立方米中 有n个负电荷,离子流的横截面积为S, 则发电机的最大功率为多大?
得:
如图,光滑的圆槽固定不动,处于水平向里的匀强磁 场中,一带正电小球从斜面右端于圆心等高处由静 止沿圆槽下滑,到达最低点.已知小球质量 , 电量 圆槽半径 ,磁感应强度 求: (1)小球运动到最低点时的速度大小? (2)小球在第一次到达最低点时圆槽对小球的支持 力?
(1)球从最高点到最低点过程,洛伦兹力不做功,只有重力做功, 根据动能定理,则有: 计算得出: (2)球在最低点受重力、洛伦兹力和支持力,合力提供向心力, 根据牛顿第二定律,结合向心力表达式,则有: 计算得出:
计算得出: 而两次经过C点的速度均大小相等,方向相反;
第一次经过C点时,由向心力公式可得:
计算得出:
第二次经过C点时,由向心力公式可得:
计算得出:
课堂练习
1、(多选)如图所示,一阴极射线管,左侧不断有电子射出,若在
管的正下方放一通电直导线AB时,发现射线的径迹向弯曲,则( BC )
A. 导线中的电流从A到B
B. 导线中的电流从B到A
C. 若要使电子束的径迹向上弯曲,
可以改变AB中的电流方向来实现
D. 电子束的径迹与AB 中的电流方向无关
课堂练习
2、如图所示为电视机显像管偏转线圈的示意图,当线圈通以 图示的直流电时,一束沿着管颈轴线射向纸内的电子将( C ) A、向上偏转 B、向下偏转
C、向右偏转
D、向左偏转
速度选择器
图中所示的平行板器件中,平行板中电场强度 E 和
磁感应强度B互相垂直,这种装置能把具有一定速度的 粒子选择出来,所以叫做速度选择器。
伦兹力,使血管上、下壁出现等量异号电荷,使血管内又形成一
个电场,当离子所受电场力和洛伦兹力相等时,血液上、下两壁
间形成稳定电场,存在稳定电压,血液在血管中匀速流动。
0.63m/s
与洛伦兹力相关的运动问题
6、一质量m、电荷量+q的圆环,可在水平放置的足够长的粗糙细杆
上滑动.细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度
v 0,以后的运动过程中圆环运动的速度图象可能是( AD)
带正电的小环向右运动时,受到的洛伦兹力方向向上,注意讨论洛伦兹 力与重力的大小关系,然后即可确定其运动形式,注意洛伦兹力大小随 着速度的大小是不断变化的. 解:1、当qvB=mg时,小环做匀速运动,此时图象为A,故A正确; 2、当qvB>mg时,F N=qvB-mg,此时:μF N=ma,所以小环做加 速度逐渐减小的减速运动,直到qvB=mg时,小环开始做匀速运动,故D 图象正确,故D正确; 3、当qvB<mg时,F N=mg-qvB此时:μF N=ma,所以小环做加速 度逐渐增大的减速运动,直至停止,所以其v-t图象的斜率应该逐渐增大, 故BC错误. 故选AD.
速度选择器
1、这个“一定速度”是多大?
2、如果粒子所带电荷变为负电荷,仍然 从做往右入射,此装置还能不能作为 速度选择器使用?
可以
速度选择器
3、如果带电粒子从右往左入射,此装置还 能不能作为速度选择器使用?
不可以
4、如果将电场、磁场同时反向,大小不变,此装置还能不能作 为速度选择器使用?如果可以,粒子应从哪个方向入射?
质量为m、带电荷量为+q的小球,用一长为L 的绝缘细线悬挂在方向垂直纸面向里的匀强 磁场中,磁感应强度为B,如图所示,用绝缘的 方法使小球位于使悬线呈水平的位置A,然后 静止释放,小球运动的平面与B的方向垂直, 求小球第一次和第二次经过最低点C时悬线 的拉力 和 .
解:洛仑兹力不做功,根据机械能守恒定律
相关文档
最新文档