简单的轴对称的图形(知识点归纳)

合集下载

生活中的轴对称知识要点

生活中的轴对称知识要点

七年级数学第五章生活中的轴对称第一部分知识要点1、轴对称现象如果一个图形沿着一条折叠,直线两旁的部分能够互相,那么这个图形叫作轴对称图形,这条直线叫作它的.对称轴是直线.对于个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成,这条直线就是对称轴.2、简单的轴对称图形(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到的距离相等;到一个角的两边距离相等的点,在上.(2)线段是轴对称图形,线段的是它的一条对称轴.线段的上的点到这条线段两个端点的距离相等.的点,在这条线段的垂直平分线上.轴对称和轴对称图形的区别与联系:区别:(1)轴对称是________个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;(2)轴对称是对两个图形说的,轴对称图形是对_______个图形说的.联系:(1)它们的定义中,都有沿某直线折叠,图形重合;(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.3、探索轴对称的性质轴对称图形的对应点所连的线段被垂直平分.如果对应线段或延长线相交,那么交点在对称轴上.轴对称图形相等,相等.4、等腰三角形的性质(1)对称性:________________________________________________________________________ (2)“三线合一”:________________________________________________________________________ ________________________________________________________________________ (3)“等边对等角”:________________________________________________________________________ ________________________________________________________________________ 5、线段垂直平分线的定义:_________于一条线段,并且__________这条线段的______________.。

简单的轴对称图形(一)

简单的轴对称图形(一)
,直线m、n表示两条交叉的公路,A、B 如图,直线 、 表示两条交叉的公路 表示两条交叉的公路, 、 是两个居民点, 是两个居民点,现要在两个居民点附近修建一个 牛奶供应点, 牛奶供应点,要求两个居民点到牛奶供应点的距 离相等,并且供应点到两条公路的距离也相等, 离相等,并且供应点到两条公路的距离也相等, 请你说明如何确定供应点的修建位置。 请你说明如何确定供应点的修建位置。 m A
简单的轴对称图形( 简单的轴对称图形(一)
探索1 作业
探索2
拓展
练习
小结
复习引入
1. 什么是轴对称图形?什么是对称轴? 什么是轴对称图形?什么是对称轴? 轴对称图形 对称轴
2. 角是轴对称图形吗?如果是,你能找到它 是轴对称图形吗?如果是, 的对称轴吗? 的对称轴吗?
3. 线段是轴对称图形吗?如果是, 线段是轴对称图形吗?如果是, 是轴对称图形吗 你能找到它的对称轴吗? 你能找到它的对称轴吗?
拓展 2. 如图,在平面内有不在同一直线上的三个 如图, 点A、B、C,你能找到一个点 ,使得 、 、 ,你能找到一个点O, OA = OB = OC吗?用尺规作图找出这个 吗 点,并说明理由. 并说明理由
A O B
C
作业
1、同步导学:89—90页相应部分; 、同步导学: 页相应部分; 页相应部分 2、教科书:193页习题 、教科书: 页习题7.2 1、2、3 页习题 、 、
应用
1. 如图,在Rt△ABC中,BD是∠B的平分线, 如图, 的平分线, △ 中 是 的平分线 DC = 5,AB = 20,则S△ABD= ? , , E A D B C
应用
2. 如图,点C、D是线段 的中垂线上的两点, 如图, 是线段AB的中垂线上的两点 、 是线段 的中垂线上的两点, △ADC≌ △BCD吗?为什么? ≌ 吗 为什么?

第01讲 轴对称与轴对称图形(知识解读)

第01讲 轴对称与轴对称图形(知识解读)

第01讲轴对称与轴对称图形1.通过具体实例认识轴对称、轴对称图形、探索轴对称的基本性质.2.探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形关于给定对称轴对称图形.3.认识并欣赏自然界和现实生活中的轴对称图形.知识点轴对称图形⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线称为它的对称轴.注意:1.轴对称图形的对称轴是一条直线,2.轴对称图形是1个图形,3.有些对称图形的对称轴有无数条。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形两个图形的对称轴.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大会的会标,其中是轴对称图形的是()A.B.C.D.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F 连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【题型7与轴对称相关的开放性问题】【典例7】(2022秋•东营区校级期末)如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是三角形,△ABC的周长=cm.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有个.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)元.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠P AD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个3.(海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D 4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点C.点C D.点D 5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8 6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC 边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.10.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.答案与解析【题型1轴对称的相关概念】【典例1】(2022秋•昆明期末)如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中与△ABC成轴对称的格点三角形可以画出()A.6个B.5个C.4个D.3个【答案】A【解答】解:如图,最多能画出6个格点三角形与△ABC成轴对称.故选:A.【变式1-1】(2022秋•东港区期末)如图所示,△ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与△ABC成轴对称且也以格点为顶点的三角形共有()A.3个B.4个C.5个D.6个【答案】C【解答】解:如图,与△ABC成轴对称且也以格点为顶点的三角形共有5个.故选C.【变式1-2】(2022秋•大连期末)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,在格纸中能画出与△ABC成轴对称且也以格点为顶点的三角形(不包括△ABC本身),这样的三角形共有个【答案】见试题解答内容【解答】解:如图所示,与△ABC成轴对称且也以格点为顶点的三角形有3个:故答案为:3.【题型2轴对称图形的相关概念】【典例2】(2023春•渝北区校级期中)下列图形不是轴对称图形的是()A.B.C.D.【答案】D【解答】解:D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A、B、C选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【变式2-1】(2023春•青秀区校级期中)下列四个图形分别是四届国际数学家大)A.B.C.D.【答案】A【解答】解:B,C,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【变式2-2】(2023春•南宁期中)学习轴对称图形中后,小乐画出如图四个图形,其中只有1条对称轴的图形是()A.B.C.D.【答案】C【解答】解:A.该图形有无数条对称轴,故此选项不合题意;B.该图形有4条对称轴,故此选项不合题意;C.该图形有1条对称轴,故此选项符合题意;D.该图形有2条对称轴,故此选项不合题意.故选:C.【题型3确定轴对称图形对称轴的条数】【典例3】(2023•城阳区一模)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】B【解答】解:A.该图形是轴对称图形,共有1条对称轴;B.该图形是轴对称图形,共有3条对称轴;C.该图形是轴对称图形,共有2条对称轴;D.该图形是轴对称图形,共有2条对称轴.故选:B.【变式3-1】下列图形中对称轴只有两条的是()A.B.C.D.【答案】C【解答】解:A、圆有无数条对称轴,故本选项不符合题意;B、等边三角形有3条对称轴,故本选项不符合题意;C、矩形有2条对称轴,故本选项符合题意;D、等腰梯形有1条对称轴,故本选项不符合题意;故选:C.【变式3-2】(2022秋•宝山区期末)圆是轴对称图形,它的对称轴有条.【答案】见试题解答内容【解答】解:圆是轴对称图形,它的对称轴有无数条.故答案为:无数.【题型4轴对称再镜面对称中的应用】【典例4】(2022秋•乳山市期中)小明在平面镜里看到背后墙上电子钟显示的时间如图所示,此刻的实际时间应该是()A.21:05B.20:15C.20:12D.21:50【答案】B【解答】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为20:15.故选:B.【变式4-1】(2021秋•播州区期末)如图是一只停放在平静水面上的小船,则它在水中的倒影表示正确的是()A.B.C.D.【答案】A【解答】解:根据题意,它在水中的倒影表示正确的是A,故选:A.【变式4-2】(2021秋•恩施市校级期末)一轿车的车牌在水中的倒影是,则该车的牌照号码为.【答案】鄂Q•W6E01.【解答】解:如图所示:该车的牌照号码为鄂Q•W6E01..故答案为:鄂Q•W6E01.【题型5轴对称的操作应用】【典例5】(2022秋•桓台县期中)在图①中描涂2个小方块,在图②中描涂3个小方块,在图③中描涂4个小方块,在图④中描涂5个小方块,分别使图中的阴影图案成为轴对称图形.【答案】答案见解答.【解答】解:如图所示:.【变式5-1】(2022秋•永嘉县校级月考)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【答案】见试题解答内容.【解答】解:作轴对称图形如下(答案不唯一):【变式5-2】(2021秋•船营区校级期中)下列各图中的单位小正方形的边长都等于1,并且都已经填充了一部分阴影,请再对每个图形进行阴影部分的填充.(1)使得图①成为轴对称图形;(2)使得图②成为有4条对称轴且阴影部分面积等于3的图形;(3)使得图③成为至少有2条对称轴且面积不超过6的图形.【答案】见解答.【解答】解:如图所示(答案不唯一):【题型6与轴承对称相关的探索图形规律问题】【典例6】(2020春•顺德区校级期末)如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2,在射线AD上取点F连接BF,CF,如图3,依此规律,第6个图形中全等三角形的对数是()A.10B.15C.21D.28【答案】C【解答】解:∵△ABD和△ACD关于直线AD对称,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n个图形中全等三角形的对数是.所以:第6个图形中全等三角形的对数是,故选:C.【变式6-1】(2021秋•沂源县期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【答案】A【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选:A.【变式6-2】(2021秋•罗庄区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到矩形的边时反弹,反弹时反射角等于入射角.当小球第1次碰到矩形的边时的点为Q,第2次碰到矩形的边时的点为M,….第9次碰到矩形的边时的点为图中的()A.点P B.点Q C.点M D.点N【答案】D【解答】解:如图所示,小球反弹6次回到点P处,而9﹣6=3,∴第9次碰到矩形的边时的点为图中的点N.故选:D.【题型7与轴对称相关的开放性问题】【典例7】(2022AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是等边三角形,△ABC的周长=24cm.【答案】等边三角形,24.【解答】解:∵AD是△ABC的对称轴,∴BD=CD=4cm,AB=AC,∴BC=BD+CD=8cm,∵∠DAC=30°,∴∠C=60°,∴△ABC是等边三角形,∴△ABC的周长为=3BC=24cm.故答案为:等边三角形,24.【变式7-1】(2022秋•开封期末)如图,∠1=∠2,∠3=25°,击打白球,反弹后将黑球撞入袋中,∠1=65°.【答案】65°.【解答】解:∵∠2+∠3=90°,∠3=25°,∴∠2=65°.∵∠1=∠2,∴∠1=65°.故答案为:65°.【变式7-2】(2022秋•青云谱区校级期中)图中阴影部分是由4个完全相同的正方形拼接而成的,若要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形可添加的区域有2个.【答案】2.【解答】解:要在①,②,③,④,⑤五个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在区域①⑤.故答案为:2.【题型8轴对称的实际应用】【典例8】(2022秋•乐清市月考)为迎接即将到来的国庆节,市区广场上设置了一个呈轴对称图形的平面造型(如图所示),其正中间为一个半径为b的半圆,摆放花草,其余部分为展板区.已知a=0.5米.b=2米.则展板的面积为12平方米,摆放花草造价为450元/平方米,展板造价为80元/平方米,那么制作整个造型的造价是(π取3)3660元.【答案】12平方米;3660.【解答】解:由题意:展板的面积=12a•b(平方米),当a=0.5米,b=2米时,展板的面积=12(平方米).制作整个造型的造价=12×80+π×4×450=3660(元).故答案是:12平方米;3660.【变式8-1】(2022秋•栖霞市期末)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.【答案】如图所示,运动路线:A→P→B.【解答】解:如图所示:运动路线:A→P→B.【变式8-2】如图,台球运动中母球P击中桌边的点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹经过点C(提示:∠PAD=∠BAE,∠ABE=∠CBF).(1)若∠PAD=32°,求∠PAB的度数;(2)已知∠BAE+∠ABE=90°,母球P经过的路线BC与PA一定平行吗?请说明理由.【答案】(1)116°.(2)BC∥PA.证明见解析部分.【解答】解:(1)∵∠PAD=32°,∠P AD=∠BAE,∠PAD+∠PAB+∠BAE=180°,∴∠PAB=180°﹣32°﹣32°=116°.(2)BC∥PA,理由如下:∵∠PAD=∠BAE,∠P AB=180°﹣∠PAD﹣∠BAE,∴∠PAB=180°﹣2∠BAE.同理:∠ABC=180°﹣2∠ABE.∵∠BAE+∠ABE=90°,∴∠PAB+∠ABC=360°﹣2(∠BAE+∠ABE)=180°.∴BC∥PA.1.(2023•平顶山二模)从“同一个世界,同一个梦想”的2008年夏季奥运会,到“一起向未来”的2022年冬季奥运会,北京成为世界上首座“双奥之城”,下列四幅图是两届奥运会的参选徽标,其中文字上方的图案是轴对称图形的是()A.B.C.D.【答案】C【解答】解:A,B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.2.(2023•蚌山区模拟)有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作()A.200个B.400个C.1000个D.2000个【答案】A【解答】解:根据题意,若以8开头,则第五个也是8,只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况.同样地,以9开头只需考虑中间3位,又因为第二位和第四位是相等的,只需考虑第二位和第三位,共有10×10=100种情况,所以最多可制作200个.故选:A.3.(2003•海淀区)如图,把△ABC纸片沿着DE折叠,当点A落在四边形BCED 内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【答案】B【解答】解:∵把△ABC纸片沿着DE折叠,点A落在四边形BCED内部,∴∠1+∠2=180°﹣∠ADA′+180°﹣∠AEA′=180°﹣2∠ADE+180°﹣2∠AED=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣∠A)=2∠A.故选:B.4.(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.【答案】674.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674(次),故答案为:674.1.(2022秋•河西区期末)2022年卡塔尔世界杯开幕式上中国元素闪耀登场.下面四幅与世界杯相关的图标中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【解答】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.2.(2022秋•东宝区期末)在以下四个图形中,对称轴条数最多的一个图形是()A..B.C..D.【答案】B【解答】解:A有2条对称轴,B有4条,C有0条,D有1条.则对称轴条数最多的一个图形是B.故选:B.3.(2022春•淮阳区期末)如图下面镜子里哪个是他的像?()A.A B.B C.C D.D【答案】B【解答】解:由镜面对称的性质,连接对应点的线段与镜面垂直并且被镜面平分,即可得出只有B与原图形成镜面对称.故选:B.4.(2023•雄县模拟)通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D【答案】B【解答】解:如图,过点P,点B的射线交于一点O,故选:B.5.(2023春•海淀区校级月考)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.5B.6C.7D.8【答案】A【解答】解:如图,连接OP1,PP1,OP2,PP2,P1P2,∵P1是P关于直线l的对称点,∴直线l是PP1的垂直平分线,∴OP1=OP=2.8,∵P2是P关于直线m的对称点,∴直线m是PP2的垂直平分线,∴OP2=OP=2.8,当P1,O,P2不在同一条直线上时,OP1﹣OP2<P1P2<OP1+OP2,即0<P1P2<5.6,当P1,O,P2在同一条直线上时,P1P2=OP1+OP2=5.6,∴P1,P2之间的距离可能是5,故选:A.6.(2022秋•婺城区期末)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有()A.①②③B.①②C.①③D.②③【答案】A【解答】解:①BC边上的中线AD:如图1,使点B、C重合,中点为点D,连接AD,此时AD即为BC边上的中线;②∠A的平分线AE:如图2,沿直线AE折叠,使AB与AC重叠,此时AE即为BC边上的角平分线;③BC边上的高AF:如图3,沿直线AF折叠,使BF与CF重合,此时AF即为BC边上的高.综上所述,所有能够通过折纸折出的有①②③.故选:A.7.(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.8.(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点【答案】D【解答】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到长方形的边时为第337个循环组的第4次反弹,∴第2020次碰到长方形的边时的点为图中的点D,故选:D.9.(2022秋•汤阴县期中)小红站在平面镜前,通过镜子看到电子钟的示数如图所示,这时的时刻应是.【答案】12:08:51.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是12:08:51.故答案为:12:08:51.11.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F是线段AD上的任意两点,若△ABC的面积为18cm2,则图中阴影部分的面积是cm2.【答案】9.【解答】解:∵△ABC是轴对称图形,且直线AD是对称轴,=S△ACD=,S△CEF=S△BEF,∴S△ABD∴阴影部分的面积等于△ABC面积的一半,=×18=9(cm2).∴S阴影故答案为:9.11.(秋•西城区校级期中)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.【答案】见试题解答内容【解答】解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.。

简单 的轴对称图形章末知识复习

简单 的轴对称图形章末知识复习
解:如图所示,作点A关于直线l1的对称点A′,作点A关于直线l2的对称点A″,连 接A′A″交l1于一点D,交l2于一点E,则AD+DE+EA的最小值等于A′A″.
类型二:分类思想
(1)没有指明等腰三角形底角和顶角. (2)没有明确锐角三角形和钝角三角形.
1.(2019武威)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等
腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=
.
2.如果一个等腰三角形一腰上的高与腰的夹角是30°,则它的顶角度数是
120°或60°
.
类型三:方程思想 列方程求等腰三角形的内角度数.
1.已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数.
解:设顶角为x°,则底角为2x°, 则x+2x+2x=180, 解得x=36. 所以这个三角形三个内角的度数分别为36°,72°,72°.
(1)轴对称图形及性质理解出错. (2)简单的轴对称图形的性质应用出错.
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( C ) (A)1 (B)2 (C)3 (D)4 2.下列说法正确的是( D ) (A)线段只有一条对称轴 (B)等腰三角形的对称轴是顶角的平分线 (C)等腰三角形的对称轴是底边上的高 (D)等边三角形有三条对称轴
3.等腰三角形的一个角是另一个角的2倍,则这个等腰三角形的顶角长度的小正方形组成的网格,在格点中找一点C,使
△ABC是等腰三角形,这样的点C有 6 个.
5.如图,直线l是AB的垂直平分线,M是直线l上的一点,D,E是AB上不同的两点,则 AM=BM吗?MD=ME吗?
知识点三:线段的垂直平分线、角的平分线

七年级数学下册第五章生活中的轴对称知识归纳

七年级数学下册第五章生活中的轴对称知识归纳

第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。

可以说成:这两个图形关于某条直线对称。

2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。

5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。

6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。

7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。

8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。

2.1 图形的轴对称八年级上册数学浙教版

2.1 图形的轴对称八年级上册数学浙教版
典例1 [2022·台州临海期末] 某班开展了以迎北京2022年冬奥会为主题的海报评比活动,下列海报设计中,属于轴对称图形的是( )
A. B. C. D.
2.常见的轴对称图形
名称
图形及其对称轴
对称轴
对称轴的条数

角平分线所在直线
1
等腰梯形
上、下底的中点所在直线
1
长方形
对边中点所在直线
2
正方形
对边中点所在直线和 两条对角线所在直线
4

过圆心的每一条直线
无数条
D
A. B. C. D.
链接教材 本题取材于教材第48页合作学习第1题,考查了轴对称图形的识别.此类题目常结合实际背景命题.
2.图形的轴对称的性质:
性质
几何语言
图示
对应点所连的线段被对称轴垂直平分.
, ; , ; , .
成轴对称的两个图形中,对应线段所在的直线平行或相交(交点在对称轴上)或重合
成轴对称的两个图形是全等图形.
对应边相等
, , .
(2) 在不另加字母和线段的情况下,图中还有成轴对称的三角形吗?
(2)在不另加字母和线段的情况下, 与 , 与 也都关于直线 成轴对称.
解:(1)点 的对称点是点 ,点 的对称点是点 ,点 的对称点是点 .
例题点拨成轴对称的两个图形中,对称轴上的点与两个图形上的对称点的连线对应相等,连线与对称轴的夹角对应相等.
第2章 特殊三角形
2.1 图形的轴对称
学习目标
1.了解轴对称图形以及图形的轴对称的概念.
2.理解轴对称图形的性质.
3.会判断一个图形是不是轴对称图形,并能够找出它的对称轴.
4.能画出简单平面图形关于给定对称轴的对称图形.

简单的轴对称图形-角

简单的轴对称图形-角

简单的轴对称图形-角•轴对称图形的基本概念•角的基本概念•轴对称图形中的角•角在轴对称图形中的应用•总结与展望01CATALOGUE轴对称图形的基本概念轴对称对称轴轴对称的定义轴对称图形在折叠对称轴后,两侧图形完全一致。

对称性稳定性美学价值轴对称结构在物理和工程中具有较高的稳定性。

轴对称图形在艺术、建筑和设计中常被视为美的表现。

030201建筑设计美感。

标志设计装饰艺术02CATALOGUE角的基本概念角的定义总结词角的度量单位总结词详细描述角的基本性质总结词角的基本性质包括角的和差、角的倍数、角的补角等。

详细描述角的基本性质包括角的和差、角的倍数、角的补角等。

具体来说,两个角相加或相减,其结果仍为一个角;一个角的两倍或一半仍为一个角;两个角如果它们的和为180度,则它们互为补角。

这些性质是研究几何图形的基础。

03CATALOGUE轴对称图形中的角总结词详细描述等腰三角形中的角等腰梯形中的角总结词等腰梯形具有轴对称性,其相对的两个底角相等,且两个锐角和两个钝角的大小不同。

详细描述等腰梯形是两腰相等的梯形,其相对的两个底角大小相等,且梯形中存在一个直角的底边。

在等腰梯形中,轴对称性表现为沿着上底边中垂线对折后,两侧图形完全重合。

总结词详细描述正方形中的角04CATALOGUE角在轴对称图形中的应用直角等角利用轴对称图形的性质,可以将一个角平分,从而构造出两个相等的角。

垂直平分线利用轴对称图形的性质,可以找到一个角的垂直平分线,从而构造出两个相等的角。

角平分线VS利用轴对称图形解决几何问题角度计算距离计算05CATALOGUE 总结与展望轴对称图形与角的联系指一个图形关于一条直线对称,这条直线被称为对称轴。

一个角关于其角平分线对称,即角的平分线是角的对称轴。

角平分线上的任意一点到这个角的两边的距离相等。

一个角关于其角平分线对称,意味着这个角是轴对称图形。

轴对称图形角的轴对称性角平分线定理角的轴对称性质数学教育实际应用未来发展也将成为更加重要的知识点之一。

2.3 简单的轴对称图形(2)重点

2.3  简单的轴对称图形(2)重点

课题2.3 简单的轴对称图形(2) 课型 新授课 授课班级 七(1)七(3) 授课时间 教学目标1、知识与技能 (1).会作已知角的平分线; (2).了解角的平分线的性质,能利用三角形全等证明角的平分线的性质; (3).会利用角的平分线的性质进行证明与计算.2、过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.3、情感态度价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验教学重点:角的平分线的性质的证明及应用;教学难点:角的平分线的性质的探究.教具、学具:教学内容教学过程所有的文字都是仿宋,4号(含知识点、教学方法、预设解决问题方案等)教与学互动设计探究一:角的平分线的性质Ⅰ、做一做如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.(1)角的平分线的性质:角的平分线上的点到角的两边的距离相等.(2)角的平分线性质的证明步骤:① 明确命题中的已知和求证;已知:一个点在一个角的平分线上.结论:这个点到这个角两边的距离相等.②M根据题意,画出图形,并用数学符号表示已知和求证;已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E.求证: PD=PE.③M经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵ PD⊥OA,PE⊥ OB (已知∴ ∠PDO= ∠PEO=90°(垂直的定义在△PDO和△PEO中∠PDO= ∠PEO(已证)∠AOC= ∠BOC (已证)OP=OP (公共边)∴ △PDO ≌ △PEO(AAS)∴ PD=PE(全等三角形的对应边相等)符号语言:∵∠AOC=∠BOC, PD⊥OA,PE⊥OB,垂足分别为点D、E.(已知)∴ PD=PE(角的平分线上的点到角的两边的距离相等)思考:角的平分线的性质在应用时应该注意什么问题?2、角的平分线性质的应用(1)如图,△ABC中,∠C =90°,BD平分∠AB C,CD=3cm,则点D到AB的距离为cm.(2)变式训练,深化新知变式①,如图,△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,AC=8cm,则AD+DE= cm.变式②,如图,△ABC中,∠C =90°,BD平分∠ABC,DE⊥AB于E,F在BC上,AD=DF求证:CF=EA探究二:角的平分线的作法问题1 请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2 如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD 沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线. 你能说明它的道理吗?问题3 通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.已知:∠MAN求作:∠MAN的角平分线.作法:(1)以A为圆心,适当长为半径画弧,交AM于B,交AN于D.(2)分别以B、D为圆心,大于的长为半径画弧,两弧在∠MAN的内部交于点C.(3)画射线AC.∴射线AC即为所求.Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC以后,把它反向延长得到直线CD.直线CD与直线AB是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 简单的轴对称图形
概念1:角平分线性质定理
1.定理:角平分线上的点到角的两边距离
相等.
几何语言:
∵点P 在∠AOB 的平分线上,PD ⊥OA ,PE ⊥OB ,
∴PD=PE .
2.三角形的三条角平分线相交于一点,这一点叫三角形的内心
(三角形内接圆的圆心),它到三角形三条边的距离相等,它的位置在三角形内部。

概念2:线段垂直平分线定理
1.定理:线段垂直平分线上的点到这条线段两
个端点的距离相等.
几何语言:
∵MN 垂直平分AB ,点P 在MN 上
∴PA=PB
2.三角形三边的三条垂直平分线相交于一点,这一点叫三角形 的外心,它到三角形三个顶点的距离相等.它的位置分为如下三种情况:锐角三角形在三角形的内部、钝角三角形在三角
形外部、直角三角形在斜边中点上。

概念3:等腰三角形性质定理与判定定理
性质定理1:等腰三角形的两个底角相等
几何语言:在△ ABC中,∵AB=AC(已知)
∴∠B=∠C(等边对等角)
性质定理2:等腰三角形的顶角平分线、底边上的中线和高线
互相重合。

(1)∵ AB=AC,∠BAD=∠CAD(已知)
∴BD=DC,AD⊥BC(等腰三角形性质)
(2)∵AB=AC,BD=DC(已知)
∴∠BAD=∠CAD,AD⊥BC(等腰三角形性质)
(3)∵AB=AC,AD⊥BC于D(已知)
∴BD=DC,∠BAD=∠CAD(等腰三角形性质)
判定定理1:两个角相等的三角形是等腰三角形
几何语言:在△ ABC中,∵∠B=∠C(已知)
∴AB=AC(等角对等边)
概念4:等边三角形和特殊的Rt△
性质定理:等边三角形的三条边相等,三个角相等;等边三角
2
形是轴对称图形,有三条对称轴。

判定定理:
1、三条边相等的三角形是等边三角形。

几何语言:∵AB=BC=AC
2、三个角相等的三角形是等边三角形。

几何语言:∵∠A=∠B=∠C
∴△ ABC是等边三角形
3、有一个角是60°的等腰三角形是等边三角形。

几何语言:∵△ ABC是等腰三角形,∠A=60°
∴△ ABC是等边三角形
4、直角三角形的一个重要定理:
直角三角形中,30°的锐角所对的直角边是斜边的一半。

几何语言:
在Rt△ ABC中,∵∠A=30°,∠C=90°
1AB
∴BC=
2
(同学们,请记住:几何过程是用几何语言一句句组成的,几何语言是严谨的,在学习几何时,一定要注意几何语言的准
确叙述,千万不要差不多就行。


3。

相关文档
最新文档