核反应堆及发展
核反应堆及发展

核反应堆的类型核电站中的反应堆设计具有多样性,也就是说,核反应堆具有不同类型,相应形成不同的核电站。
可以利用下列三个特点表征不同类型的反应堆。
第一,所用的核燃料可以是天然铀或浓缩铀、钮或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氮气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。
下面就是迄今国际上核电站常用的4种核反应堆型。
压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸腾的核反应堆。
目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。
沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的核反应堆。
沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。
它们都需使用低富集铀作燃料。
以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。
重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。
重水堆分压力容器式和压力管式两类。
重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。
快堆是由快中子引起链式裂变反应的核反应堆。
快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。
专家预计,快堆未来的发展将会加快起来。
前景看好的快堆现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1 %~2%。
但在快堆中,铀-238 原则上都能通过核反应转变成易裂变的钮-239而得以使用。
即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。
具体点说,在堆芯燃料钮-239的外围再生区里放置铀-238,通过钮-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次8衰变后,铀-238很快被转变成钮-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钮-239。
核弹与核反应堆的原理与发展1

核弹与核反应堆的原理与发展摘要:核弹是指利用爆炸性核反应释放出的巨大能量对目标造成杀伤破坏作用的武器。
爆炸性核反应是利用能自持快速进行的原子核裂变或聚变反应,瞬间释放出巨大能量产生的核反应爆炸而形成巨大杀伤破坏效应。
核反应堆(Nuclear Reactor)是一种启动、控制并维持核裂变或核聚变链式反应的装置。
相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。
核弹的用途分为战术核弹、战略核弹和战区核武器,而核能则在推进动力和功能等方面起重要作用。
关键词:核弹核反应堆裂变聚变核武器供能引言:核能可谓一把双刃剑,利弊共存,推进人类科技发展的同时,也对人类生存环境造成了一定的威胁,更好的掌握其原理,规范其发展,才能为人类谋福利。
正文:一、核弹核弹头的基本结构:不管核武器样式多么繁多,核弹头的基本构造通常由壳体、核装药和热核装药、引爆控制系统(引信)和电源等组成。
其中壳体用于盛装核弹的各种装置并能防止其机械损坏。
在弹道导弹核弹头壳体外壳还涂有特殊涂料或隔热层,以防弹头再入大气层时受高速气动加热使弹头壳体及内部装置因过热而烧毁。
核装药和热核装药,由裂变和聚变材料构成,以氢弹为例:核装药(裂变装药)置于由普通炸药构成的球形装药的中央部位,在球形装药外面四周安装了许多电雷管。
引信传来的敏感信号通过引爆控制系统产生的高压电起爆各电雷管,使普通炸药以“枪法”或“内爆法”使裂变材料迅即达到最大超临界质量而实施核裂变爆炸,并使爆炸产生的部分辐射能量转换用以加热和点燃(高能中子的轰击)热核装药产生聚变反应,形成整个氢弹的核爆炸。
引控系统是保证核弹到达预定炸点时发出起爆核装药指令并可靠起爆的装置。
电源是给弹头各组件提供能源的小型一次性使用的蓄电池,在导弹发射准备时激活蓄电池,导弹发射起飞时才能用弹上蓄电池供电。
核弹的分类及其原理:核弹可分为原子弹、氢弹、氢铀弹、特殊性能核武器(如中子弹、核同质异能武器、反物质武器等)1.原子弹原子弹主要是利用核裂变释放出来的巨大能量来起杀伤作用的一种武器。
磁约束聚变核反应堆的研究现状及发展趋势

磁约束聚变核反应堆的研究现状及发展趋势磁约束聚变是一种目前看来,能够提供大量廉价、清洁、安全的电力的理论。
在磁约束聚变中,能源从氢等轻元素的核融合中产生,合成后产生的能量释放出来产生大量的热能使用作为发电所需。
随着环境污染和能源消耗的加剧,人们对于磁约束聚变研究的需求也越来越多。
磁约束聚变反应堆能够产生大量的清洁、高效、安全的核功率。
磁约束聚变反应堆采用的是磁场控制等离子体含能量超过几百万度的核融合反应的方法,用于产生电能。
在磁约束聚变反应堆中,有超过十亿数量级的氢离子在高温、高密度、高能量的条件下发生的核反应。
磁约束聚变反应堆的研究可以追溯到20世纪50年代。
目前已经有数十个国家在进行相关研究和开发工作,但仍需要进行进一步的实验和研究,以满足花费大量的资金、材料、技术和时间的严格要求。
磁约束聚变反应堆在研究过程中的主要挑战是如何在磁场中产生足够高的压力和温度以维持反应的连续。
解决这个问题的方法是通过把转动的等离子体限制在磁场中形成所谓的“磁域”,磁场的方向可以用紧凑的螺旋线圈控制。
这种方法的关键是要减少等离子体失去能量的程度,保持反应的连续进行。
在磁约束聚变反应堆发展的过程中,系统的制造和运营费用是需要解决的一个问题。
目前大多数的磁约束聚变研究运用超导磁体,但这种磁体非常昂贵,制造成本高、使用寿命短暂。
而且由于这种磁体的特殊性质,一旦出现故障或损坏等情况都很难维修。
为了降低反应堆的制造和运营费用,许多研究人员在尝试使用新的物理和制造技术。
例如,一些研究人员正在研究如何使用弱磁体控制等离子体。
该方法目前被用于测试和评估等离子体与壁之间的相互作用。
还有一些研究人员正在研究如何使用常规材料替代超导磁体。
这种研究还处于早期阶段,但如果成功,将极大地降低反应堆的制造和运营费用。
在磁约束聚变反应堆的研究中,还存在稳定性问题和物质损失的问题。
在等离子体中,磁约束聚变中心压力和温度的不稳定性仍然是一个主要的研究难题。
浅谈空间核反应堆电源技术应用需求及发展前景研究

空间核反应堆电源技术应用需求及发展前景研究近年来,随着人类对空间利用的不断深入,对空间电力的需求也越来越大。
然而,传统的核反应堆电源无法适应现代的需求,因此空间核反应堆电源技术已成为研究的热点。
本文将从应用需求和发展前景两方面来浅谈空间核反应堆电源技术的研究。
一、应用需求1.用于深空探测当前,人类对深空探测的需求越来越大。
而能够完成深空探测的航天器必须拥有稳定、可靠的电源,这同时也是深空探测的限制因素之一。
空间核反应堆电源的出现,为深空探测提供了新的机遇和发展方式。
核反应堆电源在很长时间内可以提供稳定的、可靠的电力。
因此,空间核反应堆电源在深空探测任务中有着重要的应用价值。
2.用于长期航天航天任务需要拥有强大的动力源来支持其在太空中的运行。
常见的太阳能电池面对持续性的高能粒子撞击、暴晒和低温,易发生能量下降、脆化等问题,而核反应堆电源则无此问题。
传统的化石燃料电池电源难以在太空环境中运作,而核反应堆电源可以长期、稳定地提供动力。
因此,空间核反应堆电源技术也可以适用于长期航天任务。
3.用于地球和人类的未来现在,全世界的科研工作者都在呼吁开展地球的清洁能源技术研究。
这不仅是对于人类社会的未来建设的贡献,也是对环境的保护。
随着技术的进步,未来空间核反应堆电源将成为一种清洁、安全、可持续的能源。
二、发展前景1.应用范围广泛空间核反应堆电源技术的出现,将会有助于推动未来空间探索和深空探测,从而有助于人类的文明发展。
此外,空间核反应堆电源技术还可以用于长期航天任务,如行星、小行星、彗星探索,太空站的独立供电等,其应用范围相当广泛。
2.提供更为稳定的电力为了保证太空飞船的可靠性和稳定性,需要持续、稳定的电力支持。
而核反应堆电源可以长期稳定地提供大量的电力,因此可以满足太空飞船的能源需求。
此外,核反应堆电源还可以为深空探测提供能量支持,推进人类探索与研究。
3.研究成果丰硕关于空间核反应堆电源技术的研究已经取得了长足的进展。
小型核电反应堆的现状及未来发展

小型核电反应堆的现状及未来发展1 核电反应堆堆型现状核能发电始于20世纪50年代,出于追求核电运行规模经济性的需要,核电机组的设计趋向于大型化,在70年代,核电机组的平均容量达到大约1000 MWe,发电用核反应堆的容量从60 MWe发展到超过1300 MWe。
目前,美国拥有104台现役核电反应堆,总容量约99210 MWe,平均每台容量为953 MWe;法国共有59台运行反应堆机组,总容量63363 MWe,平均每台容量为1074 MWe;日本拥有54台核电机组,总容量约为45468 MWe,平均每台容量为842 MWe。
这些国家拥有庞大而相对完善的电网,能承受单次1000 MWe或1300 MWe负荷的变化。
第3代核电站采用的堆型除了AP600以外也是大型机组,如1300 MW级的System 80+和ABWR,1000 MW级的AP1000 和VVER-1000,1500 MW级的EPR等。
近年来,韩国、中国等国家的核电得到了很大发展,这些国家引进或自主开发、建设的核电站基本上也是大型机组。
21世纪80~90年代,工业化国家的发电容量日趋饱和,电网开始出现容量过剩的问题,电网对大容量机组的并入显得越来越不适应,电力公司也不允许一台大型机组长时间地做低功率调峰运行, 因为这样会给经济性带来严重影响。
因此,近年来人们对中、小型反应堆(SMR)又产生了兴趣,希望这些中小型反应堆能更好地适应工业国家的电力负荷需求,以及满足那些电网不能承受大容量机组并入的发展中国家的电力需求。
1.1 小型核电反应堆的状况国际原子能机构(IAEA)将“小型”机组定义为300MWe以下的机组,而电功率在300MWe以上、600MWe以下的为中型反应堆机组。
中、小型反应堆所涉及的技术是多样化的,反应堆类型有:轻水堆、高温气冷堆、液态金属反应堆和熔盐堆,而当前最主要的2种技术均利用高温氦气直接驱动涡(气)轮机。
目前开发程度较为先进的中、小型反应堆有如下一些:美国国会现在正在筹集资金研究小型模块式核电厂和先进气冷堆设计(也是模块化,10个或更多模块机组逐步建成一个大电厂)。
世界核电发展历程

世界核电发展历程核电的发展历程可以追溯到20世纪40年代末和50年代初。
以下是核电的主要发展里程碑:1. 原子能的发现:1945年,美国科学家在第二次世界大战末期研制出了第一颗原子弹,并确认了核裂变的可行性。
2. 第一个核反应堆:1942年,美国芝加哥大学的物理学家研制出了第一台自持核反应堆——芝加哥式堆,成功实现了可持续的核链式反应。
3. 世界上第一个商业核电站:1954年,苏联启用了世界上第一个商业核电站——奥布涅斯克核电站,该站采用了堆芯和石墨层间的气冷式堆,标志着商业化核电的起步。
4. 美国的核电发展:1957年,美国启用了第一座商业化核电站——厄巴纳核电站,使用了堆芯和可水冷的加速器驱动反应堆。
此后,美国快速推进了核电技术的研发和建设,成为世界领先的核电大国。
5. 瓦克希拉核电站事故:1979年,美国宾夕法尼亚州的瓦克希拉核电站发生了一起严重事故,造成了一些放射性物质的泄漏。
这次事故严重打击了核电行业的发展,导致一些国家暂停了核电项目。
6. 三个里程碑:1986年,苏联乌克兰的切尔诺贝利核电站发生核反应堆爆炸事故,这是历史上最严重的核电事故之一。
同年,法国开始运营世界上首个商业化的高温气冷堆——法里萨核电站;加拿大也启用了第一台压水堆核反应堆。
7. 福岛核电站事故:2011年,日本福岛核电站发生核泄漏事故,由于地震和海啸的影响,导致多个核反应堆发生熔毁。
这次事故再次引发了对核能安全问题的关注。
8. 当前的发展:尽管核电行业面临着安全和环境等诸多挑战,但仍有一些国家在继续推进核电项目。
例如,中国成为了世界上核电装机容量最大的国家,其他一些国家如印度和俄罗斯也在积极推动核电的发展。
总体而言,核电的发展历程经历了起步、快速发展、事故影响和重整等阶段。
随着对可再生能源的需求不断增加和对核能安全的担忧加剧,未来核电行业将继续面临许多挑战和机遇。
国内外小型模块化核反应堆技术发展调研报告

国内外小型模块化核反应堆技术发展调研报告下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着能源危机日益严峻,小型模块化核反应堆技术成为人们关注的热点话题。
核聚变反应堆原理解析及未来能源供应前景展望

核聚变反应堆原理解析及未来能源供应前景展望简介:核聚变反应堆是一种利用核聚变反应释放出的能量来供给人类能源需求的装置。
本文将对核聚变反应堆的原理进行详细解析,并展望其在未来能源供应中的前景。
一、核聚变反应堆的原理解析核聚变反应堆的原理基于太阳能的能量释放机制,即通过将轻元素融合成重元素来释放出巨大的能量。
核聚变反应堆使用氘和氚等轻核素作为燃料,经过高温、高密度和高压下的条件下,使核反应达到可控状态。
1.1 轻核素的供应与燃料循环氘和氚是核聚变反应堆的主要燃料,而它们在自然界中的含量非常稀少。
因此,有效供应持续稳定的氢同位素是核聚变反应堆发展的一个挑战。
目前主要的供应途径包括从海水中提取氘和使用重水反应堆产生氚。
1.2 燃料等离子体的控制核聚变反应堆的核心是燃料等离子体,通过加热和约束燃料等离子体在高温、高密度和高压下维持稳定的状态。
目前研究人员采用磁约束和惯性约束两种方式来控制燃料等离子体。
磁约束通过生成特定形状的磁场来约束等离子体,而惯性约束则利用激光或粒子束等方式将燃料等离子体压缩到足够高的密度。
1.3 等离子体的反应与能量输出在等离子体中,氘和氚核融合产生氦和高能中子,释放出大量的能量。
这些高能中子可用于产生蒸汽并带动涡轮发电机发电,而产生的氦气则可以作为副产品加以利用。
二、核聚变反应堆在未来能源供应中的前景展望核聚变反应堆被广泛认为是未来可持续能源供应的一个关键技术。
以下是核聚变反应堆在未来能源供应中的前景展望:2.1 清洁、可再生能源核聚变反应堆使用氘和氚等轻核素作为燃料,产生的主要副产品是氦,无二氧化碳和其他气体排放。
相比之下,目前主流的能源供应方式如燃煤发电和核裂变反应堆都会产生大量的温室气体。
核聚变反应堆无辐射、无污染,可实现清洁能源的可持续供应。
2.2 能源供应稳定可靠核聚变反应堆的核燃料在地球上非常丰富,并且燃料循环可以实现高效的利用。
相比之下,目前的化石燃料存在采掘难度和资源枯竭等问题,而核聚变反应堆能够提供稳定、可靠的能源供应,满足人类日益增长的能源需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核反应堆的类型核电站中的反应堆设计具有多样性,也就是说,核反应堆具有不同类型,相应形成不同的核电站。
可以利用下列三个特点表征不同类型的反应堆。
第一,所用的核燃料可以是天然铀或浓缩铀、钚或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氦气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。
下面就是迄今国际上核电站常用的4种核反应堆型。
压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸腾的核反应堆。
目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。
沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的核反应堆。
沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。
它们都需使用低富集铀作燃料。
以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。
重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。
重水堆分压力容器式和压力管式两类。
重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。
快堆是由快中子引起链式裂变反应的核反应堆。
快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。
专家预计,快堆未来的发展将会加快起来。
前景看好的快堆现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1%~2%。
但在快堆中,铀-238原则上都能通过核反应转变成易裂变的钚-239而得以使用。
即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。
具体点说,在堆芯燃料钚-239的外围再生区里放置铀-238,通过钚-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次β衰变后,铀-238很快被转变成钚-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钚-239。
因为快堆再生速度高于消耗速度,即所生成的钚-239比消耗的铀-235来得多,如此核燃料越烧越多,快速迅速增殖起来,因此这种反应堆又称“快中子增殖堆”。
除了现行的钠冷快堆外,还在发展气冷快堆、铅冷快堆等。
早在1951年,美国就建造了实验快中子堆。
现阶段,基本掌握快中子堆技术的国家有美国、法国、日本、俄罗斯、印度和中国等。
中国核工业集团公司2010年7月21宣布:由中核集团中国原子能科学研究院自主研发的中国第一座快中子反应堆——中国实验快堆(CEFR)达到首次临界,中国由此成为世界上少数几个掌握快堆技术的国家之一。
快中子反应堆是世界上第四代先进核能系统的首选堆型,代表了第四代核能系统的发展方向。
其形成的核燃料可实现闭合式循环。
国际上普遍认为,发展和推广快堆,可从根本上解决世界能源的可持续发展和绿色发展问题。
对于快堆未来发展,中国拟采取三步走的发展战略,即实验快堆—示范快堆—大型商用快堆。
接下来中国示范快堆的建造,还将为中国铀钚混合燃料制造技术的发展提供良好的契机,并继续推动中国先进核能体系的建立。
图2为中国实验快堆。
图2 中国实验快堆反应堆不是原子弹有人把核反应堆与原子弹混为一谈,其实,反应堆与原子弹完全是两回事,它实际上不会发生核爆炸,因为两者的设计、构造和部件完全不同。
原子弹是一种不可控的自持链式反应装置,需要使用可迅速形成临界体积的高纯易裂变材料——铀-235(浓度至少95%)或钚。
触发链式反应发展得非常快,以致未等介质散开就积聚了大量能量。
爆炸的剧烈程度取决于这种能量的积聚。
例如,投在长崎的原子弹是一个中空的钚球,靠合理安排的炸药形成临界体积,达到临界体积后才发生原子弹爆炸。
反应堆则是一种人工控制的自持链式反应装置。
反应堆里装的是天然铀或低浓度铀(2%~5%之间),以致很难达到临界。
铀-238之类的中子吸收材料的存在能够阻止任何不可控制的功率浮动。
反应堆里的核反应是一种平缓的核反应,不存在能使能量积聚到“爆炸”的紧箍器件或压力容器,当然也没有专门引爆的中子注入部件,因此完全不具备原子弹爆炸的基本条件。
日本福岛第一核电站1号、3号机组相继发生的是氢气爆炸,事故的原因是反应堆堆芯产生的水蒸气外泄至容器外,在反应堆丧失冷却剂事故时,燃料元件棒束未被冷却剂液体浸没而处于裸露状态,导致持续升温,直到温度超过核燃料管锆合金的熔点,发生堆芯熔化,于是高温锆合金包壳跟堆体里面存留的水发生剧烈化学反应,产生了氢气,氢气泄漏出堆体,积聚到厂房里面,和建筑物内的氧气发生剧烈反应,直至气压超过厂房承受能力而导致爆炸。
这个爆炸不仅把厂房摧毁,还会把连接堆体的管道破坏,这些管道里面有长期积累下的放射性物质,结果释放到开放环境中,造成长期的核污染。
新一代的核电站及其安全性核电站发展至今,已历经4代。
第一代核电站属于原型堆核电站,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。
20世纪70年代,因石油涨价引发的能源危机促进了核电发展,目前世界上商业运行的400多台机组大部分在这段时期建成,称为第二代核电机组。
在美国三里岛核电站和前苏联切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。
不过,核电专家们仍对第二代核电站进行了反思,当时认为发生堆芯熔化和放射性物质大量往环境释放这类严重事故的可能性很小,不必把预防和缓解严重事故的设施作为设计上必须的要求,因此,第二代核电站应对严重事故的措施比较薄弱。
对于第三代核电站类型有各种不同看法。
美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了第三代核电站的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计,它们将成为第三代核电站的主力堆型。
通过总结经验教训,美国、欧洲和国际原子能机构都出台了新规定,把预防和缓解严重事故作为设计上的必须要求,满足以上要求的核电站称为第三代核电站。
目前,世界上技术比较成熟、可以据以建造第三代核电机组的设计,主要有美国的AP1000(压水堆)和ABWR(沸水堆),以及欧洲的EPR(压水堆)等型号,它们发生严重事故的概率均比第二代核电机组小100倍以上。
美国、法国等国家已公开宣布,今后不再建造第二代核电机组,只建设第三代核电机组。
中国有13台第二代核电机组正在运行发电,未来重点放在建设第三代核电机组上。
目前,中国第三代核电项目正在浙江三门和山东海阳进行建设,将有4套第三代AP1000压水堆核电机组。
预防和缓解堆芯熔化成为第三代核电站设计上的必须要求,而这一点也正是作为第二代核电站的福岛核电站近期事故中暴露出来的弱点。
据悉,我国第三代核电站将装备有蓄水池,这样的“大水箱”在紧急情况下能释放出大量的水,从而达到降温等应急需求。
不同于核电技术或先进反应堆,第四代核能系统概念,最先由美国能源部的核能、科学与技术办公室提出。
2000年1月,美国能源部发起并约请阿根廷、巴西、加拿大、法国、日本、韩国、南非和英国等国家的政府代表开会,讨论开发新一代核能技术的国际合作问题,并发表了“九国联合声明”。
随后,由美国、法国、日本、英国等核电发达国家组建了“第四代核能系统国际论坛”,拟于2~3年内定出相关目标和计划。
这项计划总的目标是在2030年左右,向市场推出能够解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核能系统(Gen-IV)。
第四代核能系统包括三种快中子反应堆系统和三种热中子反应堆系统:钠冷快堆系统,铅合金冷却快堆系统,气冷快堆系统,超高温堆系统,超临界水冷堆系统和熔盐堆系统。
核电站选址至关重要通常国际核电站选址遵循四大原则:经济、技术、安全、环境和社会。
从核安全的角度来看,核电站选址最关键,必须考虑到公众和环境免受放射性事故释放所引起的过量辐射影响,同时要考虑到突发的自然事件或人为事件对核电厂的影响,所以,核电站必须选在人口密度低,易隔离的、与经济发达地区的相对偏远地区,厂址深部必须没有断裂带通过,而且要求核电站数千米范围内没有活动断裂,厂址100千米海域、50千米内陆,历史上没有发生过6级以上地震,厂址区600年来也没有发生6级地震的构造背景。
例如,对于日本由于太平洋构造板块及其他几个板块的向西移动,导致其向亚洲板块之下俯冲,从而会在这一带引发大地震和火山活动。
日本就处于四个地质板块的交界处,是俯冲带的边缘,也是全球构造运动最活跃的地区。
这次日本福岛核电事故表明:其核电站选址和布局存在着专家早已警告存在提心吊胆的严重问题,果然言中了。
同时,由于核电站运行中产生了巨大热量,核电站的选址必须靠近水源,最好是靠海,这也是大型核电站都建在海边的一个重要原因,并且靠海还可以解决大件设备运输问题。
万一发生危险,在平的海岸线和放射物均匀发散的情况下,污染陆地面积只是完全在内陆的一半。
但是建在海边有利的同时也多出一个风险,就是海啸或者台风带来大浪的可能。
通常会建设防波堤来抵御巨浪的冲击。
但是防波堤只能抵御一定程度的冲击,如果是比较大的海啸的话,像日本这次17多米高的排山倒海的海啸,防波堤无能为力的,不可避免产生十分严重的后果。
内陆地区核电选址要更加慎重,因为内陆地区的水源全部为淡水,并且几乎所有的大江大河都直接向周边城市供应生活用水,在这种情况下建设核电站,一旦发生泄漏事故,后果不堪设想。
“本质安全”才是真的安全核电安全一直是公众最关注的一个问题。
这里要强调的是,必须通过科学技术进步,不断地提高和完善核电站的所谓“本质安全水平”,也就是不要靠人,因为人是最容易犯错误的,而是靠核电站本身的设计和设施来杜绝事故发生。
核电站的设计、建造和运行均采用纵深防御的原则,从设备、措施上提供多等级的重迭保护,以确保核电站对功率能有效控制,对燃料组件能充分冷却,对放射性物质不发生泄漏。
纵深防御原则一般包括五层防线。
第一层防线:精心设计、制造、施工,确保核电站有精良的硬件环境。
建立周密的程序,严格的制度,对核电站工作人员有高水平的教育和严格的培训,人人注意和关心安全,有完备的软件环境;第二层防线:加强运行管理和监督,及时正确处理异常情况,排除故障;第三层防线:在严重异常情况下反应堆正常的控制和保护系统动作,防止设备故障和人为差错造成事故;第四层防线:发生事故情况时,启用核电站安全系统包括各外设安全系统加强事故中的电站管理,防止事故扩大保护反应堆厂房安全壳;第五层防线:万一发生极不可能发生的事故并伴有放射性外泄启用厂内外应急响应计划努力减轻事故对周围居民和环境的影响。