核反应堆结构与材料-材料1

合集下载

核反应堆工作原理

核反应堆工作原理

核反应堆工作原理核反应堆是一种产生和控制核裂变反应的设备,是核能利用的关键组成部分。

它通过裂变核燃料中的核素,释放出巨大能量,用于发电或其他应用。

一、核反应堆的基本构造核反应堆主要由以下部分组成:燃料棒、冷却剂、控制杆和反应堆压力壳。

1. 燃料棒燃料棒是装载核燃料的圆柱形结构,通常由浓缩铀或钚等可裂变材料制成。

燃料棒中的裂变核素在受到中子轰击时发生核裂变,产生能量和额外的中子,维持连续的链式反应。

2. 冷却剂冷却剂是用于带走核反应堆中产生的热量的介质,可以是水、重水、液态金属或气体。

冷却剂通过循环在燃料棒附近流动,吸收燃料棒释放的热量,同时保持核反应堆的温度稳定。

3. 控制杆控制杆用于调节核反应堆中的裂变反应速率。

控制杆通常由吸收中子的材料制成,如硼化硼。

当控制杆插入核反应堆时,它吸收了部分中子,减慢了反应速率;当控制杆抬起时,反应速率增加。

4. 反应堆压力壳反应堆压力壳是一个密封的容器,用于保护核反应堆内部免受外部环境的影响,并防止辐射泄漏。

它通常由厚实的钢制成,能够承受高压和高温。

二、核反应堆的工作原理核反应堆的工作原理是基于核裂变和中子链式反应。

1. 核裂变核裂变是指重核(如铀-235)被中子轰击后分裂成两个更轻的核碎片的过程,并释放出大量的能量和中子。

裂变反应是连锁反应,每一次裂变都会释放出2-3个中子,进而引发周围其他核燃料材料的裂变。

2. 中子链式反应核反应堆中的裂变释放的中子可以引发其他核燃料的裂变,形成中子链式反应。

中子链式反应是自持续的,只要提供足够的核燃料和恰当的条件,反应就可以持续进行。

在核反应堆中,裂变反应迅速释放出大量热能,增加燃料棒温度。

冷却剂通过燃料棒的表面流过,并吸收热能,随后经过热交换装置将热能传递给工质,如水或蒸汽。

工质的温度升高,通过涡轮机驱动发电机,将热能转化为电能。

同时,控制杆的调节可以控制核反应堆的反应速率。

当控制杆插入核反应堆时,它吸收了中子,减慢了反应速率。

(完整版)反应堆本体结构

(完整版)反应堆本体结构
12
13
由外向内倒料方式的优缺点
优点:
可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的 利用率。从第二循环开始,新装入的燃料组件的富集度为 3.25%,高于首次装料。 因为经过一段时间的运行,堆芯内积累了会吸收中子的裂 变产物,需要增加后备正反应性。
缺点:
中子注量率的泄漏率较高,导致压力容器中子注量率大, 中子利用率较低低,导致换料周期较短,燃料循环成本较 高。
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。 组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
➢ 反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
➢ 反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
➢ 堆芯结构由核燃料组件、控制棒组件、可燃毒物
➢ 燃料元件是产生核裂变
并释放热量的部件。
➢ 它是由燃料芯块、燃料包
壳管、压紧弹簧和上、下端 塞组成。燃料芯块在包壳内 叠装到所需要的高度,然后 将一个压紧弹簧和三氧化铝 隔热块放在芯块上部,用端 塞压紧,再把端塞焊到包壳 端部。
23
(a)燃料芯块
➢芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯

核聚变反应堆的材料研究

核聚变反应堆的材料研究

核聚变反应堆的材料研究核聚变,作为一种潜在的近乎无限且清洁的能源来源,一直是科学界和工程界追求的目标。

然而,要实现可控核聚变并将其有效地转化为实用能源,面临着诸多挑战,其中材料问题是关键之一。

在核聚变反应堆中,材料需要承受极端恶劣的环境条件。

首先是高温,核聚变反应产生的温度可高达数亿摄氏度,这对材料的耐热性能提出了极高的要求。

其次是高能量粒子的轰击,包括中子、质子等,这些粒子会导致材料的结构损伤和性能退化。

此外,还有强烈的辐射场,会使材料发生辐照损伤和活化,产生放射性物质。

面对如此苛刻的条件,科学家们一直在努力寻找和开发合适的材料。

首先要提到的是结构材料,它们构成了反应堆的主体框架。

在众多候选材料中,钨及其合金由于具有高熔点、高强度和良好的抗辐照性能,成为备受关注的结构材料之一。

钨在高温下仍能保持较好的机械性能,但其脆性较大,需要通过合金化和微观结构优化来改善。

另一种重要的材料是面向等离子体材料,直接与高温等离子体接触。

这类材料需要具备良好的热导性能、低溅射率和低氢同位素滞留等特性。

目前,碳基材料如石墨和碳纤维复合材料在这方面表现出一定的优势,但它们在高温下的稳定性和耐辐照性能仍有待提高。

在核聚变反应堆中,超导材料也扮演着至关重要的角色。

超导磁体用于产生强大的磁场来约束等离子体,以实现可控核聚变反应。

高温超导材料如钇钡铜氧(YBCO)具有较高的临界温度和临界磁场,能够减少制冷成本和提高磁场强度。

然而,高温超导材料在强磁场和高电流密度下的性能稳定性仍然是一个需要解决的问题。

除了上述材料,还有用于绝缘、密封和传热等功能的材料。

例如,陶瓷材料在绝缘方面具有良好的性能,但在高温和辐照环境下容易发生开裂和性能劣化。

液态金属如锂和铅锂合金在传热方面具有潜在应用价值,但它们的腐蚀问题和与其他材料的相容性需要深入研究。

材料的研发不仅要考虑其在反应堆中的性能表现,还需要考虑制造工艺的可行性和成本。

例如,一些高性能材料可能由于制造难度大、成本高而难以大规模应用。

核电金属材料手册

核电金属材料手册

核电金属材料手册引言:核能作为清洁、高效的能源形式,在国际上被广泛应用和发展。

核电站作为核能的主要利用形式,其结构及材料的安全和可靠性显得尤为重要。

本手册将详细介绍核电站中常用的金属材料,包括钢材、铜材以及其他多种辅助材料,以期为核电工程师提供参考。

一、钢材1.不锈钢:不锈钢是一种重要的结构材料,其具有良好的耐腐蚀性和机械性能,同时还有较好的加工性能。

在核电站中,不锈钢常用于制作反应堆容器、反应堆压力容器等关键部件。

2.碳钢:碳钢是一种常用的结构材料,由于其较低的成本和较好的机械性能,在核电站中也得到广泛应用。

碳钢适用于制作建筑结构、泵和风机设备等。

3.低合金钢:低合金钢是一种优质的结构钢材,在核电站中也被广泛使用。

低合金钢具有较高的强度和韧性,能够满足核电站在高温和高压环境下的使用要求。

二、铜材铜是一种重要的导电材料,在核电站中常用于制作输电线路、电缆和电气设备等。

铜具有优良的导电性和热传导性,能够满足核电站对电气设备的高要求。

三、其他辅助材料1.铝合金:铝合金是一种轻质高强度的金属材料,广泛应用于核电站中的非结构部件。

铝合金具有良好的耐腐蚀性和机械性能,在核电站中用于制作散热器、管道以及其他辅助设备。

2.镍基合金:镍基合金是一种耐高温、耐腐蚀的材料,具有超强的抗氧化和耐热性能,被广泛应用于核电站的高温部件中,如燃料管、燃料棒和燃气环等。

3.铝材料:铝是一种常用的结构材料,具有良好的机械性能和抗腐蚀性能。

在核电站中,铝材料常用于制作反应堆的外壳、密封部件和其他结构件。

总结:核电站中的金属材料在保证反应堆的安全和可靠运行方面起到了重要作用。

本手册介绍了核电站中常用的金属材料,包括钢材、铜材以及其他辅助材料。

这些材料具有一定的特点和适用范围,在核电工程师进行材料选择和设计时提供了重要参考。

在未来的核电发展中,还需要不断研发新型的金属材料,以满足核能的不断创新和发展需求。

核工反应堆压力容器介绍

核工反应堆压力容器介绍

3、辐照使材料脆性转变温度升高
4、反应堆 压力容器的 运行限制:
需运行在 压力上部限 制曲线和压 力下部限制 曲线中间的 区域。
2.3 反应堆堆内构件
一、堆内构件主要功能
支承和压紧堆芯组件 为压力容器提供屏蔽 冷却剂流道 控制棒和探测计的导向 固定监督用的辐照样品
二、堆芯下部 支承结构
包括:
1、导向筒支承板
结构:由一块厚板(厚
度100mm,直径约 4m),一个法兰和一个 环行段组成。
厚板上固定:控制棒导
向管,热电偶导管,热 电偶管座。
热电偶柱:40个铬镍铝镍合金制成的热电偶, 每10个引到一个热电偶 柱。
2、堆芯上栅格板
作用:
燃料组件压紧和定位; 分配冷却剂流量; 固定堆芯上部支承柱; 控制棒导向筒固定和定位。
Mn-Mo -Ni 低碳合金钢, 内堆焊5mm 不锈钢涂层
三、反应堆压力容器结构
从上到下:
1、反应堆容器顶盖
顶盖本体(3吊耳,1排气管, 61+4管座)
顶盖法兰(58个螺栓孔) 2、反应堆容器筒体 筒体法兰(58个未穿透螺孔,O形密封环,泄漏探测管, 支承台肩,定位键槽) 接管段和接管(6个)
上下筒体
结构:厚度50mm,圆板,61×2个销孔,157×2个销钉,
4个定位键槽。
3、支承柱
作用:
连接导向筒支承板和堆芯上栅格板并保证二者空间距离; 反应堆冷却剂流道; 热电偶导管支承。
4、压紧弹簧
作用:
补偿法兰加工误差; 压紧堆内下部构件。
5、控制棒导向筒
作用:控制棒组件定位和
导向。
结构:
上部导向筒 下部导向筒
3 防止吊篮
扭曲。

核反应堆结构与材料材料PPT课件

核反应堆结构与材料材料PPT课件

2021/5/1
29
第29页/共31页
核燃料的应用
2021/5/1
30
第30页/共31页
感谢您的观看!
2021/5/1
核科学与技术学院
31
第31页/共31页
典型陶瓷燃料性能
2021/5/1
25
第25页/共31页
弥散体型燃料
• 弥散型燃料是由二氧化 铀或碳化铀等陶瓷燃料 颗粒,依照所需的物理 性质弥散在金属、非金 属或陶瓷基体上所组成 的燃料型式。
• 例如Al,不锈钢,Zr, 石墨等基体
2021/5/1
第26页/共31页
核心 包覆颗粒 燃料元件
26
弥散体型燃料弥散相要求
④ 合金铀的相关说明
主要合金形式有铀与锆、铬、钼、铌、铝等
与金属铀相比,合金具有较好的机械性能、良好的 抗腐蚀性能,对抗辐射性能有所改善
加入合金元素会使中子吸收增加,需使用富集铀
锆的熔点高,中子吸收截面小,抗辐射性能好,同 时铀在锆中的溶解度大(铀-锆合金 )
熔点高,热导率高,便于轧制成型
1.216 10 4
exp(0.001867t)
K95 0.0191 1.216 104 exp(0.001867t)
Kp
1 ε 1 βε
K 100
2021/5/1
19
第19页/共31页
二氧化铀的典型物性(2)
• 热导率(续)
燃耗对热导率的影响
低温时随燃耗升高热 导率下降
高温时变化不大
热导率随氧铀比增加 而减小
1226℃ t 2800℃
单位J/(kg℃)
2021/5/1
21
第21页/共31页
二氧化铀的制备

压水堆核电站反应堆压力容器材料概述1

压水堆核电站反应堆压力容器材料概述1

压水堆核电站反应堆压力容器材料概述李承亮,张明乾(深圳中广核工程设计有限公司上海分公司,上海200030)摘要 反应堆压力容器是核电站重要部件之一,综述了反应堆压力容器材料的发展历程、性能要求、在役辐照脆化、制造现状等,指出A5082Ⅲ钢具有优良的焊接性、较高的淬透性和抗中子辐照脆化性,并具有良好的低温冲击韧性和较低的无延性转变温度等优点。

分析了该钢的化学成分、制造工艺与性能之间的关系,对反应堆压力容器材料国产化的实现与未来发展方向的指引有一定的参考作用。

关键词 压水堆核电站 反应堆压力容器 材料 辐照脆化Overview of Reactor Pressure Vessel Steel in PWR Nuclear Power Plant sL I Chengliang ,ZHAN G Mingqian(Shanghai Branch ,China Nuclear Power Design Company Ltd.(Shenzhen ),Shanghai 200030)Abstract Reactor pressure vessel is one of the key components to PWR nuclear power plants.The development of reactor pressure vessel steel and its performance requirements ,in 2service irradiation embrittlement ,and manufactur 2ing status ,etc are summarized.It is demonstrated that A5082Ⅲsteels have advantages such as good weld 2ability ,high hardenability and enhanced resistance to neutron irradiation damage ,as well as excellent low 2temperature impact toughness and lower transition temperature without ductility.In addition ,the relation of chemical composition and fab 2rication techniques to mechanical properties is also analyzed.This paper will provides an reference for directing the suc 2cess of the localization and f uture development of reactor pressure vessel steel to some extent.K ey w ords PWR power plant ,reactor pressure vessel ,materials ,irradiation embrittlement 李承亮:男,1982年生,助理工程师,硕士,从事核电站核岛主设备材料设计、研究以及先进核能系统研究等工作 E 2mail :licliang @ 随着国家核电中长期发展规划的颁布,未来相当长时间内我国将大力发展压水堆核电站。

核反应堆

核反应堆
核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念: 中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。 这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应 利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。 热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。 反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。 核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站 自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。 目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站 压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。 压水堆由压力容器和堆芯两部分组成。压力容器是一个密封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推动汽轮机转动的高温高压蒸汽就在这里产生的。在容器的顶部设置有控制棒驱动机构,用以驱动控制棒在堆芯内上下移动。 堆芯是反应堆的心脏,装在压力容器中间。它是燃料组件构成的。正如锅炉烧的煤块一样,燃料芯块是核电站“原子锅炉”燃烧的基本单元。这种芯块是由二氧化铀烧结而成的,含有2~4%的铀-235,呈小圆柱形,直径为9.3毫米。把这种芯块装在两端密封的锆合金包壳管中,成为一根长约4米、直径约10毫米的燃料元件棒。把 200多根燃料棒按正方形排列,用定位格架固定,组成燃料组件。每个堆芯一般由121个到193个组件组成。这样,一座压水堆所需燃料棒几万根,二氧化铀芯块1千多万块堆芯。此外,这种反应堆的堆芯还有控制棒和含硼的冷却水(冷却剂)。控制棒用银铟镉材料制成,外面套有不锈钢包壳,可以吸收反应堆中的中子,它的粗细与燃料棒差不多。把多根控制棒组成棒束型,用来控制反应堆核反应的快慢。如果反应堆发生故障,立即把足够多的控制棒插入堆芯,在很短时间内反应堆就会停止工作,这就保证了反应堆运行的安全。 轻水堆 沸水堆电站 沸水堆核电站 沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。 沸水堆是由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。汽水分离器在堆芯的上部,它的作用是把蒸汽和水滴分开、防止水进入汽轮机,造成汽轮机叶片损坏。沸水堆所用的燃料和燃料组件与压水堆相同。沸腾水既作慢化剂又作冷却剂。 沸水堆与压水堆不同之处在于冷却水保持在较低的压力(约为70个大气压)下,水通过堆芯变成约285℃的蒸汽,并直接被引入汽轮机。所以,沸水堆只有一个回路,省去了容易发生泄漏的蒸汽发生器,因而显得很简单。 总之,轻水堆核电站的最大优点是结构和运行都比较简单,尺寸较小,造价也低
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-1-4 核科学与技术学院 16
金属型燃料的性能对比表
Harbin Engineering University
2012-1-4
核科学与技术学院
17
陶瓷型燃料
陶瓷燃料是指铀、 陶瓷燃料是指铀、钚、 是指铀 钍的氧化物 碳化物和 氧化物、 钍的氧化物、碳化物和 氮化物 常见的陶瓷燃料有UO2 常见的陶瓷燃料有 ,PuO2,UC,UN , , 陶瓷型燃料主要用来解 决金属或合金型燃料工 作温度限制( 作温度限制(相变及肿 胀效应) 胀效应)
• 液态 • 固态 金属,陶瓷, 金属,陶瓷,弥散体型
Harbin Engineering University
核心 包覆颗粒 燃料元件
2012-1-4
核科学与技术学院
13
Harbin Engineering University
金属型燃料( ) 金属型燃料(1)
① 金属型燃料的类型 主要包括金属铀及 主要包括金属铀及铀合金 金属铀 ② 金属铀的物理化学性质 银灰色金属,密度高 热导率高,工艺 银灰色金属,密度高(>18.6),热导率高 工艺 热导率高 性能好,熔点 熔点1133 ℃,沸点 沸点3600 ℃(优点) 优点) 性能好 熔点 沸点 化学活性强,与大多数非金属反应 缺点 缺点) 化学活性强,与大多数非金属反应(缺点 α、β、γ相的转变温度 ,772 、 、 相的转变温度 相的转变温度662,
2012-1-4 核科学与技术学院 14
Harbin Engineering University
金属型燃料( ) 金属型燃料(2)
③ 金属铀的工作条件限制 由于相变限制,只能低于665℃ 由于相变限制,只能低于 ℃ 相变限制 低于 辐照长大,定向长大限制低温工作环境 辐照长大, 辐照肿胀现象, 辐照肿胀现象,较高温度条件下的金属燃 现象 料变形
Harbin Engineering University
第五章 核反应堆材料
王建军 wang-jianjun@ 电话: 电话:82569655
2012-1-4
核科学与技术学院
1
Harbin Engineering University
核反应堆中对材料的一般性要求
• 通用要求 机械强度,抗腐蚀性,可加工性, 机械强度,抗腐蚀性,可加工性,导热性能 • 反应堆内要求 抗辐照性能 与中子相互作用
Kp = 1 −ε K 100 1 + βε
核科学与技术学院
21
Harbin Engineering University
二氧化铀的典型物性( ) 二氧化铀的典型物性(2)
• 热导率(续) 热导率( 燃耗对热导率的影响
低温时随燃耗升高热 导率下降 高温时变化不大
热导率随氧铀比增加 而减小
2012-1-4
α射线特点 射线特点: 射线特点
射程最短(比较β射线和 射线) 射程最短(比较 射线和γ射线) 射线和 射线
β射线特点: 射线特点: 射线特点
射程较短(相较 射线 射线) 射程较短(相较γ射线)
2012-1-4 核科学与技术学院 5
Harbin Engineering University
• 辐照效应之 射线 辐照效应之γ射线 γ射线特点: 射线特点: 射线特点
适宜用于生产堆(堆芯温度较低,中子注量率不太高)
2012-1-4 核科学与技术学院 15
金属型燃料( ) 金属型燃料(4)
④ 合金铀的相关说明
Harbin Engineering University
主要合金形式有铀与锆、 主要合金形式有铀与锆、铬、钼、铌、铝等 与金属铀相比,合金具有较好的机械性能、 与金属铀相比,合金具有较好的机械性能、良好的抗 腐蚀性能, 腐蚀性能,对抗辐射性能有所改善 加入合金元素会使中子吸收增加, 加入合金元素会使中子吸收增加,需使用富集铀 锆的熔点高,中子吸收截面小,抗辐射性能好, 锆的熔点高,中子吸收截面小,抗辐射性能好,同时 铀在锆中的溶解度大( 铀在锆中的溶解度大(铀-锆合金 ) 熔点高,热导率高,便于轧制成型 熔点高,热导率高, 在高燃耗情况下辐照稳定性不好( 铀-锆-2在高燃耗情况下辐照稳定性不好(西平港) 在高燃耗情况下辐照稳定性不好 西平港) 美国铀- 美国铀-锆-钚合金 可用于快中子增殖
11
Harbin Engineering University
核燃料的一般性要求
良好的热物性,例如热导率高 抗辐照能力强,燃耗深 燃料的化学稳定性好,燃料与包壳、冷却剂的相 容性好 熔点高,且在低于熔点时不发生有害相变 机械性能好,易于加工
2012-1-4 核科学与技术学院 12
核燃料的存在形态
2012-1-4
核科学与技术学院
19
Harbin Engineering University
陶瓷型核燃料-UO2的辐照效应 陶瓷型核燃料
• 陶瓷型核燃料早期会出现密实化效应 陶瓷型核燃料早期会出现密实化效应 可能导致塌陷 可能导致塌陷 线功率密度增加,芯块温度升高 线功率密度增加,芯块温度升高 密度增加 芯块缩小,气体间隙变大,导热性能下降, 芯块缩小,气体间隙变大,导热性能下降, 温度升高 • 长期运行可能引起的裂变气体释放和肿胀效应 长期运行可能引起的裂变气体释放和肿胀效应 临界燃耗主要与燃料自身密度相关
二氧化铀的制备
• 制备流程: 制备流程: 气象UF 气象 6 水解
压制生坯 UO2芯块 UO2粉末 UO3 ADU UF6 UO2F2
与稀氨水溶液 反应 重铀酸铵 沉淀 煅烧 UO3 还原 UO2 生坯 烧结芯块
辐照效应是特定物质在特定辐照条件下的效应
2012-1-4 核科学与技术学院 4
Harbin Engineering University
• 辐照效应之带电粒子 辐照效应之带电粒子 作用类型: 作用类型:
电离和激发(碰撞损失过程,速度不太高粒子) 电离和激发(碰撞损失过程,速度不太高粒子) 轫致辐射(辐射损能过程,高速粒子) 轫致辐射(辐射损能过程,高速粒子)
2012-1-4
K 95 =
• 热导率 与温度、燃料密度( 与温度、燃料密度( 孔隙率)、燃耗、 )、燃耗 孔隙率)、燃耗、氧 铀比等有关 热导率计算
40.4 + 1.216 × 10 −4 × exp(0.001867t) 464 + t
K 95 = 0.0191 + 1.216 × 10 −4 × exp(0.001867t)
2012-1-4
核科学与技术学院
9
Harbin Engineering University
• 辐照效应之裂变碎片 辐照效应之裂变碎片 裂变碎片本身不属于辐射效应范畴 裂变碎片本身不属于辐射效应范畴 辐射效应 裂变碎片可在裂变区域附近 裂变区域附近产生近似快中子 裂变碎片可在裂变区域附近产生近似快中子 辐照效应” 的“辐照效应”,即形成核燃料内原子位移 杂化效应及肿胀效应(两种效应) 杂化效应及肿胀效应(两种效应)
2012-1-4
核科学与技术学院
2
Harbin Engineering University
核反应堆相关材料
• 按照功用可大致分为: 按照功用可大致分为: 功用可大致分为 核燃料材料 核燃料材料——提供核裂变 材料 提供核裂变 慢化剂材料 慢化剂材料——热中子反应堆必须 材料 热中子反应堆必须 冷却剂材料 冷却剂材料——带走所产生的热能 带走所产生的热能 材料 结构材料 结构材料——实现功能性 材料 实现功能性 控制材料 控制材料——控制核反应堆 材料 控制核反应堆
中子辐照损伤原理 中子辐照损伤原理 辐照损伤
位移能,原子 空穴 位移能,原子-空穴
中子与物质相互作用特点(快中子) 中子与物质相互作用特点(快中子)
2012-1-4 核科学与技术学院 7
Harbin Engineering University
• 辐照效应之中子(2) 辐照效应之中子 中子
2012-1-4
18
核科学与技术学院
Harbin Engineering University
陶瓷型核燃料缺点UO2 陶瓷型核燃料缺点
• 二氧化铀的导热性能较差,热导率低 二氧化铀的导热性能较差, 导热性能较差 • 传热负荷一定时,燃料径向温度梯度大 传热负荷一定时,燃料径向温度梯度大 • 在热梯度或热震作用下可能导致脆化 热梯度或热震作用下可能导致脆化 作用下可能导致
2012-1-4 核科学与技术学院 3
Harbin Engineering University
一、材料的辐照效应
• 反应堆中的辐射来源 带电粒子( 、 射线 来自于衰变过程) 射线, 带电粒子(α、β射线,来自于衰变过程) 中子(来源于裂变和中子核反应) 中子(来源于裂变和中子核反应) γ射线(来源于裂变、衰变等) 射线(来源于裂变、衰变等) 射线 裂变碎片(裂变反应) 裂变碎片(裂变反应)
ring University
二氧化铀的典型物性( ) 二氧化铀的典型物性(3)
比热性能 二氧化铀比热可表示为温度函数, 二氧化铀比热可表示为温度函数,如:
c p = 304.38 + 2.51 × 10 −2 t − 6 × 10 6 /(t + 273.15)2 25℃ < t < 1226℃
c p = −712.25 + 2.789t − 2.71 × 10 −3 t 2 + 1.12 × 10 −6 t 3 − 1.59 × 10 −10 t 4
1226℃ < t < 2800℃
单位J/(kg℃)
2012-1-4 核科学与技术学院 23
Harbin Engineering University
2012-1-4
核科学与技术学院
10
Harbin Engineering University
相关文档
最新文档