行星齿轮减速器设计【文献综述】

合集下载

文献综述-行星齿轮传动的特点

文献综述-行星齿轮传动的特点

附录:1.行星齿轮传动的特点:行星齿轮传动与普通齿轮传动相比较,它具有许多独特的优点。

它的最显著的特点是:在传递动力时它可以进行功率分流;同时,其翰人轴与输出轴具有同轴性,即输出轴与输人轴均设置在同丰轴线上。

所以,行星齿轮传动现已被人们用来代替普通齿轮传动,而作为各种机械传动系统中的减速器、增速器和变速装置。

尤其是对于那些要求休积小、质量小、结构紧凑和传动效率高的航空发动机、起重运输、石油化工和兵器等的齿轮传动装置以及需要差速器的汽车和坦克等车辆的齿轮传动装置,行星齿轮传动已得到了越来越广泛的应用。

行星齿轮传动的主要特点如下。

(1)体积小,质量小,结构紧凑,承载能力大由于行星齿轮传动具有功率分流和各中心轮构成共轴线式的传动以及合理地应用内啮合齿轮副,因此可使其结构非常紧凑。

再由于在中心轮的周围均匀地分布着数个行星轮来共同分担载荷,从而使得每个齿轮所承受的负荷较小,并允许这些断轮采用较小的模数。

此外,在结构上充分利用了内啮合承载能力大和内齿圈本身的可容休积,从而有利于缩小其外廓尺寸,使其体积小,质量小,结构非常紧凑,且承载能力大一般,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2 -1/5(即在承受相同的载荷条件下)。

(2)传动效率高由丁行星齿轮传动结构的对称性,即它其有数个匀称分布的行星轮,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。

在传动类型选择恰当、结构布置合理的情况下,其效率值可达0.97-0.99。

(3)传动比较大,可以实现运动的合成与分解只要适当选择行星齿轮传动的类型及配齿方案,便可以用少数几个齿轮而获得很大的传动比。

在仅作为传递运动的行星齿轮传动中,其传动比可达到儿千。

应该指出,行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、休积小等许多优点。

而且,它还可以实现运动的合成与分解以及实现各种变速的复杂的运动。

(4)运动平稳、抗冲击和振动的能力较强由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的惯性力相互平衡。

少齿差行星齿轮减速器毕业设计文献综述

少齿差行星齿轮减速器毕业设计文献综述

本科毕业设计(论文)文献综述院(系):机电工程学院专业:机械设计制造及其自动化班级:机械设计制造及其自动化姓名:学号:201 年月日本科生毕业设计(论文)文献综述评价表少齿差行星齿轮减速器的设计文献综述1 少齿差行星齿轮减速器的特点随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,承载能力大,运转可靠以及寿命长等。

减速器的种类虽然很多,但普通的圆柱齿轮减速器的体积大,结构笨重;普通的蜗轮减速器在大的传动比时,效率较低;摆线针轮行星减速器虽能满足以上提出的要求,但成本较高,需要专用设备制造;而渐开线少齿差行星减速器不但基本上能满足以上提出的要求,并可用通用刀具在插齿机上加工,因而成本较低。

能适应特种条件下的工作,在国防,冶金,矿山,化工,纺织,食品,轻工,仪表制造,起重运输以及建筑工程等工业部门中取得广泛的应用。

渐开线少齿差行星减速器具有以下优点:1.结构紧凑、体积小、重量轻由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少三分之一至三分之二;2.传动比范围大 N型一级减速器的传动比为10~100以上;二级串联的减速器,传动比可达一万以上;三级串联的减速器,传动比可达百万以上。

NN 型一级减速器的传动比为100~1000以上;3.效率高 N型一级减速器的传动比为10~100时,效率为80~94%;NN 型当传动比为10~200时,效率为70~93%.效率随着传动比的增加而降低。

4.运转平稳、噪音小、承载能力大由于式内啮合传动,两啮合齿轮一位凹齿,一为凸齿,两齿的曲率中心在同一方向。

曲率半径接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制,轮齿的弯曲强度也提高了。

此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力,所以运转平稳,噪音小,并且在相同模数的情况下,其传递力矩臂普通圆周齿轮减速器大。

自动洗衣机行星齿轮减速器的设计

自动洗衣机行星齿轮减速器的设计

自动洗衣机行星齿轮减速器的设计摘要本文阐述一种自动洗衣机内部的行星轮系减速器。

在洗衣机中使用行星轮系减速器正是利用了行星齿轮传动:体积小、质量轻、结构紧凑、承载能力大、传动效率高、传动比较大、运动平稳、抗冲击和震动的能力较强、噪声低的特点。

行星轮减速器利用齿轮减速器的原理,用于低转速大扭矩的传动设备,把电动机高速运转的动力,通过减速机的输入轴上的齿数少的齿轮,啮合输出轴上的大齿轮来达到减速的目的。

由于行星轮系减速也存在很多缺点,它不仅要材料优质、结构复杂、制造精度要求较高、安装较困难些,设计计算也较一般减速器复杂。

本文主要就对这些缺点加以改进,使洗衣机的工作性能更加的平稳。

随着对行星传动技术进一步的深入地了解和掌握,以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出更好的行星齿轮传动减速器。

关键词:行星轮系减速器;行星轮;太阳轮;行星架目录摘要 (I)第1章绪论 (1)1.1 课题背景 (1)1.2 国内外的研究现状和发展趋势 (1)1.3 主要研究内容 (1)第2章传动原理及特点 (3)2.1 行星齿轮传动原理 (3)2.2 有关固定参数和工作原理 (3)2.3 行星轮系减速器特点 (5)2.4 本章小结 (5)第3章传动系统方案的设计 (6)3.1 传动方案的分析与拟定 (6)3.1.1 对传动方案的要求 (6)3.1.2 拟定传动方案 (6)3.2 行星齿轮传动设计 (6)3.2.1 传动比和效率计算 (6)3.3 传动的配齿计算 (7)3.4 几何尺寸和啮合参数计算 (8)3.5 传动强度计算及校核 (11)3.6 行星齿轮传动的受力分析 (12)3.7 本章小结 (15)第4章轮架与输入输出轴的设计 (17)4.1 齿轮材料及精度等级 (17)4.2 减速器齿轮输入输出轴的设计 (17)4.2.1 减速器输入轴的设计 (17)4.2.2 减速器输出轴的设计 (19)4.3 本章小结 (21)结论 (22)参考文献 (23)致谢 (24)第1章绪论1.1课题背景本课题研究的是一种自动洗衣机的行星齿轮减速器,其特征在于采用由太阳轮、均匀排布在太阳轮外周并与太阳轮外啮合的各行星轮、以及与所述各行星轮内啮合的内齿轮构成的行星轮系。

NGW型行星齿轮减速器设计

NGW型行星齿轮减速器设计

本科毕业论文(设计)题目 NGW型行星齿轮减速器设计学院工程技术学院专业机械设计制造及其自动化年级 2011级学号姓名指导教师(副教授)成绩 ____________________年月日目录摘要 (1)ABSTRACT. (2)0文献综述 (3)0.1行星轮的特点 (3)0.2发展概况 (4)1 传动方案的确定 (6)1.2行星机构的类型选择 (6)1.2.1行星机构的类型及特点 (6)1.1.2确定行星齿轮传动类型 (9)2 齿轮的设计计算 (10)2.1 配齿计算 (10)2.1.1确定各齿轮的齿数 (10)2.1.2初算中心距和模数 (11)2.2几何尺寸计算 (12)2.3 装配条件验算 (14)2.3.1 邻接条件 (14)2.3.2同心条件 (15)2.3.3安装条件 (15)2.4 齿轮强度校核 (16)2.4.1 a-c传动强度校核 (16)2.4.2 c-b传动强度校核 (20)3 轴的设计计算 (24)3.1行星轴设计 (24)3.2 转轴的设计 (26)3.2.1 输入轴设计 (26)3.2.2 输出轴设计 (27)4 行星架及相关部件 (29)4.1 行星架的设计与行星轮的支撑 (29)4.2行星架变形的计算和校核 (30)4.3浮动齿式联轴器的设计与计算 (30)4.4减速器的润滑 (31)4.4.1减速器润滑方式的选择 (31)4.4.2行星齿轮减速器润滑油的选择 (32)附录 (35)参考文献 (36)致谢 (38)NGW型行星齿轮减速器设计摘要:本文介绍了NGW型行星齿轮减速器的设计过程。

它具有行星齿轮传动的通用的优点,比如:质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。

因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织等工业部门均获得了广泛的应用。

首先介绍了行星齿轮减速器的应用背景及发展趋势。

接下来是选定型号的行星齿轮减速器的具体设计过程,包括行星机构的类型选择,齿轮齿数的确定,齿轮强度的校核,轴和键的尺寸及强度校核,行星齿轮减速器的结构设计等组成部分。

行星齿轮减速器设计【文献综述】

行星齿轮减速器设计【文献综述】

文献综述机械设计制造及其自动化行星齿轮减速器设计一.前言齿轮及齿轮变速箱作为机械传动中的关键零部件,几乎在所有的机械设备中都能看到它的身影。

因此从某种程度上说,中国的齿轮行业是我国机械制造业的基础,齿轮行业的发展对我国机械行业有着至关重要的作用。

我国齿轮行业经过“九五”结构调整与科技攻关,取得了长足的进步。

行星齿轮传动技术是齿轮传动技术的一个重要分支,采用行星齿轮传动技术开发的各类行星齿轮减速箱与行星齿轮增速箱,较之于一般的定轴式齿轮箱,在传递同样的功率与扭矩时,具有更小的体积、更轻的重量以及更高的效率,因而也更易于进行传动系统的布置和便于降低造价及运输和检修成本,因此在水泥、冶金、煤炭、矿山及石化等许多行业得以普遍运用。

行星齿轮传动的发展概况:我国早在南北朝时代(公元429-500年),祖冲之发明了有行星齿轮的差动式指南车。

因此我国行星齿轮传动的应用比欧美各国早1300多年。

1880年德国第一个行星齿轮传动装置的专利出现了。

19世纪以来,随着机械工业特别是汽车和飞机工业的发展,对行星齿轮传动的发展有很大的影响。

1920年首次成批制造出行星齿轮传动装置,并首先用于汽车的差速器。

1938年起集中发展汽车用的行星齿轮传动装置。

二次世界大战后,高速大功率船舰、透平发电机组、透平压缩机组、航空发动机及工程机械的发展,促进行星齿轮传动的发展。

高速大功率行星齿轮传动广泛的实际应用,于1951年首先在德国获得成功。

1958年后,英、意、日、美、苏、瑞士等国亦获得成功,均有系列产品,并已成批生产,普遍应用。

英国Allen齿轮公司生产的压缩机用行星减速器,功率25740kW;德国Renk公司生产的船用行星减速器,功率11030kW。

低速重载行星减速器已由系列产品发展到生产特殊用产品,如法国Citroen生产用于水泥磨、榨糖机、矿山设备的行星减速器,重量达125t,输出转矩3900kW·m;德国Renk公司生产矿井提升机的行星减速器,功率1600kW,传动比13,输出转矩350 kW·m;日本宇都兴产公司生产了一台3200 kW,传动比720/280,输出转矩2100 kW·m的行星减速器。

小型精密行星减速器的设计【文献综述】

小型精密行星减速器的设计【文献综述】

毕业设计开题报告机械设计制造及其自动化小型精密行星减速器的设计1前言部分(阐明课题的研究背景和意义)减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足各种机械的需要。

在目前用于传递动力与运动的机构中,减速机的应用范围相当广泛。

几乎在各式机械的传动系统中都可以见到它的踪迹,从交通工具的船舶、汽车、机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等。

其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用。

随着科学技术和国民经济的发展,且由于其传递运动准确可靠结构紧凑,效率高,寿命长,切使用维修方便,各行业对减速器的需求越来越大,这样对其综合质量提出了更高的要求。

减速器的种类很多,按照传动形式不同行可以分为齿轮减速器、蜗杆减速器和行星减速器。

按照传动的级数可分为单级和多级减速器。

按照传动的布置形式又可以分为展开式,分流式和同轴式减速器。

齿轮减速器的特点是效率及可靠性高,工作寿命长,维护简单,因而应用范围很广。

齿轮减速器按其减速齿轮的级数可分为单级、两级、三级和多级的;按其轴在空间的布置可分为立式和卧式。

蜗杆减速器的特点是在外廓尺寸不大的情况下,可以获得大的传动比,工作平稳,噪声比较小,但效率低。

其中应用最广的是单级蜗杆减速器,两级蜗杆减速器则应用较少。

行星齿轮传动具有质量小、体积小、传动比大以及效率高等优点。

因此,行星齿轮传动现已广泛地应用于工程机械、矿山机械、,冶金机械、起重运输机械、轻工机械、石油化工机械、机床、机器人、汽车、坦克、飞机、轮船、仪器和仪表等各个方面。

行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得各个方面。

行星轮既绕自身的轴线回转,又随行星架绕固定轴线回转。

太阳轮、行星架和内齿轮都可绕共同的固定轴线回转,并可与其他构件联结承受外加力矩,它们是这种轮系的三个基本件。

三者如果都不固定,确定机构运动时需要给出两个构件的角速度,这种传动称差动轮系;如果固定内齿轮或太阳轮,则称行星轮系。

自动洗衣机行星齿轮减速器的设计

自动洗衣机行星齿轮减速器的设计

自动洗衣机行星齿轮减速器的设计首先,行星齿轮减速器由外齿圈、内齿圈、星轮和固定在外壳上的载频等组成。

其中,外齿圈固定在壳体上,内齿圈与洗衣机内筒连接。

为了使减速器的传动效率高、噪声小且寿命长,我们需要针对几个关键点进行设计:1.齿轮参数的选择:首先,需要根据行星齿轮减速器的传动比例和输入输出转速来选择适当的齿轮参数,如模数、齿数和齿距等。

通常情况下,模数越大,齿轮的强度越高,但减速器的体积也会增大。

2.齿轮材料的选择:齿轮材料的选择对减速器的寿命和噪声有着重要的影响。

常用的齿轮材料有钢、塑料和铸铁等。

钢齿轮具有较高的韧性和强度,但噪声较大;塑料齿轮具有良好的减震性能和静音效果,但强度较低。

根据实际需求,可以选择合适的齿轮材料。

3.轴承的选取:减速器中的轴承是保证其正常运转的关键部件。

在设计过程中,需要根据负载情况和转速来选取适当的轴承类型,同时还需要考虑其寿命和摩擦损耗等因素。

4.接触疲劳强度的计算:接触疲劳强度是评价齿轮对接触疲劳强度的重要指标。

在设计过程中,需要根据齿轮的几何参数、材料和齿轮传动的类别来计算接触疲劳强度,以确保齿轮的安全性能。

除了上述关键点外,还需要考虑减速器的噪声和传动效率等问题。

为了降低噪声,可以采用减震措施,如合理设计齿轮的参数和齿形等;为了提高传动效率,可以采用优化的齿轮组合形式,减少传动链条的摩擦损失。

总而言之,自动洗衣机行星齿轮减速器的设计需要考虑齿轮参数的选择、齿轮材料的选择、轴承的选取和接触疲劳强度的计算等关键点,同时还需要降低噪声和提高传动效率。

通过合理的设计和选择,可以使减速器具有稳定的传动性能和较长寿命。

自动洗衣机行星齿轮减速器的设计论文

自动洗衣机行星齿轮减速器的设计论文

毕业论文鉴定书设计题目:自动洗衣机行星齿轮减速器的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。

作者签名:日期:学位论文原创性声明本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日教研室(或答辩小组)及教学系意见.. .. .... .. ..容提要本课题是有关一种自动洗衣机减速离合器部减速装置行星轮系减速器的设计。

在自动洗衣机中使用行星轮系减速器就是利用了行星齿轮传动,其主要优点有:1)体积小,质量小,结构紧凑,承载能力大;2)传动效率高;3)传动比较大;4)运动平稳、抗冲击和震动的能力较强、噪声低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述机械设计制造及其自动化行星齿轮减速器设计一.前言齿轮及齿轮变速箱作为机械传动中的关键零部件,几乎在所有的机械设备中都能看到它的身影。

因此从某种程度上说,中国的齿轮行业是我国机械制造业的基础,齿轮行业的发展对我国机械行业有着至关重要的作用。

我国齿轮行业经过“九五”结构调整与科技攻关,取得了长足的进步。

行星齿轮传动技术是齿轮传动技术的一个重要分支,采用行星齿轮传动技术开发的各类行星齿轮减速箱与行星齿轮增速箱,较之于一般的定轴式齿轮箱,在传递同样的功率与扭矩时,具有更小的体积、更轻的重量以及更高的效率,因而也更易于进行传动系统的布置和便于降低造价及运输和检修成本,因此在水泥、冶金、煤炭、矿山及石化等许多行业得以普遍运用。

行星齿轮传动的发展概况:我国早在南北朝时代(公元429-500年),祖冲之发明了有行星齿轮的差动式指南车。

因此我国行星齿轮传动的应用比欧美各国早1300多年。

1880年德国第一个行星齿轮传动装置的专利出现了。

19世纪以来,随着机械工业特别是汽车和飞机工业的发展,对行星齿轮传动的发展有很大的影响。

1920年首次成批制造出行星齿轮传动装置,并首先用于汽车的差速器。

1938年起集中发展汽车用的行星齿轮传动装置。

二次世界大战后,高速大功率船舰、透平发电机组、透平压缩机组、航空发动机及工程机械的发展,促进行星齿轮传动的发展。

高速大功率行星齿轮传动广泛的实际应用,于1951年首先在德国获得成功。

1958年后,英、意、日、美、苏、瑞士等国亦获得成功,均有系列产品,并已成批生产,普遍应用。

英国Allen齿轮公司生产的压缩机用行星减速器,功率25740kW;德国Renk公司生产的船用行星减速器,功率11030kW。

低速重载行星减速器已由系列产品发展到生产特殊用产品,如法国Citroen生产用于水泥磨、榨糖机、矿山设备的行星减速器,重量达125t,输出转矩3900kW·m;德国Renk公司生产矿井提升机的行星减速器,功率1600kW,传动比13,输出转矩350 kW·m;日本宇都兴产公司生产了一台3200 kW,传动比720/280,输出转矩2100 kW·m的行星减速器。

我国从20世纪60年代起开始研制应用行星齿轮减速器,20世纪70年代制定了NGW型渐开线行星齿轮减速器标准系列JB1799-1976。

一些专业定点厂已成批生产了NGW型标准系列产品,使用效果很好。

已研制成功多种高速大功率的行星齿轮减速器,如列车电站燃气轮机(3000kW)、高速汽轮机(500kW)和万立方米制氧透平压缩机(6300kW)的行星齿轮箱。

低速大转矩的行星齿轮箱也已成批生产,如矿井提升机的XL-30型行星减速器(800kW),双滚筒采煤的行星齿轮减速器(375kW)。

行星齿轮传动的发展方向:世界各先进工业国,经由工业化、信息化时代,正在进入知识化时代,行星齿轮传动在设计上日趋完善,制造技术不断进步,使行星齿轮传动已达到了较高水平。

我国与世界先进水平虽存在明显差距,但随着改革开放带来设备引进、技术引进,在消化吸收国外先进技术方面取得长足的进步。

目前行星齿轮传动正向以下几个方向发展:1)向高速大功率及低速大扭矩的方向发展。

例如年产300kt合成氨透平压缩机的行星齿轮增速器,其齿轮圆周速度已达150m/s;日本生产了巨型船舰推进用的行星齿轮减速箱,功率为22065kW;大型水泥磨中所用80/125型行星齿轮箱,输出转矩高达4150kN·m。

在这类产品的设计制造中需要继续解决均载、平衡、密封、润滑、零件材料与热处理及高效率、长寿命、可靠性等一系列设计制造技术问题。

2)向无级变速行星齿轮传动发展。

实现无级变速就是让行星齿轮中三个基本构件都转动并传递功率,这只要对原行星机构中固定的构件附加一个转动(如采用液压泵及液压马达系统来实现)就能成为无级变速器。

3)向复合式行星齿轮传动发展。

近年来,国外将蜗杆传动、螺旋齿轮传动、圆锥齿轮传动与行星齿轮传动组合使用,构成复合式行星齿轮箱。

其高速级采用前述各种定轴类型传动,低速级用行星齿轮传动,这样可适应相交轴与交错轴间的传动,可实现大传动比和大转矩输出等不同用途,充分利用各类型的特点,克服各自的弱点,以适应市场上多样化需要。

如制碱工业澄清桶用蜗杆涡轮-行星齿轮减速器,总传动比为4462.5,输出轴n=0.215r/min,输出转矩27200N·m。

4)向少齿差行星齿轮传动方向发展。

这类传动主要运用于大传动比、小功率传动。

5)制造技术的发展方向。

采用新型优质钢材,经热处理获得高硬齿面(内齿轮离子渗氮,外齿轮渗碳淬火),精密加工以获得齿轮精度及低粗糙度(内齿轮精插齿达5-6级精度,外齿轮经磨齿达5级精度,粗糙度0.2-0.4um),从而提高承载能力,保证可靠性和使用寿命。

二.主题在工业生产中,大转动惯量和必须带负载起动的机械,例如大型皮革转鼓、球磨机、清砂机、刮板输送机和皮带输送机以及矿井提升机和电梯等提升机械在起动时的加速度很大,由此产生的附加动载荷往往大于电动机所允许的最大转矩,容易造成电动机烧毁或机器传动装置的突然破坏,因此对于这类机械宜采用软起动,即在空载下减小起动并对起动加速度进行控制,可控制起动行星齿轮减速装置就是针对这一目的而设计的。

1.初始起动——传动方案的讨论传统方案提出了一种针对上述问题的解决方案,如图1所示。

电动机刚起动时,带动周转轮系的中心轮a转动,此时磁粉制动器CZ并不工作,内齿圈b处于自由状态,由于负载的作用,系杆H处于停止状态。

因此,电动机在不带负载的情况下起动可以避免过大的起动转矩和起动电流。

接着,磁粉制动器CZ的励磁电流以一定的规律逐渐增大,作用于内齿圈b上的制动力矩逐渐加大,而转速逐渐降低,使得系杆H的转速由0逐渐增大,带动负载L进入起动过程。

当起动过程结束时,内齿圈b被完全制动,负载达到稳定的转速。

这时,装置进入稳定工作阶段,周转轮系由差动轮系成为单自由度的行星轮系。

应当肯定,这是一种能满足“带负载软起动,进而稳速传动”功能要求的方案,它有效地避免了因起动过程中的冲击而引起的一系列问题,可以实现节能的效果,并且当出现超载或卡死等意外工况时,磁粉制动器可处于滑差工作状态,从而实现了过载保护。

该方案操作工艺和控制方式简单,使用可靠,其设计思想及实现方法均具有新颖性。

2.创新方案的提出在设计周转轮系时,习惯上往往以中心轮a作为输入构件,系杆H为输出构件,而将内齿圈b作为固定件或控制环节,这样做固然有许多优越性。

但对于本文所讨论的设计实例而言,为满足减小制动转矩的要求,则需要改变这一设计思路。

可以提出这样的设问:在设计中能否通过某种颠倒,如颠倒顺序、方向、位置等来改进现有方案的不足之处?在这一设问的提示下,可以考虑将初始方案中的周转轮系的输入构件与控制环节进行互换,即以内齿圈b作为输入构件,而将磁粉制动器与中心轮a联接。

为了使整个装置的传动比不致降低,在内齿圈b的前级串联一级定轴齿轮副,同时为了使装置满足大传动比减速的要求,还可在输出系杆H的后级再串联一级行星轮系。

经过这样改进的装置的起动——传动方案如图2所示。

仍按上节对装置的设计要求,经计算可知磁粉制动器对第一级周转轮系的中心轮a需施加的制动转矩仅为175.9N·m,因此可选用制动转矩为300N·m 的CZ-30型磁粉制动器,其直径约为380mm,轴向尺寸约为200mm,而装置主体部分的尺寸则略有加大。

经过以上设计,装置的总体尺寸得以减小,也美化、协调了装置的外形,同时可产生明显的节能效果,也降低了装置的制造成本。

3.方案的进一步改进在上述改进设计的过程中作者运用了创新设计中的创造性思维,而创造性思维活动还可以进一步扩展,进而提出多种可供选择的设计方案,例如可以在图2所示方案的基础上将电机与磁粉制动器的安装位置进行互换,提出如图3所示的起动——传动方案,在这一方案中,仍以中心轮a作为输入构件,以内齿圈b作为制动控制环节,它除了具有图2方案的可减小制动转矩等优点外,还具有图1方案的输入、输出同轴线布置的特点,其总体布局更加合理,装置的外观更为协调,同时在稳速工作状态下,其传动效率也略高于图2所示的方案。

但是也要看到,图2和图3所示的两个改进设计方案增加了一级定轴传动副,而且在从输入构件到制动环节的传动路线上出现了升速传动副,这是两个改进方案相对于图1所示的初始设计方案的不足之处,但是这一缺点只存在于装置的起动阶段。

在起动结束,装置进入稳速运行状态后,升速传动副即停止运转。

4.结论(1)采用周转轮系和磁粉制动器组合的可控制起动装置的传动方案具有新颖性和创造性,它可以使电动机空载起动,并通过控制磁粉制动器的励磁电流来控制工作机的起动过程,使起动过程平稳。

当外载荷过大时,磁粉制动器可处于滑差工作状态,实现过载保护,同时进入稳速阶段后节能效果好,有效地解决了因电动机直接带负载起动而导致的需要大功率电动机的情况,降低了装置的运行成本。

(2)本文提出的起动——传动的改进设计方案虽然增加了一级定轴传动副和一级行星传动,使装置的传动效率略有下降,但可以做到保持装置的传动比不变,更重要的是可使制动转矩大大降低,从而可采用小型号的磁粉制动器,不但减小了装置的总体尺寸,也做到了装置外形的协调和美观,并在一定程度上降低了装置的制造成本。

(3)可控制起动行星齿轮减速装置用于软起动的技术,除了具有起动过程平稳、便于控制和能够产生节能的效果等特点外,还具有传动比大、传动及控制方式简单、结构紧凑等优点,它在大型转鼓、运输与提升机械等大转动惯量以及需要带负载起动的机械设备中都有广阔的应用前景。

(4)设计者在机械产品的开发过程中强化创新观念,利用创造性思维的特点,综合运用多种思维技巧,跳出习惯性思维的羁绊,对于创新设计方案的提出和原有方案的改进都具有非常重要的意义。

只有在设计过程中有意识地运用创造性思维,才能实现高质量、高效率的设计,进而开发出多种满足功能要求,性能高、质量好、价格低廉、市场竞争性强的新产品。

虽然行星齿轮有上述诸多优点并得到了广泛的使用,但在实际应用过程中,行星齿轮存在振动现象。

在行星齿轮减速器中,轮齿啮合刚度、误差和扭矩的变化引起了齿轮轴向、径向和扭转振动,并通过轴的传递引起了轴承的振动,齿轮和轴承的振动传递到箱体上,在齿轮箱的内部产生了高频率的噪音,有时能够超过100dB ,可见行星齿轮的振动是行星齿轮减速器的主要噪音源。

研究发现其啮合频率和调谐频率是主要的激振频率。

操作者长时间处于噪音的环境中,容易产生疲劳,交流困难和健康损害,普通消费者经常把由于齿轮振动引起的减速器噪音当作由于产品质量和机械问题引起的,影响了对产品质量的认识;在军事上高分贝的噪音更容易引起严重的后果,因此无论是在军事上还是在民用上,都迫切需要解决行星齿轮机构的振动问题。

相关文档
最新文档