单级圆柱齿轮减速器的优化设计

合集下载

某大型机械减速器齿轮传动的优化设计解读

某大型机械减速器齿轮传动的优化设计解读

某大型机械减速器齿轮传动的优化设计
题目:已知某某大型机械采用单级圆柱齿轮减速器,减速器传动参数为:z1=33,z2=105,mn=3.5,ß=14゜59’,b1=b2=100mm;小齿轮材料为38siMnMo、调质,硬度为220~240HB。

高速轴许用功率P1为80kW,高速轴转速730r/min,单向运转,长期连续工作。

要求以常用定型减速器的有关参数和设计规范为基础,传动比允许误差±5%,在满足各约束的条件下,使减速器具有最紧凑的结构。

一、数学模型的建立
1、确定设计变量
由原始条件可知,减速器中齿轮传动需确定的参数值为:齿轮法向模数mn,小齿轮齿数z1,分度圆螺旋角ß,齿宽b(取两轮齿宽相等)。

则设计变量为X=[x1,x2,x3,x4]T=[mn,z1, ß,b]T。

2、建立目标函数
根据设计要求,以最小体积为追求的目标,既可减轻重量,又可节约材料,降低成本。

为简化计算,用齿轮分度圆圆柱体积来近似代替齿轮的体积,则目标函数可表示为:
......。

机械优化设计三个案例

机械优化设计三个案例

机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。

2.已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。

3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。

由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。

单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ式中符号意义由结构图给出,其计算公式为b c d m u m z d d d mu m z D m z d m z d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为T z z T d d l m z b x x x x x x x ][][211654321==3.2目标函数为min)32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0.9,max ϕ=1.4,得04.1)()(0)(9.0)(32133212≤-=≤-=x x x x g x x x x g3)动力传递的齿轮模数应大于2mm ,得 02)(34≤-=x x g4)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于max 1d ,得0300)(325≤-=x x x g 5)齿轮轴直径的范围:max min z z z d d d ≤≤得0200)(0130)(0150)(0100)(69685756≤-=≤-=≤-=≤-=x x g x x g x x g x x g 6)轴的支撑距离l 按结构关系,应满足条件:l 2min 5.02z d b +∆+≥(可取min ∆=20),得0405.0)(46110≤--+=x x x x g7)齿轮的接触应力和弯曲应力应不大于许用值,得400)10394.010177.02824.0(7098)(0400)10854.0106666.0169.0(7098)(0550)(1468250)(224222321132242223211213211≤-⨯-⨯+=≤-⨯-⨯+=≤-=---x x x x x x g x x x x x x g x x x x g8)齿轮轴的最大挠度max δ不大于许用值][δ,得0003.0)(04.117)(445324414≤-=x x x x x x g 9)齿轮轴的弯曲应力w δ不大于许用值w ][δ,得5.5106)1085.2(1)(05.5104.2)1085.2(1)(1223246361612232463515≤-⨯+⨯=≤-⨯+⨯=x x x x x g x x x x x g4.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab 优化工具箱中的fmincon 函数来求解此非线性优化问题,避免了较为繁重的计算过程。

基于matlab的单级圆柱齿轮减速器优化设计

基于matlab的单级圆柱齿轮减速器优化设计

基于matlab的单级圆柱齿轮减速器优化设计一、背景介绍圆柱齿轮减速器是一种广泛应用于机械传动系统中的重要设备,它能够通过齿轮传递动力,并实现不同速度的转动。

在工程设计中,为了提高减速器的性能和效率,优化设计是非常重要的一环。

而matlab作为一种强大的数学建模和仿真工具,可以帮助工程师们进行减速器的优化设计。

二、matlab在圆柱齿轮减速器设计中的应用在圆柱齿轮减速器的设计过程中,需要考虑诸多因素,例如齿轮的模数、齿数、齿形等。

利用matlab可以借助其强大的数学计算能力,通过建立齿轮减速器的数学模型,进行优化设计。

matlab还可以进行动力学分析、应力分析等方面的仿真,帮助工程师们更好地理解减速器在工作过程中的性能表现。

三、圆柱齿轮减速器的优化设计方法1. 齿轮参数的选择在优化设计过程中,首先需要确定减速器的工作参数,包括输入轴转速、输出轴转速、扭矩传递比等。

然后根据这些参数,结合matlab的计算能力,进行齿轮参数的选择,如模数、齿数等,以满足减速器的传动需求。

2. 齿形的优化齿轮的齿形对于减速器的传动性能具有重要影响,通过matlab可以进行齿形的优化设计,以确保齿轮的传动效率和传动平稳性。

3. 传动效率的分析传动效率是评价减速器性能的重要指标之一,利用matlab可以进行减速器传动效率的分析,找出影响传动效率的因素,并进行优化设计,提高减速器的传动效率。

4. 结构强度的分析除了传动效率外,减速器的结构强度也是需要考虑的重要因素。

matlab可以进行减速器的结构强度分析,找出可能存在的弱点并进行设计改进,以保证减速器的结构强度和稳定性。

四、实例分析通过一个实例来展示基于matlab的单级圆柱齿轮减速器的优化设计过程。

首先我们需要确定减速器的工作参数,比如输入轴转速为1000rpm,输出轴转速为100rpm,扭矩传递比为10。

然后利用matlab进行齿轮参数的选择,计算得到需要的模数和齿数。

机械优化设计-1组-对一对单级圆柱齿轮减速器-以体积最小为目标进行优化设计学习资料

机械优化设计-1组-对一对单级圆柱齿轮减速器-以体积最小为目标进行优化设计学习资料

《机械优化设计》课程作业(2014至2015学年度第2学期)班级学号姓名郑杨机械1207 A07120157机械优化设计案例1. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。

2.已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。

3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。

由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。

单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u mz b bd m u mz b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ式中符号意义由结构图给出,其计算公式为b c d m umz d d d mumz D mz d mz d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为Tz z T d d lm z bx x x x x x x ][][211654321==3.2目标函数为min)32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0.9,max ϕ=1.4,得04.1))(0)(9.0)(32133212≤-=≤-=x x x x g x x x x g3)动力传递的齿轮模数应大于2mm ,得 02)(34≤-=x x g4)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于max 1d ,得 0300)(325≤-=x x x g5)齿轮轴直径的范围:max min z z z d d d ≤≤得0200)(0130)(0150)(0100)(69685756≤-=≤-=≤-=≤-=x x g x x g x x g x x g6)轴的支撑距离l 按结构关系,应满足条件:l 2min 5.02z d b +∆+≥(可取min ∆=20),得0405.0)(46110≤--+=x x x x g7)齿轮的接触应力和弯曲应力应不大于许用值,得400)10394.010177.02824.0(7098)(0400)10854.0106666.0169.0(7098)(0550)(1468250)(224222321132242223211213211≤-⨯-⨯+=≤-⨯-⨯+=≤-=---x x x x x x g x x x x x x g x x x x g8)齿轮轴的最大挠度max δ不大于许用值][δ,得003.0)(04.117)(445324414≤-=x x x x x x g9)齿轮轴的弯曲应力w δ不大于许用值w ][δ,得5.5106)1085.2(1)(05.5104.2)1085.2(1)(1223246361612232463515≤-⨯+⨯=≤-⨯+⨯=x x x x x g x x x x x g4.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab 优化工具箱中的fmincon函数来求解此非线性优化问题,避免了较为繁重的计算过程。

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计
一级圆柱齿轮减速器是使用于机械设备中的一种齿轮机构,用于减速电机的转速或改变转矩大小,从而实现传动装置运行的高精度驱动。

随着社会的发展,人们对设备的要求越来越高,一级圆柱齿轮减速器的优化设计变得尤为重要。

一方面,一级圆柱齿轮减速器应当具有较高的传动精度,确保机械设备的运行精度。

通常,为了提高传动精度,机械设计应在减速器的全部轴线上安装参数调节滑动轴承,并在轴承外壳上安装调节螺栓,以便将轴承松接夹具推向轴线,获得更好的精度。

其次,一级圆柱齿轮减速器应当具有良好的耐久性。

为此,齿轮机构的耐磨性和耐腐蚀性可以采用优质的优质合金整体热处理工艺,以获得良好的高强度硬度和特定的硬度值。

此外,可以采用分段调节双积分膜片结构,采用转速和扭矩的双重优化方法,使用更短的尺寸设计,来实现减速器的高效传动。

最后,应严格控制减速器的加工投入,以确保减速器的寿命。

此外,优化设计中还应结合现有技术进行改进。

首先,应根据设备的工作原理和使用状况,采用适当的模型作为参数来检测减速器的工作状态,以确保减速器的精度和可靠性;其次,应采用现代计算机辅助设计技术,将设计过程中的参数及各细节考虑在内,实现合理的减速器结构;最后,应实施新材料和新零件的采用,使减速器更加经济和可靠。

综上所述,优化一级圆柱齿轮减速器设计,应包括调节精度,耐
久性,传动效率,以及设计过程中的模型检验,计算机辅助设计,新材料新零件的考虑,以便更加有效的满足机械设备的要求。

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器的优化设计齿轮减速器是一种常用的机械传动装置,广泛应用于各种机械设备中。

其中,单级圆柱齿轮减速器是一种常见的减速器类型,具有结构简单、传动效率高等优点。

本文将围绕单级圆柱齿轮减速器的优化设计展开讨论。

首先,我们需要明确单级圆柱齿轮减速器的工作原理。

单级圆柱齿轮减速器是通过两个相互啮合的圆柱齿轮进行传动的。

其中,一个齿轮称为主动齿轮,另一个齿轮称为从动齿轮。

主动齿轮通过电机等动力源驱动,从而带动从动齿轮旋转。

通过不同大小的齿轮组合,可以实现不同的减速比。

在进行优化设计时,我们可以从以下几个方面考虑:1. 齿轮材料的选择:齿轮材料的选择直接影响到减速器的使用寿命和传动效率。

一般来说,常用的齿轮材料有钢、铸铁、铜合金等。

在选择材料时,需要综合考虑其强度、硬度、耐磨性等因素,并根据具体应用场景进行选择。

2. 齿轮参数的优化:齿轮参数包括模数、压力角、齿数等。

通过优化这些参数,可以提高减速器的传动效率和承载能力。

例如,增大模数可以增加齿轮的强度和承载能力;选择合适的压力角可以减小齿轮啮合时的摩擦损失。

3. 齿轮啮合传动的优化:齿轮啮合传动是减速器最关键的部分,也是能量损失最大的部分。

通过优化齿轮啮合传动的设计,可以减小能量损失,提高传动效率。

例如,采用精密加工工艺可以提高齿轮的啮合精度;采用润滑油膜技术可以减小摩擦损失。

4. 减速器结构的优化:减速器的结构设计也会影响其性能。

通过优化结构设计,可以降低噪声、提高刚度、减小体积等。

例如,采用斜齿圆柱减速器可以减小噪声;采用刚性箱体结构可以提高刚度。

5. 传动效率的测试与改进:在优化设计完成后,需要对减速器的传动效率进行测试,并根据测试结果进行改进。

通过不断地测试与改进,可以逐步提高减速器的传动效率。

综上所述,单级圆柱齿轮减速器的优化设计涉及到多个方面,包括材料选择、齿轮参数优化、齿轮啮合传动优化、结构优化以及传动效率测试与改进等。

单级斜齿圆柱齿轮减速器的优化设计

单级斜齿圆柱齿轮减速器的优化设计

第$期
第@期 344> 年 @ 月
文章编号: 0440 9 8;;< = 344> ? 4@ 9 4480 9 43
AB(CDE’FG
机械设计与制造 /’HDIE J ABE-KB()-F’
9 80 9
组合机床空间角度的计算软件开发和总体设计
付晓岚 0 郭鸿勋 3 (0 广东机电职业技术学院,广州 >04>0> ? = 3 一拖开创装备科技有限公司,洛阳 1<0441)
4 T)大齿轮 图 ! 齿轮
% 参数分析
实现最小的体积决定于减速器内部零件参数合理选择。按 结构的经验公式, 齿轮各部分结构尺寸之间的关系如下: " R M3 2% R %8 U 2 V ! <% R 2&! $ ! "" 2" R "8 !M 4 <% $ 2% H
0 ; "8 IT 轴向尺寸: = W !N" , = W I!" 齿轮参数: >—齿数; 5/—模数; *—齿宽。 齿轮与轴的体积之和为 ? ! ! ! @ ; 4 2&%! $ 2% X! H * W 4 2&!! $ 2! X! H * A 4 <%! $ 2%! H ・ # # # ! ! ! ! X! ! X! ! X! 4 * A 0 H $ # 4 2" 0 H W 4 2% W 2! H = W !N" 2 W I!" 2 # # # % # ! (% ) 后, 得到体积之和只决定于 将 "" 、 <% 、 2% 、 2" 、 0 代入公式 其余 L 个为 *、 >% 、 5、 =、 2B% 、 2B! 、 #、 # 等 N 个参数, # 为设计常量, 设计变量。

单级直齿圆柱齿轮减速器的优化设计[五篇]

单级直齿圆柱齿轮减速器的优化设计[五篇]

单级直齿圆柱齿轮减速器的优化设计[五篇]第一篇:单级直齿圆柱齿轮减速器的优化设计单级直齿圆柱齿轮减速器的优化设计一、问题描述设计如图所示的单级圆柱齿轮减速器。

减速器的传动比u=5,输入功率P=75+5⨯44=295kW,输入轴转速n=980r/min。

要求在保证齿轮承载能力的条件下,使减速器的质量最小。

xbxz1xmX=[x1 x2 x3 x4 x5 x6]T =xl1X5d1X6d2二、分析减速器的体积主要决定于箱体内齿轮和轴的尺寸三、数学建模积v可近似的表示为根据齿轮几何尺寸及结构尺寸的计算公式,单极圆柱齿轮减速器箱体内齿轮和轴的总体v=π(d42s221-db1+2s1)π⎛π2⎫+d(l1+l2)-D-D(b2-c)-4 d0c⎪44⎝4⎭'22'21ππ((d422-d2s2)b2+π4ds2 1(l1+l3))由上式克制,单极标准直齿圆柱齿轮减速器优化设计的设计变量可取为这里近似取b1=b2=b0根据有关结构设计的经验公式将这些经验公式有δ=5m、D2=d2-2δ、、c=0.2b,并取l2=32mm、l3=28mm将这些经验公式及数据代入式d0=0.25(D2-D1)(2-1)且用设计变量来表示,整理得目标函数的表达式为222222f(x)=0.785398154.75x1x2x3+85x1x2x3-85x1x3+0.92x1x6-x1x52222+0.8x1x2x3x6-1.6x1x3x6+x4x5+x4x6+28x5+32x6() 1)为避免发生根切,应有Z1≥Zmin=17应有于是得约束函数(2-1)g1(x)=17-x2≤0(2-2)2)根据工艺装备条件,跟制大齿轮直径d2不超过1500mm故小齿轮直径d1不应超过300mm即mz1≤30cm于是有约束函数(2-3)g2(x)=x2x3-30≤0(2-4)足16≤b≤35,由此得m-1g(x)=xx-35≤0(2-5)3133)为保证齿轮承载能力同时又避免载荷沿齿宽分布严重不均,要求齿宽系数Φm=-1g4(x)=16-x1x3≤0(2-6)b满m4)对传递动力的齿轮,模数不能过小,一般m≥2mm,且取标准系列值,故有() g5x=0.2-x3≤0(2-7)5)按经验,主、从动轴直径的取值范围为10cm≤d≤15cm,故有() g6x=10-x5≤0(2-8)() g7x=x5-15≤0(2-9)() g8x=13-x6≤0(2-10)() g9x=x6-20≤0(2-11)6)按结构关系,轴的支承跨距满足:l1≥b+2∆+0.5ds2,其中∆为箱体内壁到轴承中心线的距离,现取∆=2cm,则有约束函数g10(x)=x1+0.5x6+4-x4≤0(2-12)7)按齿轮的接触疲劳强度和弯曲疲劳强度条件,应有:336KT1(u+1)σH=≤[σH]abu(2-13)3σF=12KT1≤σF1bd1mYF111[](2-14)σF=1σFYFYF2≤σF2[](2-15)式中,a为齿轮传动的标准中心距,单位为cm,a=0.5mz1(u+1);K为载荷系数,这里取K=1.3;T1为小齿轮传递扭矩,单位为N•cm,T1=955000P/n1=95500⨯295/980N•cm≈287474N•cm;为齿轮的许用接触应力,单位为MPa,这里取;σF1、σF2分别为小齿轮与大齿轮的许用弯曲应力,单位为MPa,这里取σF1=261MPa、σF2=213MPa;YF1、YF2分别为小齿轮、大齿轮的齿形系数,对标准齿轮:[][][][]YF1=0.169+0.006666z1-0.000854z12(2-16)(2-17)2YF2=0.2824+0.003539z1-0.000001576z2对以上公式进行代入、运算及整理,得到满足齿轮接触强度与弯曲强度条件的约束函数:(2-18)2(0.169+0.6666⨯10-2x2-0.854⨯10-4x22)-261≤0(2-19)g12(x)=7474/x1x2x32(0.2824+0.177⨯10-2x2-0.394⨯10-4x22)-21 3≤0(2-20)g13(x)=7474/x1x2x3[][]根据主动轴(本例即小齿轮轴)刚度条件,轴的最大弯曲挠度ymax应小于许用值[y],即xxx g11(x)=45002(2-21)1--1-12231-855≤0ymax-[y]≤0其中取[y]=0.003l1;ymax则由下式计算:3y=Fl/(48EJ)(2-22)maxn式中,Fn为作用在小齿轮齿面上的法相载荷,单位为N,Fn=2T1/(mz1cosα),α为齿轮压力角,α=20︒;E为轴的材料的弹性模数,E=2⨯105MPa;J为轴的惯性矩,单位为cm,对圆形截面,J=πds41/64。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
term ine the appropriate initia l pena lt y factor, tO achieve the m ost advantage of solving.The opt imized volume is greatly reduced compared with the traditional design . and it has guiding significance tO th e design of the sam e kind of gear reducer. Key words: single—stage cylindrical gea r reducer; opt ima l desig n ; M atlab; SUM T ; initia l pena lt y factor
第 29卷 第 4期 2016年 7月
机 电产 品 开 崖 与 崭
Development& Innov ̄ion of M achinery & Electrical Pro ducts
文 章 编 号 :1002—6673 (2016)04—062—03
单级 圆柱 齿轮减 速器 的优化设计
0 引言
1 建立数学模型
圆柱 齿轮 减速 器应 用范 围广 ,生 产 需求 量 大 ,因此 实 现减 速器 的轻量 化 、小 型化具 有重 大经 济意 义 。优 化设 计 是 近几 十年来 发 展起来 的重 要学 科 ,利 用优 化设 计 方法 , 人们 可 以从 许 多的可行 方 案 中选择 出最 符合 目标 要求 的 设计 方 案 .从 而 提高设 计质 量 和设计 效 率均 有 大幅 度提 高 。本 文在保 证 齿轮 承载 能力 的前 提下 ,将 减速 器 的体积 最 小作 为优 化 目的 ,进 而确定 目标 函数 和 约束 条件 ,建立 单 级 圆柱 齿 轮减 速 器 的数 学模 型 。利 用 Matlab软 件 ,编 写进退 法 、二 次插 值法 、鲍 威尔 法和 内点 惩罚 函数法 等优 化 方 法 程序 【l1,并通 过 一定 的策 略 ,确 保 最优 解 满 足 所有 约束条 件 。本 文以单 级 圆柱齿 轮减 速器 为例 进行 分析 ,但 只要修 改 目标 函数 和约 束条 件 ,此 套设 计 方法 和程 序也 可 以推广 到各 类减 速器 的设 计 中。
CHEN Bu-Yun, H UANG Yin-Xing
(China University ofMining and Technology(Beijing)Inst itute ofTechnology a nd Information Engineer ing,Bering 100083,China)
修稿 日期 :2016—06—14 作者 简 介 : 陈 步 云 (1995-),男 ,河 南 开封 人 。研 究 方 向 :机 械 工 程 及 其 自动 化 ;黄 寅行 (1993-),男 ,广 东 阳 江 人 ,研 究 方 向 :机 械 工程 及 其 自动 化 。
如 图 1所 示 的单 级 圆柱齿 轮 减速 器 。已知 减速 器 的 传 动 比 i=5,输 入 轴 转 速 nl=1000r/min,输 入 功 率 P= 280kW 。要求 在保 证 齿轮 承载 能力 的条件 下 ,使 减速 器 的 重量 最 轻 。

营 惑
(a
(b)
(C)
图 1 单级 圆柱齿 轮减 速器
1.1 建 立 目标 函数 。确 定设 计变 量 对 于齿 轮减 速器 .在齿 轮 和轴 的结 构 尺寸 确定 之 后 ,
关 键 词 : 圆 柱 齿 轮 减 速 器 ;优 化 设 计 ;M adab; 惩 罚 函 数 法 ;初 始 罚 因子 中图分类 号 :TB47 文献 标识码 :A doi:10.3969/j.issn.10o2—6673.2016.04.023
The Optimal Design of Single-stage Cylindrical Gear Reducer
Vo1.29,No.4 Ju1..201 6
陈步云 。黄 寅行
(中 国矿 业 大 学 (北 京 )机 电与 信 息 工 程学 院 ,北 京 100083)
摘 要 : 圆 柱 齿 轮 减 速 器 是 各 类 机 械 设 备 的 通 用 传 动 装 置 。 为 顺 应 设 备 轻 量 化 趋 势 , 论 文 通 过 对 减 速 器 物 理模 型的 分析 , 以重量 最轻 为 目标 ,建 立对 其进行 优化 设计 的数 学模 型 。利 用 Matlab编 写 内点 惩 罚函数 法程 序 ,并通 过一 定 的策略 ,确 定合 适的初 始 罚 因子 ,实现 最优 点求 解。优 化后 的体 积较 传统设 计 大幅度 减 小 .对 同类齿轮 减速 器 的设计 有指 导 意义 。
Abstract: Cylindrical gear reducer is a univer sa l transmission device for all kinds of m echanica l equipm ent.In order tO aa ̄pt tO the light
weight of equipment,this paper estabhshes the mathematica l model of opt imum design by analyzing the physica l model of the reducer,tak— ing the lightest weight as the target.Using Matlab tO write t he interna l point penalt y funct ion method,and throug h a certain st rategy,de—
相关文档
最新文档