数值分析(研究生)第四章线性方程组的直接解法二
数值分析实验三 线性方程组的直接接法2

数值分析实验三 线性方程的直接解法组号 班级 学号 姓名 分数一:实验目的1、掌握求解线性方程组的不同方法。
二:实验内容及基本知识介绍本实验中利用高斯消去法和矩阵的直接三角分解法求解线性方程组。
用消去法解方程组的基本思想:是用逐次消去未知数的方法把原方程组Ax=b 化为与其等价的三角形方程组,而求解三角形方程组可用回代的方法求解。
即上述过程就是用行的初等变换将原方程组系数矩阵化为简单形式(上三角矩阵),从而将求解原方程组的问题转化为求解简单方程组问题。
或者说对系数矩阵A 施行一些做变换将其约化为上三角矩阵。
直接三角分解法的原理:在高斯消去法的基础上,高斯消去法实质上产生了一个将A 分解为两个三角形矩阵相乘的因式分解,即矩阵的LU 分解——设A 为n 阶矩阵,如果A 的顺序主子式i D ≠0(i=1,2,…n-1),则A 可分解为一个单位下三角矩阵L 和一个上三角矩阵U的乘积,且这种分解是唯一的。
将高斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L,U 元素的递推公式,而不需要任何中间步骤,这就是直接三角分解法。
一旦实现了矩阵A 的LU 分解,那求解Ax=b 的问题就等价于求解两个三角形方程组 ① Ly=b,求y;② Ux=y,求x.其中用直接三角分解法解Ax=b 的分解矩阵A 的计算公式:①111111(1,2,...),/(2,3,...),i i i i i n i n u a l a u ====计算U 的第r 行,L 的第r 列元素(r=2,3,…n ).②11r ri ri rk ki k ua l u -==-∑ (i=r,r+1,…n); ③11)/(r ir ik kr rr ir k a l l u u -==-∑ (i=r+1,…,n;且r ≠n) 三:实验问题及方法、步骤分别用直接三角分解法和高斯消元法解方程组Ax=b,其中 2111339,23353A b --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
解线性方程组的直接方法

解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
数值分析--解线性方程组的直接方法

值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
线性方程组的解法线性方程组

线性方程组的解法线性方程组线性方程组是数学中常见的一种方程形式,它由多个线性方程联立而成。
解线性方程组是在给定一组方程的条件下,求出符合这些方程的未知数的取值,从而满足方程组的所有方程。
本文将介绍线性方程组的解法和应用。
一、高斯消元法高斯消元法是解线性方程组的一种常用方法。
它通过一系列行变换将线性方程组转化为简化的行阶梯形矩阵,然后通过回代求解得到方程组的解。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中未知数的系数和常数项构成矩阵的左右两部分。
2. 选取一个主元(即系数不为零的元素)作为基准行,并通过行变换使得该元素为1,同时消去其他行中该列的元素。
3. 重复上述步骤,将矩阵转化为行阶梯形式,即每一行的主元都在前一行主元的右下方。
4. 进行回代,从最后一行开始,逐步求解方程组的未知数。
高斯消元法能够解决大部分线性方程组,但对于某些特殊情况,例如存在无穷解或无解的方程组,需要进行额外的判断和处理。
二、矩阵求逆法矩阵求逆法是另一种解线性方程组的方法。
它通过求解方程组的系数矩阵的逆矩阵,再与常数项的矩阵相乘,得到未知数的解向量。
具体步骤如下:1. 如果线性方程组的系数矩阵存在逆矩阵,即矩阵可逆,那么方程组有唯一解。
2. 计算系数矩阵的逆矩阵。
3. 将逆矩阵与常数项的矩阵相乘,得到未知数的解向量。
需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况,对于不可逆的方程组,则无解或者存在无穷解。
三、克拉默法则克拉默法则适用于n个未知数、n个方程的线性方程组。
它利用行列式的性质来求解未知数。
具体步骤如下:1. 构建系数矩阵和常数项的矩阵。
2. 计算系数矩阵的行列式,即主对角线上各元素的乘积减去副对角线上各元素的乘积。
3. 分别用求解一个未知数时的系数矩阵替代系数矩阵中对应列的元素,再计算新矩阵的行列式。
4. 将每个未知数的解依次计算出来。
克拉默法则的优点是理论简单,易于理解,但随着未知数和方程数的增加,计算复杂度呈指数增长,计算效率较低。
数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0
数值分析课件 11.线性方程组的直接解法-迭代

例:求解方程组
84xx11
3x2 23x2 12x3 36
Ax b
x* 3, 2,1T
x1 x2
1 8
3x2
2 x3
20
1 11
4x1
x3
33
x3
1 12
6 x1
3x2
36
x Bx f
0
B
4 11
3 8
0
2 8
1
11
0
an,n1 ann
a1,n a11
a2,n a22
an1,n an1,n1
0
f
b1 a11
,
b2 a22
,,
bn ann
T
Jacobi 迭代法-算法
x x0 x
TOL
最常用的是 范数
Gauss-Seidel 迭代
x1(
k
1)
b1 a12 x2(k ) a13 x3(k ) a1n xn(k )
;
f
20
8 33
11
6 12
3 12
0
36 12
迭代法的基本思想
x1 2.5, 3, 3T
xk x1k , x2k , x3k T
x1 x2
1 8
3x2
2
x3
20
1 11
4
x1
x3
33
x3
1 12
6 x1
3x2
36
10 0.000187
xk1 Bxk f
0
存在某算子范数
B 1
,使得
定理:若存在算子范数 || · ||,使得 ||B|| = q <1,则
数值分析小论文线性方程组的直接解法
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
数值分析——线性方程组直接解法Hilbert矩阵
数值分析第一次上机实习报告——线性方程组直接解法一、问题描述设 H n = [h ij ] ∈ R n ×n 是 Hilbert 矩阵, 即11ij h i j =+- 对n = 2,3,4,…13,(a) 取11n n x R ⨯⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,及n n b H x =,用Gauss 消去法和Cholesky 分解方法来求解n n H y b =,看看误差有多大.(b) 计算条件数:2()n cond H(c) 使用某种正则化方法改善(a)中的结果.二、方法描述1. Gauss 消去法Gauss 消去法一般用于系数矩阵稠密且没有任何特殊结构的线性方程组。
设H =[h ij ],y = (y 1,y 2,…,y n )T . 首先对系数矩阵H n 进行LU 分解,对于k=1,2,…n,交替进行计算:1111),,1,,1(),1,2,,k kj kj kr rj r k ik ik ir rk r kk u h l u j k k n l a l u i k k n u -=-=⎧=-=+⎪⎪⎨⎪=-=++⎪⎩∑∑…… 由此可以得到下三角矩阵L=[l ij ]和上三角矩阵U=[u ij ]. 依次求解方程组Ly=b 和Ux=y ,111,1,2,,1(),,1,,1i i i ir r r n i i ir r r i ii y b l y i n x y u x i n n u -==+⎧=-=⎪⎪⎨⎪=-=-⎪⎩∑∑…… 即可确定最终解。
2. Cholesky 分解法对于系数矩阵对称正定的方程组n n H y b =,存在唯一的对角元素为正数的下三角矩阵L ,使得H=LL T 。
因此,首先对矩阵H n 进行Cholesky 分解,即1122111()1()j jj jj jk k j ij ij ik jk k jj l h l l h l l l -=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑ 1,i j n =+… L 的元素求出之后,依次求解方程组Ly=b 和L T x=y ,即1111111(),2,3,i i i ik k k ii b y l y b l y i n l -=⎧=⎪⎪⎨⎪=-=⎪⎩∑… 11(),1,2,n n nn n i i ki k k i nn y x l x y l x i n n l =+⎧=⎪⎪⎨⎪=-=--⎪⎩∑…1 由此求得方程组n n H y b =的解。
线性方程组的数值解法详解演示文稿
n
非行零交判换断的次元数素最个多数为为::kn1(1nnk1()n12kn)(n
k 1
1)
1 2
n(n
1)
二、矩阵三角分解法
设有线性方程组:AX=b
a11 a12 a1n
x1
b1
A
a21
a22
a2
n
,
X
x2
,
b
b2
.
an1 an2 ann
xn
bn
矩阵三角分解法包括不选主元和选主元两种方法。
1、不选主元三角分解算法 当A非奇异时,可以将A作LU分解:
1 0
0 u11 u12 u1n
A
LU
l21
1
0
0
u22
,
ln1 ln,n1 1 0 0 unn
其中:(矩阵LU分解)
(1) u1 j a1 j (i 1,2,,n), li1 ai1 / u11(i 2,,n),
1
0 0
1
2,y
2 ,
x
0
.
1 1 1 0 0 1
1 1
§3 解线性方程组的迭代法
考虑线性方程组
a11x1 a12x2 a1nxn b1
a21x1
a22x2
a2n xn
b2
an1x1 an2x2 annxn bn
也就是
Ax=b.
进行矩阵分裂
A=M-N,
(2.1) (2.2)
其中
a1(11)
0
0
a1(12) a2(22)
an(22)
a1(1n) a2(2n)
an(2n)
线性方程组的直接解法
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以2-范数亦称为
故得证.
谱范数.
上页
下页
返回
定理 若矩阵 B 对某个算子范数满足 ||B|| < 1,则必有
① I B 可逆
② I B 1 1
1 || B ||
证明:① 若不然,则 (I B)x 0有非零解,即存在非零向
量 x0 使得 Bx0 x0 ||||Bxx00|||| 1
A
||
||
A1
||
|| b ||
|| b ||
上页
下页
返回
➢
设
b精确,A有误|| A差|| ||AA1 |,|是得关到键的解为
x
x,即
A的的(越A条误大件差数放则A,大)(A记因x越为子病c,o态xn称)d,为(Ab) ,
A( x x) A( x 难x得) 准b确解.
x A1A( x x)
B ||p x|| p
n 特征根
特别有: || A || max | aij | (行和范数) 1in j1
n
|| A ||1 max | aij | (列和范数)
1 jn i 1
上页
|| A ||2 max ( AT A) (谱范数 )
下页
返回
注: Frobenius 范数不是算子范数.
(A) =
max |
1i n
i
,| 其中i
为
A 的特征根.
Re
上页 下页 返回
定理 对任意算子范数 || ·|| 有 (A) || A ||
证明:由算子范数的相容性,得到 || Ax|| || A || || x||
将任意一个特征根 所对应的特征向量 u代入 | | || u|| || u|| || Au|| || A || || u||
定理 若A对称,则有 || A ||2 ( A)
证明:|| A ||2 max ( AT A) max ( A2 )
A对称
若 是 A 的一个特征根,则2 必是 A2 的特征根.
max ( A2 ) 2( A) 对某个 A 的特征根 成立
又:对称矩阵的特征根为实数,即 2(A) 为非负实数,
第四章 线性方程组的直接解法(二)
第五节 向量和矩阵范数 第六节 方程组的性态与误差分析
§5 向量和矩阵的范数
一、向量范数
定义 Rn空间的向量范数 || ·|| 对任意 x, y满R足n 条件:
(1)
|| x|| 0 ;
|| x|| 0
x
0
(正定性)
(2) || x|| | | || x|| 对任意 C (齐次性)
|| B || 1 ✓
② (I B)1 B(I B)1 (I B)( I B)1 I
(I B)1 I B(I B)1
|| (I B)1 || 1 || B || || (I B)1 ||
上页
下页 返回
§6 方程组的性态与误差分析
求解
A
x
b 时,A
和
b 的误差对解
||
x||2
算子范数
由|| A向|量|p 范m数xa0x||||·||A|x|px|导||p|p出关m|矩|x于|| |apx阵x矩1利|y|A阵用A|TAxC|A||的|apxu最|c|2Rh则大yn||不n||y||的AA等||Bx2 p|式|||p可p范|证|||数AA.|||:|pp
|| ||
返回
定义 向量序列 { x(k)}收敛于向量 x*是指对每一个 1 i n 都
有
lim
k
xi(
k
)
xi* .
可以理解为 || x(k) x* || 0
定义 若存在常数C > 0 使得对任意 x Rn 有|| x||A C || x||B , 则
称范数 || ·||A 比范数 || ·||B 强.
定义 若范数 || ·||A 比|| ·||B
存在常数 C1、C2 > 0 使得C1 ||
强x||,B 同|| x时||A||·C||B2
也比|| || x||B
·||A 强,即 ,则称
|| ·||A 和|| ·||B 等价.
定理 Rn 上一切范数都等价.
可以理解为对任何 向量范数都成立.
上页
下页
返回
x有何影响?
➢
设
A
精确, b有误差
b,得到的解为
x
x,即
A( x
x)
b
b
绝对误差放大因子
x
A1
b
||
x|| ||
A1
|| ||
b ||
相对误差放大因子
又
||
b ||
||
Ax||
||
A || ||
x||
||
1 x||
|| ||
A|| b ||
|| x||
|| x||
||
(3) || x y|| || x|| || y|| (三角不等式)
常用向量范数:
|| xv ||1
n
| xi |
i1
||
v x ||
n
| x |2
2
i1
i
|| xv || p
n
1/ p
| xi |p
i1
||
xv
||
max
1 i n
|
xi
|
注:
lim
p
||
x|| p
||
x||
上页 下页
我们只关心有相容性的范数,算子范数总是相容的.
即使 A中元素全为实数,其特征根和相应特征向量
仍可能是复数.将上述定义中绝对值换成复数模均成立.
三定、义谱矩半阵径A||的·谱||v 若半使不n径得然|记|||A,I为||||FF则反m必mx例xaa0存x0x |||在|?|||A|Ixx(x某xA||||v|||v)v|个v 对向1任量 意范IAm数 成立.
||
|| x|| x x||
||
A1
||
||
A
||
|| A || || A1 || || A ||
|| A ||(AA)x(A
A)x
b
( A A)x Ax
A(I A1A)x Ax
x (I A1A)1 A1Ax
(只要 A充分小,使得
|| A1A |||| A1 || || A || 1 )
(4)* || AB || || A || ·|| B || (相容 当 m = n 时)
上页 下页 返回
常用矩阵范数:
nn
Frobenius 范数
|| A ||F
| aij |2 — 向量|| ·||2的直接推广
对方阵 A Rnn
以及
i 1
x Rn 有 ||
jA1x||2 ||
A ||F
二、矩阵范数
定义 Rmn空间的矩阵范数 || ·|| 对任意 A, B 满Rm足n :
(1) || A || 0 ; || A || 0 A 0 (正定性)
(2) || A || | | || A || 对任意 C (齐次性) (3) || A B || || A || || B || (三角不等式)