工程流体力学(英文版)第一章.pdf
清华工程流体力学课件第一章导论

2024/7/30
11
与过渡、涡流动力学和非定常流等继续研究外,更主要的 是转向研究石油、化工、能源、环保等领域的流体力学问 题,并与相关的邻近学科相互渗透,形成许多新分支或交 叉学科,如计算流体力学、实验流体力学、可压缩气体力 学、磁流体力学、非牛顿流体力学、生物流体力学、多相目 录20247/30第一章 导 论
第二章 流体静力学
第三章 流体动力学基础
第四章 不可压缩流体的有旋流动和二维无旋流动
第五章 不可压缩流体二维边界层概述
第六章 黏性流体的一维定常流动
第七章 气体一维高速流动
英汉词汇表
返回
1
第一章 导论
§1–1 流体力学的任务及发展状况
§1–2 流体的特征和连续介质假设
2024/7/30
12
用这种方法,获得了较好的效果,大大推动了实验技术的 发展。
13世纪以前,我国在流体力学原理的应用方面做出了 巨大贡献,曾领先于世界。新中国建立以后,随着工农业 的建设,在这方面的工作得到迅猛发展,建造了众多的各 级重点实验室,不仅解决了无数的生产实际问题,而且还 培养了一支具有较高水平的理论和实验队伍。完全可以相
2024/7/30
6
间,何梦瑶在《算迪》一书中提出了流量为过水断面上平 均流速乘以过水断面面积的计算方法。我国在防止水患、 兴修水利方面也有着悠久的历史。相传4000多年前的大禹 治水,就表明我国古代进行过大规模的防洪工作。在公元 前256年至前210年间修建的都江堰、郑国渠和灵渠三大 水利工程,两千多年来效益卓著。以上都说明了我国劳动 人民的聪明智慧,当时对流体流动规律的认识已达到相当 高的水平。14世纪以前,我国的科学技术在世界上是处于 领先地位的。但是,近几百年来由于闭关锁国使我国的科 学得不到应有的发展,以致在流体力学方面由古代的领先
工程流体力学英语

工程流体力学英语Engineering Fluid MechanicsThe study of fluid mechanics is a fundamental aspect of engineering, as it underpins the design and analysis of a wide range of systems and devices. Fluid mechanics encompasses the behavior of liquids and gases, and its principles are essential in fields such as aeronautics, mechanical engineering, civil engineering, and chemical engineering.One of the primary areas of focus in fluid mechanics is the concept of fluid flow. This includes the study of the properties of fluids, such as density, viscosity, and compressibility, as well as the forces acting on them. Fluid flow can be classified into two main types: laminar flow, where the fluid particles move in parallel layers, and turbulent flow, where the fluid particles move in a chaotic, unpredictable manner.Understanding the behavior of fluids in both laminar and turbulent flow is crucial for various engineering applications. For example, in the design of aircraft wings, the study of fluid mechanics is essential to determine the lift and drag forces acting on the wing, which inturn influences the aircraft's performance and efficiency. Similarly, in the design of hydraulic systems, such as pumps and valves, fluid mechanics principles are used to ensure the optimal flow of fluids and the minimization of energy losses.Another important aspect of fluid mechanics is the study of pressure and buoyancy. Pressure, which is the force exerted by a fluid on a surface, plays a crucial role in the design of structures, such as dams and pipelines, as well as in the operation of various devices, such as hydraulic brakes and pneumatic systems. Buoyancy, on the other hand, is the upward force exerted by a fluid on an object immersed in it, and it is a fundamental principle in the design of ships, submarines, and other floating structures.In addition to these fundamental concepts, fluid mechanics also encompasses the study of more complex phenomena, such as boundary layer theory, which describes the behavior of fluids near solid surfaces, and computational fluid dynamics (CFD), which involves the use of computer simulations to model and analyze fluid flow.The application of fluid mechanics principles is not limited to the design and analysis of engineering systems. It also plays a crucial role in various natural phenomena, such as the movement of air and water, the formation of weather patterns, and the behavior ofbiological systems, such as the circulatory system in the human body.Overall, the study of engineering fluid mechanics is a vast and complex field, with numerous applications across a wide range of industries. As technology continues to evolve, the importance of fluid mechanics in engineering design and analysis will only continue to grow, making it an essential subject for students and professionals alike.。
流体力学英文版第一章绪论—Introuduction

Expression of fields
Noห้องสมุดไป่ตู้es
Vector fields: Velocity field, V = (V(r, t)) = (u(r, t), v(r, t)). For a streamline, it satisfies dr × V = 0.
The mechanics is built on the base of the corresponding engineering problem, physical models, and mathematic models or algorithms.
Deformation is also important in mechan-
Content
1. Curse overview 2. Field 3. Indicial notation 4. Fluid properties
Notes
1 / 38
Curse overview
Notes
Fundamentals of Fluid mechanics
Chapter I Physical properties of fluid mechanics Field, Indicial notation, fluid properties. Chapter II Fluid statics Fluid is either at rest or moving without shearing stresses. Chapter III Fluid kinematics The description and visualization of its motion. Chapter IV Fluid dynamics The analysis of the specific forces necessary to produce the motion: Idea flow and viscous flow. Chapter V Dimensional analysis (Option) Buckingham Π theorem to conduct dimensional analysis.
工程流体力学英文原版

工程流体力学英文原版Engineering Fluid Mechanics: An Introduction.Engineering fluid mechanics is a crucial discipline within the field of engineering that deals with the study of fluids and their interactions with solid boundaries. It is a fundamental branch of physics and engineering that finds applications in various fields such as civil, mechanical, aerospace, and chemical engineering. The study of fluid mechanics involves the understanding of fluid properties, fluid statics, fluid dynamics, and fluid control.1. Fluid Properties.Fluids are substances that continuously deform under the application of shear stress. They lack a fixed shape and take the shape of the container in which they are contained. Fluids can be classified as liquids or gases, depending on their state and properties. Liquids have adefinite volume but no fixed shape, while gases expand tofill the available space.Some important fluid properties include density, viscosity, compressibility, and surface tension. Density is the mass per unit volume of a fluid. Viscosity representsthe internal friction of a fluid and affects its flow behavior. Compressibility describes how a fluid responds to changes in pressure, while surface tension arises from the intermolecular forces at the fluid's surface.2. Fluid Statics.Fluid statics deals with the behavior of fluids at rest, or in equilibrium. It involves the study of pressure distribution in fluids, buoyancy, and hydrostatics.Pressure is a force per unit area acting perpendicular tothe surface, and it is a fundamental quantity in fluid mechanics. Buoyancy is the upward force exerted by a fluid on an immersed object, and it is responsible for thefloating of objects on water. Hydrostatics deals with the equilibrium of fluids under the influence of gravity andother external forces.3. Fluid Dynamics.Fluid dynamics is concerned with the motion of fluids and the forces acting on them. It involves the study of fluid flow, fluid mechanics equations, and fluid control. Fluid flow can be laminar or turbulent, depending on the velocity and other fluid properties. Laminar flow is smooth and orderly, while turbulent flow is chaotic and irregular.The fundamental equations of fluid dynamics include the conservation of mass, momentum, and energy. The conservation of mass states that the rate of change of mass within a control volume is equal to the net mass flow rate into the volume. The conservation of momentum relates the forces acting on a fluid element to its acceleration, while the conservation of energy accounts for the conversion of energy forms within a fluid system.4. Fluid Control.Fluid control involves the manipulation and manipulation of fluid flow using pumps, valves, and other devices. Pumps are used to increase the pressure or flow rate of a fluid, while valves are used to control the direction or amount of fluid flow. Other devices such as nozzles, diffusers, and turbines are also employed to modify fluid flow characteristics.In conclusion, engineering fluid mechanics is a crucial discipline that deals with the study of fluids and their interactions with solid boundaries. It involves the understanding of fluid properties, fluid statics, fluid dynamics, and fluid control. This knowledge is essentialfor engineers to design, analyze, and optimize fluid systems in various engineering applications.。
流体力学英文版1

若连续介质不适用,应如何处理呢? 13
1.3 Dimension and Units 单位与量纲
Dimensions are properties that can be measured, e.g. length, velocity, area, volume, acceleration etc. 可以测量的性质叫量纲。
3
Figure 1.1 Behavior of (a) solid and (b) fluid, under the action of a constant shear
solid
fluid
与时间无关
与时间有关
4
Main differences between the behavior of solids and
It breaks down whenever the mean free path of the molecules (平 均分子自由行程,10−7 )approximately becomes the same magnitude order as the smallest significant characteristic dimension (特征长度) of the problem.
《工程流体力学》 Engineering fluid mechanics

lim
V 0
M V
p3(1-2-2)
均质流体内部各点处的密度均相等:
ρ——流体的密度, kg/m ; m ——流体的质量, kg; V ——该流体的体积, m3 。
m V 3
p3(1-2-1)
三、重力特性
第一章
流体受地球引力的特性,称重力特性,用容重表示。
容重(Specific Weight): 指单位体积流体的重量。单位: N/m3
分 类
1 .按物理性质的不同分类: 重力、摩擦力、惯性力、弹性力、表面张力等。 2 .按作用方式分: 质量力和表面力(面积力)。
第一章
一、质量力(Mass Force):
定义:作用于流体的每一个质点(或微团)上的力,它的 大小与质量成正比。 单位质量力f:单位质量流体所受到的质量力。 设X、Y、Z为单位质量力在x、y、z 轴向的分力,即:
三、应用流体力学的概述
• 应用流体力学的概念
应用流体力学是一门讨论研究液体及气体平衡和机械运动 规律及其实际工程应用的一门技术学科。
• 流体力学分类
机械类流体力学:机械、冶金、化工、水力机械 水利类流体力学:水工、水动、海洋 土木类流体力学:土建、市政、工民建、道桥、城市防洪
• 流体力学的内容
流体静力学:研究流体处于静止状态下的力学规律; 流体动力学:研究作用于流体上的各种力和运动之间的关系 以及流体的运动特性及能量等问题。
航空发动机燃烧室燃烧
燃烧炉
燃烧炉
旋转机
交互式叶片设计界面
丰富的叶片模板
法国电力公司(EDF):水轮机
北美的EMP公司:水泵
压缩机
流体功能
超 高 音 速 导 弹 飞 行
战斗机六自由度投掷分析
工程流体力学(杜广生主编)电子教案第一章绪论
将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)
在流体静力学中应用了虚位移原理,并首先提出,运动物 体的阻力随着流体介celli,1608-1647)
论证了孔口出流的基本规律。
西汉武帝时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创 造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止 了黄土的塌方。
水利风力机械
在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水, 或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元 37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制 鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。
流体力学在中国
• 真州船闸 • 北宋(960-1126)时期,在运河上修建的真州船闸与十
四世纪末荷兰的同类船闸相比,约早三百多年。
• 潘季顺 明朝的水利家潘季顺(1521-1595)提出了“筑堤防溢,
建坝减水,以堤束水,以水攻沙”和“借清刷黄”的治黄 原则,并著有《两河管见》、《两河经略》和《河防一 揽》。
• 达朗伯(J.le R.d‘Alembert,1717-1783) 1744年提出了达朗伯疑题(又称达朗伯佯谬),即在理想 流体中运动的物体既没有升力也没有阻力。从反面说明了 理想流体假定的局限性。
• 拉格朗日(grange,1736 -1813) 提出了新的流体动力学微分方程, 使流体动力学的解析方法有了进一 步发展。严格地论证了速度势的存 在,并提出了流函数的概念,为应 用复变函数去解析流体定常的和非 定常的平面无旋运动开辟了道路。
流体力学的西方史
• 阿基米德(Archimedes,公元前287-212) • 欧美诸国历史上有记载的最早从事流体力学
(完整版)流体力学 第一章 流体力学绪论
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
工程流体力学第一章
毛细现象
1 d cos( ) d 2 hg 4 4 cos( ) h gd
h
内聚力: 液体分子间吸引力 附着力: 液体与固体分子间吸引力
思考题
按连续介质的概念,流体质点是指: A、流体的分子; B、流体内的固体颗粒; C、几何的点; D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体。 (D)
pz
x
即流体静压强是空 间坐标的连续函数
图1.5.1 流体静压特性
p p( x, y, z )
力在x方向的平衡方程为
1 1 p x dydz p n dA cos( n, x) f x dxdydz 0 2 6
■
1.5.2静止流体的压力分布
p( x, y, z )
A
• 流体质点:
包含有足够多流体分子的微团,在宏观上流体微团的尺 度和流动所涉及的物体的特征长度相比充分的小,小到在 数学上可以作为一个点来处理。而在微观上,微团的尺度 和分子的平均自由行程相比又要足够大。 失效情况: 稀薄气体 程同量级) 激波(厚度与气体分子平均自由
1.2 流体的密度和粘性
■流体的密度
f lim F dF V 0 V dV
f fxi f y j f zk
仅受重力作用流体的质量力
fx 0
质量力的合力
fy 0
f z g
F f ( x, y, z, t )dV
V
1.5 流体静压特性及 静止流体的压力分布
1、流体静力学研究的任务:以压强为中心,主 要阐述流体静压强的特性,静压强的分布规律, 欧拉平衡微分方程,等压面概念,作用在平面 上或曲面上静水总压力的计算方法,以及应用 流体静力学原理来解决潜体与浮体的稳定性问 题等。 2、绝对静止流体: 3、相对静止流体: 4、重点和难点: 等压面的概念、作用在曲面上 的静压力(压力体)
工程流体第一章
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
contents1 The definition of fluids andcontinuum Hypothesis (2 Physical Properties3 Forces acted on a fluid4 Flow of a fluidof a fluid **5 Viscosity (6 Compressibility and incompressible flow7 Surface Tension1. Definition of a fluid:In the earth there are three main substance states1 The definition of fluids and continuumHypothesisSolid liquidgas.Fluidfluidsoliddeformation, no shape•Distinction Between a Solid and a FluidSolid can not only bear pressure and pulling force , but also resisting tangential stress.Fluid can bear pressure, but cannot bear pulling deformation force and resist tangential stress .Microcosmic A fluid is composed of a large amount of molecules in irregular motion with gap between molecules.Macroscopic much larger than inter molecular distance mean free pathδδ If δ δ ρ=δ δIf δ δ δ δ change so, ρis defined asAssumption of Continuum ModelAssumption of Continuum ModelContinuum /Continuous substance Fluids or solid particles occupy space continuously with inter molecular distance and molecular motion ignored 2 Definition of Continuum Modelδδ 1 Definition fluid particleA fliud element with the volume δ is defined as a fluid particle ,δ is a volume that is small enough with enoughmoles to make sure that the macroscopic meandensity has definite value.1cm 3liquid : 3.3x1022molecules1 cm 3gas : 2.7x1019 molecules10-19cm 3gas : 2.7x1010moleculesContinuum Model An assumption model that assumes a fluid as a continuum. Under this assumption, all physical properties are the continuous function of space coordinates and timeExerciseAccording to the concept of continuum, fluid particle isA fluid moleculeB solid particle in fluid Cgeometric point D differential element whose geometric scale is infinitesimal , yet includes a large amount of molecules.3 Advantages1 Excluding complexibility of molecules in motion.2 Physical properties are the continuous function of space and time,so we can use mathematical tool of continuous function to solve problems.Density is mass of the substance per unit volume Unit kg/m3 .1. Density2 Physical Properties( Density, Relative density, Specific Volume and Density of mixture gas)For ideal gasδδ'limm→=ΩΩΩρ2. Relative densitywhere ρw ——density of 4 water kg/m 31.2 Physical Properties3. Specific Volume of Gas (Specific Volume is the volume occupied by a mass of gas, specific volume is the reciprocal of density, m 3/kgRelative density of a fluid is the ratio of its density to that of pure water at 4 It has no unit and dimensionless.4. Density of mixture gas Density of mixture gas is calculated as volume fraction:where ρi ——density of gas i——volume fraction of gas i1122331ni i i ρραραραρα==++⋅⋅⋅⋅⋅⋅= i α 1.2 Physical PropertiesSpecific Weight is weight per unit volume. Unit 30lim G∆Ω∆γ∆Ω→=For homogenous fluid, each point has the same specific weightγ=G/V =ρgFor water, the nominal value of specific weight isγ=9800 N/m 35. Specific Weight ***1.2 Physical Properties1 Classification1 According to physical properties of fluids:gravity, friction force, inertia force,elastic force and surface tension.2 According to acting method:Mass force and surface force .2 Mass force 2 Unit mass force is the mass force acting on per unit mass fluid.Unit of unit mass force [m/s 2] It’s the same as the unit of acceleration unit.dF f d ρ=Ω x y x f f i f j f k=++3 Surface Force2/m N orPaNormal Compressive Force : perpendicular to acting surfaceShear Force : parallel to acting surfaceAccording to the acting directions, surface forces can be classified into:2 Stress is the surface force on per unit area,unit:Shearing stress Pressure n F F F τ=+1. Mechanical characteristics:Solid can not only bear pressure and pulling force , but also resisting tangential stress.Fluid can bear pressure, but cannot bear pulling deformation force and resist tangential stress .4 Flow of a fluidpressure pulling force tangential force.Solid:Fluid: √√√√fluidsolid2. Relationship between deformation and force:F x ∝∆x∆F2. Relationship between deformation and force:≠∆→∞0,F xExerciseEnglishe Text:P2: 1.1.1,P17:1.7.1, 1.7.2, 1.7.3Chinese Text:P16: 1-1, 1-2, 1-4, 1-7,1-85 Viscosity of a FluidThe definition of viscosity2. Newton’s Viscosity Law *3. Newtonian and non-Newtonian Fluids4. Coefficient of Viscosity5. Affecting Factors of Viscosity5.1 Definition of viscosity Viscosity is that property of a fluid by virtue of which it offers resistance to shear. (the fluid sticking action)The most important property of a fluid, any real fluid is viscous fluid.Kinescope2Kinescope1According to whether fluids have viscosity, fluids can be classified intoI deal fluid 1. µ 0.2. du/dy=0.Real fluid Viscous fluid, µ≠0.1. Viscosity:Question : What is ideal gas ?2. Cause of viscosity:(a) attractive, cohesive forces between the molecules(b) molecular interchangereturn5.2 Newton’s Viscosity Law1686, Newton suggested: Fluid sticking action:1. Velocity gradient 2. Surface area 3. Fluid propertyduA dyFµ=±du F A dyτµ==±Unit of ?returnNewtonian Fluids The shear stress of a fluid is directly proportiond to therate at each point, that is , fluids conform Newtons Law of Viscosity.Non-Newtonian Fluid:fluids that don ′t meet the above conditions.dydu τsolidfluid fluid5.3 Newtonian Fluid and Non -Newtonian Fluiddu dyF∝()0ndu=+ττµFluid Classificationreturn5.4 Coefficient of ViscosityDynamic Viscosity µdynamic viscosity or viscosity, is the measurement of fluid viscosity. Unit: N•s/m 2 .ρµ=v (m 2/s)Kinematic Viscosity νdyµτ=(),Pa s kg m s ⋅⋅Reletive Viscosity EE t t=t’: fluid, 200cm 3, =2.8mm t : 20 C water , 200cm 3, =2.8mmE- 0.07310.0631Eν=return5.5 Affecting Factors of ViscosityCause of Viscosity(a) attractive, cohesive forces between the molecules(b) molecular interchangeAffecting Factors of ViscosityThe value of viscosity of a fluid µvaries due to the change in pressure or temperature. Different fluids has different viscosity.1 Fluid type. The viscosity of liquids (ordinarily ) > gases2 Pressure. µvaries little , can be negligible3 Temperature. the main factor to affect viscosity.a. LiquidFor liquid,Cohesive Force is the main factor to produce viscosity .When temperature increases, molecular distances increase cohesive forces diminishes, so shear force produced by shear deformation rate diminishes and µdecreases.When temperature increases , viscosity of liquids decreasewhile that of gases increases .2000221.00337.0101775.0tt v ++=(cm 2/s)Kinematic viscosity of water νis usually calculated:Correct: P10, vb. GasesGas molecular distance is big ,therefore cohesive force is small. So for gases the predominating factor is the interchange of molecular momentum. When temperature increases, molecular activities increase, momentum interchanges also increase, so µincreases.returnFor most gas, dynamic viscosity can be calculated as Sutherland’formula:1.512T C T C µ=+For air :1.561.45810110.4TT µ−=×+ExerciseThe wrong statement about the viscosity of a fluid isA Viscosity is a property of fluidB Viscosity is a measure of its resistance to sheardeformation during motion.C Viscosity of a fluid can both speed up and slowdown movementD Viscosity of a fluid increases as thetemperature increases.returnExample 2 As shown in figure, the mass of a 1-cm-height and 40 45cm2 bottom area, wood board is 5kg. It moves at a fixed velocity along a slope with lubricating oil. Wood velocity u=1m/s, the oil thickness δ=1mm, oil velocity gradient caused by wood is a straight line.What is viscosity of oil?Solution constant velocity is fixed as=0Based on Newton Second LawF s =ma s =0mgsin θ ·A=0δµµτudydu == Velocity gradient is a line2/105.0sin m s N Au mg ⋅=⋅=∴δθµ θ=tg -1(5/12)=22.62°66 Elasticity (Compressibility and incompressible flow) 1. Elasticity ( Compressibility)1.The elasticity of a fluid is related to the amount of deformation(expansion or contraction) for a given pressure change.The degree of elasticity is given by E(Bulk Modulus of Elasticity)returnreturnFor water:92.010E Pa=×5491.013100.5102.010P E −∆Ω∆×===×Ω×51.01310P Pa∆=×if:return2. incompressible flowLiquids: E ~109, incompressible flowM<0.3: 100m/s, <3%0.3 M<0.75 :100-250m/sM 0.75:250m/sGas: V---dPExample 1 What pressure must be applied to waterrespectively in order to reduce its volume by 0.1% or 1% K =2000MPap E =−ΩΩ p E =−⋅ΩΩ()962.0100.1% 2.010Pa=2.0MPa p =−××−=×()97 2.0101% 2.010Pa=20MPa p =−××−=×reduce 0.1%reduce 1%。