初二数学因式分解提高版(附答案)

合集下载

八上 因式分解强化提高训练(含答案)

八上 因式分解强化提高训练(含答案)

因式分解强化训练一.选择题(共3小题)1.“已知:a m=2,a n=3,求a m+n的值”,解决这个问题需要逆用幂的运算性质中的哪一个?()A.同底数幂的乘法B.积的乘方C.幂的乘方D.同底数幂的除法2.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1B.﹣1或﹣11C.1D.1或113.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25B.20C.15D.10二.填空题(共10小题)4.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.5.已知m2+2km+16是完全平方式,则k=.6.若x2﹣3x+1=0,则的值为.7.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.8.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=9.分解因式:x4+y4+(x+y)4﹣2=.10.已知a2+b2=4,则(a﹣b)2的最大值为.11.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=.12.已知5x=30,6y=30,则等于.13.+a+=()2.三.解答题(共23小题)14.如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.15.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).16.(1)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达).(2)运用你所得到的公式,计算(a+2b﹣c)(a﹣2b﹣c).17.已知22n+2﹣4n=192,求n的值.18.(2x﹣3y)(4x2﹣9y2)(﹣2x﹣3y).19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)(3)x3+x2y﹣xy2﹣y3.(4)n(m+1)2+2mn+3n.(5)2x2+4x+2﹣2y2;(6)ax2+bx2﹣ax﹣bx+a+b.(7)(b2+a2﹣c2)2﹣4a2b2 (8)﹣12x2y+x3+36xy220.在实数范围内分解因式(1)x4﹣9(2)y2﹣2y+3.(3)(x2y2+3)(x2y2﹣7)+2521.计算:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042.22.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(x﹣1)(x99+x98+…+x+1)=.(2)请你利用上面的结论计算:299+298+…+2+1.23.已知:x、y满足:(x+y)2=5,(x﹣y)2=41;求x3y+xy3的值.24.已知a、b、c是△ABC的三边,a、b使等式a2+b2﹣4a﹣8b+20=0成立,且c是偶数,求△ABC的周长.25.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.26.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,试判断△ABC的形状.27.若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,写出两个符合条件的k的值.28.已知x2﹣x﹣5=0,求x5+2x4﹣6x3﹣19x2﹣8x+18的值.29.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.30.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.31.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)22(2x+1)(3x﹣2)6﹣2(ax+b)(mx+n)am bn (2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,则2a+b+c的值为.32.(1)若a2+ab=7+m,b2+ab=9﹣m.求a+b的值.(2)若实数x≠y,且x2﹣2x+y=0,y2﹣2y+x=0,求x+y的值.33.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.34.m取什么值时,x3+y3+z3+mxyz(xyz≠0)能被x+y+z整除?因式分解强化训练参考答案与试题解析一.选择题(共3小题)1.“已知:a m=2,a n=3,求a m+n的值”,解决这个问题需要逆用幂的运算性质中的哪一个?()A.同底数幂的乘法B.积的乘方C.幂的乘方D.同底数幂的除法【解】:a m+n=a m•a n,∴解决这个问题需要逆用同底数幂的乘法.故选:A.2.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1B.﹣1或﹣11C.1D.1或11【解】:a2﹣ab﹣ac+bc=11,(a2﹣ab)﹣(ac﹣bc)=11,a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.3.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(A)A.25B.20C.15D.10【解】法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.二.填空题(共10小题)4.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=3.【解】:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.5.已知m2+2km+16是完全平方式,则k=±4.【解】:∵m2+2km+16是完全平方式,∴2km=±8m,解得k=±4.6.若x2﹣3x+1=0,则的值为.【解】:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======7.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【解】:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣8.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=2【解】:(a﹣2017)(a﹣2018)=﹣=﹣=2.9.分解因式:x4+y4+(x+y)4﹣2=2(x2+xy+y2﹣1)(x2+xy+y2+1).【解】:x4+y4+(x+y)4﹣2,=(x2+y2)2﹣2x2y2+(x2+2xy+y2)2﹣2,=(x2+y2)2﹣2x2y2+(x2+y2)2+4xy(x2+y2)+4x2y2﹣2,=2(x2+y2)2+2x2y2+4xy(x2+y2)﹣2,=2[(x2+y2)2+x2y2+2xy(x2+y2)﹣1],=2[(x2+xy+y2)2﹣1],=2(x2+xy+y2﹣1)(x2+xy+y2+1).10.已知a2+b2=4,则(a﹣b)2的最大值为8.【解】:∵a2+b2≥2|ab|,∴2|ab|≤4,∴﹣4≤﹣2ab≤4,∵(a﹣b)2=a2﹣2ab+b2=4﹣2ab,∴0≤4﹣2ab≤8,∴(a﹣b)2的最大值8.11.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=16.【解】:∵x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,∴(x﹣1)2=0,解得:x=1,即x=1是方程x4﹣5x3+ax2+bx+c=0的解,∴1﹣5+a+b+c=0,∴a+b+c=4,∴(a+b+c)2=42=16.12.已知5x=30,6y=30,则等于1.【解】:∵5x=30,6y=30,∴5xy=(5x)y=30y=(5×6)y=5y×6y,∴=5xy﹣y=6y=30=5x,∴5xy﹣y﹣x=1=50∴xy﹣y﹣x=0,∴xy=x+y,∴=1.13.a2+a+=(a+)2.【解】:∵a=2וa,∴这两个数是a和,三.解答题(共23小题)14.如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于m﹣n.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①(m+n)2﹣4mn;方法②(m﹣n)2.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:(m+n)2﹣4mn=(m﹣n)2.(4)若a+b=6,ab=5,则求a﹣b的值.【解】:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.15.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【解答】解:(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y)得:x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.16.(1)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2(用式子表达).(2)运用你所得到的公式,计算(a+2b﹣c)(a﹣2b﹣c).【解】:(1)(a+b)(a﹣b)=a2﹣b2;(2)(a+2b﹣c)(a﹣2b﹣c)=[(a﹣c)+2b][(a﹣c)﹣2b]=(a﹣c)2﹣(2b)2,=a2﹣2ac+c2﹣4b2.17.已知22n+2﹣4n=192,求n的值.【解】:22n+2﹣4n=192,22(n+1)﹣4n=43×3,4n+1﹣4n=43×3,4n(4﹣1)=43×3,4n=43,∴n=3.18.(2x﹣3y)(4x2﹣9y2)(﹣2x﹣3y).【解】:原式=﹣(4x2﹣9y2)(4x2﹣9y2)=﹣16x4+72x2y2﹣81y4.19.因式分解(1)﹣2a3+12a2﹣18a (2)9a2(x﹣y)+4b2(y﹣x)(3)x3+x2y﹣xy2﹣y3.(4)n(m+1)2+2mn+3n.(5)2x2+4x+2﹣2y2;(6)ax2+bx2﹣ax﹣bx+a+b.(7)(b2+a2﹣c2)2﹣4a2b2 (8)﹣12x2y+x3+36xy2【解】:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).(3原式=(x3+x2y)﹣(xy2+y3)=x2(x+y)﹣y2(x+y)=(x+y)2(x﹣y).(4)原式=n[(m+1)2+2m+3]=m[(m+1)2+2(m+1)+1]=m(m+2)2.(5)2x2+4x+2﹣2y2=2(x2+2x+1﹣y2)=2(x+1)2﹣y2=2(x+1+y)(x+1﹣y);(6)ax2+bx2﹣ax﹣bx+a+b=x2(a+b)﹣x(a+b)+(a+b)=(a+b)(x2﹣x+1).(7)(b2+a2﹣c2)2﹣4a2b2,=(b2+a2﹣c2+2ab)(b2+a2﹣c2﹣2ab),=[(b+a)2﹣c2][(b﹣a)2﹣c2],=(b+a+c)(b+a﹣c)(b﹣a+c)(b﹣a﹣c).(8)原式=x(﹣12xy+x2+36y2)=x(x﹣6y)2;20.在实数范围内分解因式(1)x4﹣9(2)y2﹣2y+3.(3)(x2y2+3)(x2y2﹣7)+25【解】:(1)原式=(x2+3)(x2﹣3)=(x2+3)(x+)(x﹣);(2)原式=(y﹣)2.(3)(x2y2+3)(x2y2﹣7)+25=(x2y2)2﹣4x2y2+4=(x2y2﹣2)2=(xy+)2(xy﹣)2.21.计算:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042.﹣2009010【解】:12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042=﹣[(22﹣12)+(42﹣32)+(62﹣52)+…+(20022﹣20012)+(20042﹣20032)],利用平方差公式12﹣22+32﹣42+52﹣62+…+20012﹣20022+20032﹣20042=﹣[(22﹣12)+(42﹣32)+(62﹣52)+…+(20022﹣20012)+(20042﹣20032)]=﹣[(2﹣1)(2+1)+(4﹣3)(4+3)+(6﹣5)(6+5)+…+(2002﹣2001)(2002+2001)+(2004﹣2003)(2004+2003)]=﹣(1+2+3+4+…+2002+2003+2004)=﹣=﹣2 009 010.22.你能化简(x﹣1)(x99+x98+…+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手.然后归纳出一些方法.(1)分别化简下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1.(2)请你利用上面的结论计算:299+298+…+2+1.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(x﹣1)(x99+x98+…+x+1)=x100﹣1;(2)299+298+…+2+1=(2﹣1)×(299+298+…+2+1)=2100﹣1.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;x100﹣123.已知:x、y满足:(x+y)2=5,(x﹣y)2=41;求x3y+xy3的值.【解】:∵(x+y)2=5,(x﹣y)2=41,∴(x+y)2+(x﹣y)2=46,则x2+2xy+y2+x2﹣2xy+y2=46,2(x2+y2)=46,故x2+y2=23,(x+y)2﹣(x﹣y)2=﹣36,则x2+2xy+y2﹣x2+2xy﹣y2=﹣36,故4xy=﹣36,则xy=﹣9,x3y+xy3=xy(x2+y2)=﹣9×23=﹣207.24.已知a、b、c是△ABC的三边,a、b使等式a2+b2﹣4a﹣8b+20=0成立,且c是偶数,求△ABC的周长.【解】:∵a2+b2﹣4a﹣8b+20=0,∴(a2﹣4a+4)+(b2﹣8b+16)=0,∴(a﹣2)2+(b﹣4)2=0,解得:a=2,b=4,∵a、b、c是△ABC的三边,且c是偶数,∴c=4.故△ABC的周长长为:2+4+4=10.25.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解】:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,即△ABC为直角三角形或等腰三角形.26.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,试判断△ABC的形状.【解】:a4+b4﹣2a2b2=0,(a2﹣b2)2=0,(a+b)2(a﹣b)2=0,∵三角形的边长为a、b,∴a+b≠0,∴a﹣b=0,∴a=b,∵∠A=60°,∴△ABC是等边三角形,即△ABC的形状是等边三角形.27.若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,写出两个符合条件的k的值.【解】:∵(x+a)(x+b)=x2+kx+36,∴x2+(a+b)x+ab=x2+kx+36,∴(1)∵ab=36,∴当a=1,b=36时,k=a+b=1+36=37.(2)∵ab=36,∴当a=2,b=18时,k=a+b=2+18=20.综上,可得符合条件的k的值是37、20(答案不唯一).28.已知x2﹣x﹣5=0,求x5+2x4﹣6x3﹣19x2﹣8x+18的值.【解】:∵x2﹣x﹣5=0,∴x5+2x4﹣6x3﹣19x2﹣8x+18=x3(x2﹣x﹣5)+3x2(x2﹣x﹣5)+2x(x2﹣x﹣5)﹣2(x2﹣x﹣5)+8=8.29.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.【解】:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.30.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.【解】:(Ⅰ)∵a2﹣b﹣1=0,∴a2﹣b=1,a2=b+1,(a2﹣1)(b+2)<a2b,a2b+2a2﹣b﹣2<a2b,a2+a2﹣b﹣2<0,a2+1﹣2<0,a2<1,∴b+1<1,∴b<0.(或者:把a2=b+1代入原不等式:解得b<0)∵a2=b+1,∵a2≥0,∴b+1≥0,b≥﹣1.答:b的取值范围为﹣1≤b<0.(Ⅱ)a4﹣2b﹣2=0,a4﹣2(b+1)=0,∵a2=b+1,∴a4﹣2a2=0,解得a2=0或a2=2,∵a2<1,∴a2=0,∴b+1=0,∴b=﹣1.(或者:把a2=b+1代入原等式:解得b=±1,1舍去)答:b的值为﹣1.31.以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:二次项系数一次项系数常数项(2x+1)(x+2)252(2x+1)(3x﹣2)6﹣1﹣2(ax+b)(mx+n)am an+bm bn (2)已知(x+3)2(x2+mx+n)既不含二次项,也不含一次项,求m+n的值.(3)多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,则2a+b+c的值为﹣4.【解】:(1)(2x+1)(x+2)=2x2+5x+2,(2x+1)(3x﹣2)=6x2﹣x﹣2(ax+b)(mx+n)=amx2+(an+bm)x+bn故答案为5、﹣1、an+bm.(2)(x+3)2(x2+mx+n)=(x2+6x+9)(x2+mx+n)=x4+(m+6)x3+(6m+n+9)x2+(9m+6n)x+9n ∵既不含二次项,也不含一次项,∴6m+n+9=0,9m+6n=0解得:m=﹣2,n=3∴m+n=1.答m+n的值为1.(3)∵多项式M与多项式x2﹣3x+1的乘积为2x4+ax3+bx2+cx﹣3,∴设多项式M=2x2+mx﹣3,(2x2+mx﹣3)(x2﹣3x+1)=2x4﹣6x3+2x2+mx3﹣3mx2+mx﹣3x2+9x﹣3=2x4+(m﹣6)x3+(2﹣3m﹣3)x2+(m+9)x﹣3=2x4+ax3+bx2+cx﹣3,∴a=m﹣6,b=﹣3m﹣1,c=m+9∴2a+b+c=2m﹣12﹣3m﹣1+m+9=﹣4.32.(1)若a2+ab=7+m,b2+ab=9﹣m.求a+b的值.(2)若实数x≠y,且x2﹣2x+y=0,y2﹣2y+x=0,求x+y的值.【解】:(1)∵a2+ab=7+m,b2+ab=9﹣m,∴a2+ab+b2+ab=7+m+9﹣m,∴(a+b)2=16,∴a+b=±4;(2)∵x2﹣2x+y=0,y2﹣2y+x=0,∴x2﹣2x+y﹣(y2﹣2y+x)=0,∴(x+y)(x﹣y)﹣3(x﹣y)=0∴(x+y﹣3)(x﹣y)=0,∵x≠y,∴x+y﹣3=0,则x+y=3.33.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【解】∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.34.m取什么值时,x3+y3+z3+mxyz(xyz≠0)能被x+y+z整除?【解】:当x3+y3+z3+mxyz能被x+y+z整除时,它含有x+y+z因式,令x+y+z=0,得x=﹣(y+z),代入原式其值必为0,即[﹣(y+z)]3+y3+z3﹣myz(y+z)=0,把左边因式分解,得﹣yz(y+z)(m+3)=0,∵xyz≠0,∴x≠0,∵x=﹣(y+z),∴(y+z)≠0,∴当m+3=0时等式成立,∴当m=﹣3时,x,y,z不论取什么值,原式都能被x+y+z整除.。

初中数学:因式分解强化练习(含答案)

初中数学:因式分解强化练习(含答案)

因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。

初二数学,超经典因式分解练习题有答案

初二数学,超经典因式分解练习题有答案

因式分解练习题一、填空题:2. (a - 3)(3 - 2a)=_______(3 - a)(3 - 2a) ;12.若 m2- 3m+ 2=(m+ a)(m + b) ,则 a=______, b=______;15.当 m=______时, x2+ 2(m- 3)x +25 是完整平方式.二、选择题:1.以下各式的因式分解结果中,正确的选项是A. a b+ 7ab-b= b(a + 7a)B. 3x2y- 3xy- 6y=3y(x -2)(x + 1)22C.8xyz - 6x y= 2xyz(4 - 3xy)D.- 2a + 4ab- 6ac=- 2a(a +2b-2223c)2.多项式 m(n- 2) - m2(2 - n) 分解因式等于A.(n - 2)(m + m2) B .(n -2)(m - m2) C.m(n-2)(m+1) D .m(n-2)(m -1)3.在以下等式中,属于因式分解的是A.a(x -y) + b(m+n) =ax +bm- ay+ bn B .a-2ab+ b + 1=(a - b)222+1C.- 4a2+ 9b2= ( - 2a+ 3b)(2a + 3b)D.x2-7x-8=x(x-7)-8 4.以下各式中,能用平方差公式分解因式的是A. a + b B.- a + b C.- a - b D.- ( - a) + b 222222225.若 9x + mxy+16y2是一个完整平方式,那么m的值是2A.- 12 B .±24 C.12 D .±126.把多项式a n+4-a n+1分解得A.a(a- a) B.a(a- 1) C.an+1(a - 1)(a2-a+ 1) D.an+1(a - 1)(a2n4n-13+a+1)7.若 a2+ a=- 1,则 a4+2a3-3a2- 4a+ 3 的值为A. 8B.7C.10D.128.已知 x2+y2+2x -6y+ 10=0,那么 x,y 的值分别为A. x=1, y=3 B . x=1, y=- 3 C.x=-1,y=3 D . x=1, y=- 3 9.把 (m2+ 3m)4-8(m2+3m)2+ 16 分解因式得A. (m+ 1)4(m+2)2B.(m- 1)2(m-2)2(m2+3m-2)C. (m+ 4)2(m- 1)2D.(m+ 1)2(m+ 2)2(m +3m-2)2210.把 x2- 7x- 60 分解因式,得A.(x -10)(x +6) B.(x + 5)(x - 12) C.(x+3)(x-20)D.(x -5)(x +12)11.把 3x2-2xy -8y2分解因式,得A. (3x + 4)(x - 2) B .(3x - 4)(x + 2) C . (3x + 4y)(x - 2y) D . (3x -4y)(x +2y)12.把 a2+ 8ab-33b2分解因式,得A. (a + 11)(a - 3) B . (a - 11b)(a - 3b) C . (a + 11b)(a - 3b)D . (a -11b)(a + 3b)13.把 x4- 3x2+2 分解因式,得A.(x 2-2)(x 2-1) B .(x 2- 2)(x +1)(x -1)C.(x 2+2)(x 2+1) D .(x 2+ 2)(x +1)(x -1)14.多项式 x2- ax- bx+ ab 可分解因式为A.- (x + a)(x + b) B.(x -a)(x + b) C.(x-a)(x-b)D.(x+a)(x +b)15.一个对于 x 的二次三项式,其x2项的系数是 1,常数项是- 12,且能分解因式,这样的二次三项式是A. x2- 11x- 12或x2+ 11x-12B.x2-x-12或x2+ x-12C. x2- 4x- 12 或x2+4x -12D.以上都能够16.以下各式 x3-x2- x+ 1, x2+ y- xy - x, x2- 2x- y2+ 1, (x 2+3x) 2-(2x + 1) 2中,不含有 (x -1) 因式的有A.1 个B.2个 C .3个 D.4个17.把22分解因式为9-x+ 12xy-36yA. (x - 6y+ 3)(x-6x -3) B .- (x - 6y+ 3)(x -6y- 3)C.- (x - 6y+ 3)(x + 6y- 3) D .- (x - 6y+ 3)(x -6y+ 3)18.以下因式分解错误的选项是A. a - bc+ ac- ab=(a- b)(a +c) B. ab- 5a+3b-15=(b - 5)(a + 3) 2C.x2+ 3xy -2x -6y=(x +3y)(x - 2)D.x2-6xy- 1+ 9y2=(x +3y +1)(x+3y -1)19.已知 a x ±2x+ b 是完整平方式,且a, b 都不为零,则 a 与 b 的关222系为A.互为倒数或互为负倒数 B .互为相反数C.相等的数 D .随意有理数20.对 x4+ 4 进行因式分解,所得的正确结论是A.不可以分解因式B.有因式 x2+ 2x+ 2 C .(xy + 2)(xy -8) D . (xy -2)(xy - 8)21.把 a4+ 2a2b2+b4-a2b2分解因式为A. (a 2+ b2+ ab) 2B. (a 2+b2+ ab)(a 2+b2-ab)C. (a- b+ ab)(a2-b - ab) D .(a+ b -ab)22222222.- (3x - 1)(x +2y) 是以下哪个多项式的分解结果A. 3x2+ 6xy -x- 2y B .3x2-6xy + x- 2y C. x+ 2y+3x2+6xy D .x+2y- 3x2-6xy 23. 64a8- b2因式分解为A. (64a 4- b)(a4+ b)22+B . (16a - b)(4ab)C. (8a 4- b)(8a 4+ b)D. (8a 2- b)(8a 4+ b)24. 9(x - y)2+ 12(x2- y ) +4(x +y)2因式分解为2A. (5x- y) 2B. (5x +y) 2C. (3x -2y)(3x + 2y) D . (5x - 2y) 2 25. (2y - 3x)2-2(3x-2y)+1因式分解为A. (3x- 2y- 1)2B.(3x +2y+ 1)2C. (3x- 2y+ 1)2D.(2y -3x- 1)226.把 (a +b)2- 4(a2- b ) +4(a -b)2分解因式为2A. (3a - b) 2B. (3b + a) 2C.(3b - a) 2D.(3a +b) 227.把 a (b +c) - 2ab(a - c)(b + c) + b (a - c)2分解因式为222A. c(a + b)2B. c(a -b)2C. c (a +b)2D.c(a - b)2228.若 4xy- 4x -y- k 有一个因式为 (1 - 2x+ y) ,则 k 的值为22A. 0 B . 1C.- 1 D . 429.分解因式 3a2x- 4b2y-3b2x+ 4a2y,正确的选项是A.- (a 2+b2)(3x+ 4y) B .(a -b)(a + b)(3x + 4y) C. (a2+b2)(3x -4y)D.(a -b)(a + b)(3x - 4y)22- 8c 2,正确的选项是30.分解因式 2a + 4ab+ 2bA. 2(a + b- 2c)B. 2(a + b+ c)(a + b- c) C. (2a + b+ 4c)(2a + b-4c) D .2(a +b+2c)(a + b- 2c)三、因式分解:1. m2(p - q) -p+ q;2. a(ab + bc+ ac) -abc;4- 2y 433;3. x- 2x y+ xy4. abc(a 2+ b2+ c2) -a3bc +2ab2c2;5. a2(b - c) +b2(c - a) +c2(a -b) ;6. (x 2- 2x) 2+ 2x(x -2) +1;7. (x - y) 2+ 12(y - x)z + 36z2;8. x2- 4ax+ 8ab-4b2;9. (ax + by) 2+ (ay - bx) 2+ 2(ax +by)(ay - bx) ;10. (1 - a2)(1 - b2) -(a 2- 1) 2(b 2-1) 2;11. (x + 1) 2-9(x - 1) 2;12. 4a2b2- (a 2+ b2- c2) 2;13. ab2- ac2+ 4ac- 4a;14. x3n+ y3n;15. (x + y) 3+125;16. (3m- 2n) 3+ (3m+2n) 3;17. x6(x 2- y2) + y6(y 2- x2) ;18. 8(x + y) 3+ 1;19. (a + b+ c) 3- a3-b3- c3;20. x2+ 4xy +3y 2;21. x2+ 18x-144;22. x4+ 2x2- 8;23.- m4+ 18m2-17;24. x5- 2x3- 8x;25. x8+ 19x5- 216x2;26. (x 2- 7x) 2+ 10(x 2-7x) -24;27. 5+ 7(a + 1) - 6(a +1) 2;28. (x 2+ x)(x 2+x- 1) -2;29. x2+ y2- x2y2- 4xy- 1;30. (x - 1)(x - 2)(x - 3)(x - 4) - 48;31. x2- y2- x- y;32. ax2- bx2- bx+ ax- 3a+3b;33. m4+ m2+ 1;34. a2- b2+ 2ac+ c2;35. a3- ab2+ a-b;36. 625b4- (a - b) 4;37. x6- y6+ 3x2y4- 3x4y2;38. x2+ 4xy +4y 2- 2x- 4y-35;39. m2- a2+ 4ab- 4b2;40. 5m- 5n- m2+ 2mn-n2.四、证明 (求值):1.已知 a+ b=0,求 a3- 2b3+a2b- 2ab2的值.2.求证:四个连续自然数的积再加上1,必定是一个完整平方数.3.证明: (ac - bd) 2+(bc +ad) 2=(a 2+ b2)(c 2+ d2) .4.已知 a=k+3,b=2k+ 2,c=3k- 1,求 a2+b2+ c2+ 2ab-2bc- 2ac 的值.5.若 x2+ mx+ n=(x -3)(x + 4) ,求 (m+ n) 2的值.6.当 a 为什么值时,多项式 x2+ 7xy +ay2- 5x+ 43y- 24 能够分解为两个一次因式的乘积.7.若 x,y 为随意有理数,比较6xy 与 x + 9y2的大小.2 8.两个连续偶数的平方差是 4 的倍数.参照答案 :一、填空题:7. 9, (3a - 1)10. x- 5y, x- 5y ,x-5y ,2a-b 11.+ 5,- 212.- 1,- 2( 或- 2,- 1)14. bc+ ac, a+ b,a-c15.8 或- 2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C12 .C13 .B14 .C 15 .D16 .B17 .B18 .D19 .A 20. B21 .B22 .D23 . C 24.A25 .A26 .C27 .C28 .C 29. D30 .D三、因式分解:1. (p - q)(m - 1)(m + 1) .8. (x - 2b)(x - 4a+2b) .11. 4(2x -1)(2 - x) .20. (x + 3y)(x + y) .21. (x - 6)(x + 24) .27. (3 + 2a)(2 - 3a) .31. (x + y)(x - y-1) .38. (x + 2y- 7)(x +2y +5) .四、证明 (求值):2.提示:设四个连续自然数为n, n+1, n+ 2, n+ 36.提示: a=- 18.∴a=- 18.。

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

专题02 平方差公式(提升版)【典型例题】类型一、公式法——平方差公式 例1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解. 【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:(1); (2)(3); (4);【答案】解:(1)原式(2)原式=2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--= (3)原式 (4)原式例2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4).【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】先化简,再求值:(2a +3b )2﹣(2a ﹣3b )2,其中a =.【答案】解:原式=(2a +3b +2a ﹣3b )(2a +3b ﹣2a +3b ) =4a ×6b =24ab ,当a =,即ab =时,原式=24ab =4. 类型二、平方差公式的应用例3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x 4﹣y 4=(x ﹣y )(x +y )(x 2+y 2),当x =9,y =9时,x ﹣y =0,x +y =18,x 2+y 2=162,则密码018162.对于多项式4x 3﹣xy 2,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x 3﹣xy 2进行因式分解,得到4x 3﹣xy 2=x (2x +y )(2x ﹣y ),然后把x =10,y =10代入,分别计算出2x +y =及2x ﹣y 的值,从而得出密码. 【答案与解析】解:原式=x (4x 2﹣y 2)=x (2x +y )(2x ﹣y ), 当x =10,y =10时,x =10,2x +y =30,2x ﹣y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x y x x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣.【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.同步练习一.选择题1.分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22.下列多项式相乘,不能用平方差公式的是( ) A.(﹣2y ﹣x )(x +2y ) B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y +x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C.D. 4. 下列各式,其中因式分解正确的是( ) ①;② ③ ④ A.1个 B.2个 C.3个 D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积应等于( ) A .B .C .D .二.填空题 7. ; .8. 若,将分解因式为__________.9. 分解因式:_________.10. 若,则是_________.11.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 . 12.已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 .三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)()()2292323a b a b a b -+=+-()()5422228199a ab a a bab -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭5121211202311_________m m aa +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422nx xx x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-14.已知(2a +2b +3)(2a +2b ﹣3)=72,求a +b 的值.15.设,,……,(为大于0的自然数).(1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】 一.选择题 1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】;;. 4. 【答案】C ;【解析】①②③正确. . 5. 【答案】C ;【解析】6. 【答案】C ; 【解析】 22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a bab a a b a b a b -=+-=++-()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭二.填空题 7. 【答案】;【解析】.8. 【答案】;【解析】.9. 【答案】;【解析】原式=. 10.【答案】4; 【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1, =(24﹣1)(24+1)(28+1)+1, =(28﹣1)(28+1)+1, =216﹣1+1,=216因为216的末位数字是6, 所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y =﹣2,x +y =2,∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4. 三.解答题 13.【解析】解:(1)-1998×2000 =(2)111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m aa a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x++-=+-=-21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-(3)14.【解析】解:已知等式变形得:[2(a +b )+3][2(a +b )﹣3]=72,即4(a +b )2﹣9=72, 整理得:(a +b )2=,开方得:a +b =±. 15.【解析】解:(1) 又为非零的自然数, ∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数. (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.为一个完全平方数的2倍时,为完全平方数.()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (21)5050=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。

八年级数学上册整式的乘法与因式分解(提升篇)(Word版 含解析)

八年级数学上册整式的乘法与因式分解(提升篇)(Word版 含解析)

一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.2.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216............(1)按以上等式的规律,填空:(a+b)(___________________)=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b)(a2-ab+b2)=a3+b3;(2)(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3;(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)=x3+y3-(x3-y3)=2y3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.3.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n+1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=(1+x)3[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-3]=(1+x)n(1+x)=(1+x)n+1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.4.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a+b=5,c+d=11.再根据441Q﹣4P=88991,可以算出P的值,从而求出F(P')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q =200+10a +c ,∴441Q ﹣4P =88991,∴441(200+10a +c )﹣4(900a +9c +511)=88991 化简得:2a +c =7①当a =1时,c =5,此时这个四位数为1456符合题意;②当a =2时,c =3,此时这个四位数为2338不符合题意,舍去;③当a =3时,c =1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P '可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P 的“伴随数”,∴F (5614)=a 2+c 2﹣2bd =25+1﹣2×6×4=﹣22;F (4561)=a 2+c 2﹣2bd =16+36﹣2×5×1=42;F (6145)=a 2+c 2﹣2bd =36+16﹣2×1×5=42;∴F (P ')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.5.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数 ,它 (填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M ,它的各位数字之和的3倍记为N ,M ﹣N 的结果能被13整除,这样的四位连接数有几个?【答案】(1)证明见解析(2)abcabc 能被13整除(3)这样的四位连接数有1919,2525,3131,一共3个【解析】分析:(1)根据六位连接数的定义可知123123为六位连接数,再将123123进行因数分解,判断得出它能被13整除;(2)设abcabc 为六位连接数,将abcabc 进行因数分解,判断得出它能被13整除; (3)设xyxy 为四位连接数,用含x 、y 的代数式表示M 与N ,再计算M ﹣N ,然后将13M N -表示为77x +7y +3413x y +,根据M ﹣N 的结果能被13整除以及M 与N 都是1~9之间的整数,求得x 与y 的值,即可求解.详解:(1)123123为六位连接数;∵123123=123×1001=123×13×77,∴123123能被13整除;(2)任意六位连接数都能被13整除,理由如下:设abcabc 为六位连接数.∵abcabc =abc ×1001=abc ×13×77,∴abcabc 能被13(3)设xyxy 为四位连接数,则M =1000x +100y +10x +y =1010x +101y ,N =3(x +y +x +y )=6x +6y ,∴M ﹣N =(1010x +101y )﹣(6x +6y )=1004x +95y ,∴13M N -=10049513x y +=77x +7y +3413x y +.∵M ﹣N 的结果能被13整除,∴3413x y +是整数.∵3x +4y 取值范围大于3小于63,所以能被13整除的数有13,26,39,52,∴x =1,y =9;x =2,y =5;x =3,y =1;x =8,y =7;x =9,y =3;x =5,y =6;x =6,y =2;满足条件的四位连接数的3131,2525,6262,9393,8787,5656,1919共7个. 点睛:本题考查了因式分解的应用,整式的运算,理解“连接数”的定义是解题的关键.6.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立.例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++ 而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有 1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++ 运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积;②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值.【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可.【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积.故答案为:x=-1;(x+1)②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3.∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解, ∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②, ∴②-①,得m-n=3∴m n -的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.7.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b )(a+2b )=xa 2+yb 2+zab ,∴2a 2+5ab+2b 2=xa 2+yb 2+zab ,∴225x y z =⎧⎪=⎨⎪=⎩,∴x+y+z =9,故答案为:9;(4)∵原几何体的体积=x 3﹣1×1•x =x 3﹣x ,新几何体的体积=(x+1)(x ﹣1)x ,∴x 3﹣x =(x+1)(x ﹣1)x .故答案为:x 3﹣x =(x+1)(x ﹣1)x .【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.8.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-. 【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.9.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案) 应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++=()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.10.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如2=()2,善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为正整数)则有:=m2+2n2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若()2,用含m、n的式子分别表示a、b,得a=,b=(2)若(2(其中a、b、m、n均为正整数),求a的值.【答案】(1)m2+3n2,2mn;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)∵)2,∴2+3n2∴a=m2+3n2,b=2mn.故a=m2+3n2,b=2mn;(2)由题意,得223 {42a m nmn=+=∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13。

人教版(五四制)2019-2020八年级数学21.3因式分解自主学习能力提升训练题1(附答案)

人教版(五四制)2019-2020八年级数学21.3因式分解自主学习能力提升训练题1(附答案)

人教版(五四制)2020八年级数学21.3因式分解自主学习能力提升训练题1(附答案) 1.边长为a 的正方形,边长减少b 以后所得较小正方形的面积比原来正方形的面积减少了( )A .B .+2abC .2abD .b(2a —b)2.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中“■”和“▲”对应的一组数字可能是A .8和1B .16和2C .24和3D .64和83.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4)②x 2+3x ﹣16=x (x +3)﹣16③(x +4)(x ﹣4)=x 2﹣16 ④x 2+x =x (x +1)A .1个B .2个C .3个D .4个4.分解因式a 4﹣2a 2+1的结果是( )A .(a 2+1)2B .(a 2﹣1)2C .a 2(a 2﹣2)D .(a+1)2(a ﹣1)25.把多项式a 2﹣4a 分解因式的正确结果是( )A .a (a ﹣4)B .(a+2)(a ﹣2)C .a (a+2)(a ﹣2)D .(a ﹣2)2﹣46.下列等式从左到右的变形,属于因式分解的是( )A .a (x -y )=ax -ayB .x 2-1=(x+1)(x -1)C .(x+1)(x+3)=x 2+4x+3D .x 2+2x+1=x (x+2)+17.下列各式中,能用平方差公式分解因式的是( )A .224x y +B .221x y -+C .224x y -+D .224x y --8.若实数ab=2满足a+b=3,计算:a 2b+ab 2的值是( )A .5B .6C .9D .19.把多项式223x x --分解因式,下列结果正确的是 ( )A .(x -1)(x +3)B .(x -1)(x -3)C .(x +1)(x +3)D .(x +1)(x -3) 10.因式分解3x 2﹣3y 2=_____.11.把多项式ax 2﹣2ax+a 分解因式的结果是_____.12.851-能被20至30之间的两个整数整除,那么这两个整数是____________. 13.因式分解:a 2-a =______.14.分解因式x 2-8x+16= __________________15.分解因式:(x+y)²-x-y=__________16.分解因式:a 3﹣9a= .17.计算 20142-2014×2013+1=__________18.多项式2322264a b ab ab c ++各项的公因式是_____________.19.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4﹣y 4,因式分解的结果是(x ﹣y )(x+y )(x 2+y 2),若取x=9,y=9时,则各个因式的值是:(x ﹣y )=0,(x+y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3﹣xy 2,取x=27,y=3时,用上述方法产生的密码是:_____(写出一个即可).20.222256x y x y x --=21.分解因式(1)39x x - (2)2242m m -+22.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).23.分解因式:(1)x 3+x 2y+xy 2 (2)p 2 -4p +324.根据条件,求下列代数式的值:(1)若()()114x y y x ---=,求222x y xy +-的值。

人教版八年级数学上册《14.3.2运用完全平方公式分解因式》提升训练(含答案解析)

人教版八年级数学上册《14.3.2运用完全平方公式分解因式》提升训练1. 若225,22,m n m n +=-=则()()2233m n m n +--的值为( ) A.200 B.-200 C.100 D.-1002. 已知,,a b c 是三角形的三边长,那么代数式()22a b c --的值( ) A.大于零 B.小于零 C.等于零 D.不能确定3. 计算:2220202019-= .4.已知,x y 满足29,26,x y x y +=⎧⎨+=⎩,则22x y -= .5. 分解因式:(1)()()22416;a b a b --+ (2)4481.a b -6. 求证:不论n 取何正整数,()()2251n n +--的值一定是12的倍数.7. 下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程:设24x x y -=,原式=()()264y y +++(第一步) =2816y y ++(第二步)=()24y +(第三步) =()2244x x -+.(第四步)请问:(1)该同学第二步到第三步运用了因式分解的( ) A.提公因式法 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”). 若不彻底,请直接写出因式分解的最后结果: .(3)请你模仿以上方法尝试对多项式()()222221x x x x --++进行因式分解.8. 请看下面的问题:把44x +分解因式分析:这个二项式既无公因式可提,也不能直接利用公式法分解因式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,而且属于平方和()2222x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得44=x +()()()()()22242222222++-=+-=+-=++-+44424222222.x x x x x x x x x x x人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲·热门的做法,将下列各式因式分解.(1)42x y+4;(2)22---22.x ax b ab参考答案1. 答案:B解析:()()()()()2233=333342m n m n m n m n m n m n m n +--++-•+-+=+()()()244224252200.m n m n m n -+=-+-=-⨯⨯=-故选B.2. 答案:B解析:()()()22=.,,a b c a b c a b c a b c ---+--是三角形的三边长,,a c b ∴+>,b c a +>0a b c ∴-+>,()()()2200,0.a b c a b c a b c a b c --∴-+--∴--<,<<故选B.3. 答案:4039解析:()()2220202019=2020201920202019=4039.-+- 4. 答案:15 解析:29,3315,3,26,x y x y x y x y +=⎧∴+=-=⎨+=⎩则5,3,x y x y +=-=()()225315.x y x y x y ∴-=+-=⨯=5. 答案:【解】(1)原式=()()()()2424a b a b a b a b -++--+=⎡⎤⎡⎤⎣⎦⎣⎦()()433.a b a b -++(1)原式=()()()()()22222299933.a b a b a b a b a b +-=++•-6. 答案:()()()()()()2251=5151246122.n n n n n n n n +--++-+-+=+⨯=+n 为整数,()()2251n n ∴+--一定是12的倍数.7. 答案:(1)C (2)不彻底 ()42x - (3)设22.x x y -=原式=()22121y y y y ++=++=()()()22421211.y x x x +=-+=-解析:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式,选择C.8. 答案:【解】(1)424222224=444x y x x y y x y +++-=()()()222222222242222.x y x y x y xy x y xy +-=+++-(2)22222222=22x ax b ab x ax a a b ab ----+---()()()()()()222.x a a b x a a b x a a b x b x a b =--+=-++---=+--。

八年级数学上册 整式的乘法与因式分解(提升篇)(Word版 含解析)

八年级数学上册 整式的乘法与因式分解(提升篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.3.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.4.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.规定一种运算:a*b=ab+a+b ,则a*(﹣b )+a*b 的计算结果为( )A .0B .2aC .2bD .2ab【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b )+a*b=a (﹣b )+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B .考点:整式的混合运算.6.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.7.若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m 的方程,解方程即可求得答案.∵33×9m =311 ,∴33×(32)m =311,∴33+2m =311,∴3+2m=11,∴2m=8,解得m=4,故选C .【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.8.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.9.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4-B .3-,4C .3,4-D .3,4【答案】A【解析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】 根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.13.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.14.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=--(4)2310x x x +++=, 232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.15.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.16.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).17.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.18.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.19.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.。

八年级上册整式的乘法与因式分解(提升篇)(Word版 含解析)

八年级上册整式的乘法与因式分解(提升篇)(Word 版 含解析) 一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.2.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).3.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.4.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.5.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16 【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.6.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=-【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.7.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.8.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知212()02a b -++=,则20192020a b =__________.【答案】12【解析】【分析】 先利用绝对值和平方的非负性求得a 、b 的值,然后将20192020a b 转化为20192019()ab b ⋅的形式可求得.【详解】 ∵212()02a b -++= ∴a -2=0,12b +=0 解得:a=2,12b =- 20192020a b =20192019()a b b ⋅=()2019112⎛⎫-⨯- ⎪⎝⎭=1 2故答案为:12【点睛】 本题考查绝对值和平方的非负性,解题关键是利用非负性,先得出a 、b 的值.12.若()219x y +=,()25x y -=,则22xy +=______. 【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.14.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.15.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.16.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.19.已知ab=a+b+1,则(a ﹣1)(b ﹣1)=_____.【答案】2【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.20.若a+b=4,ab=1,则a2b+ab2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.。

八年级数学整式的乘法与因式分解单元检测(提高,Word版 含解析)

八年级数学整式的乘法与因式分解单元检测(提高,Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.2.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.3.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).4.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+() 【答案】A【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.5.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.6.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.7.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.因式分解:a 3-9ab 2=__________.【答案】a (a -3b )(a +3b )【解析】【分析】首先提取公因式a ,进而利用平方差公式分解因式得出即可.【详解】a 3-9ab 2=a (a 2-9b 2)=a (a-3b )(a+3b ).故答案为:a (a-3b )(a+3b ).【点睛】本题考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题的关键.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是_____和_____.【答案】x +5y =0 x ﹣y =0【解析】【分析】通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0,故答案为:x +5y =0和 x ﹣y =0.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.14.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.15.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】 225,5a a ==±16.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为_____.【答案】1【解析】【分析】根据新定义运算对式子进行变形得到关于x 的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x ﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.17.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.18.已知16x x +=,则221x x+=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.19.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学因式分解提高版(附答案)1、22424y x y xy x ++--有一个因式是y x 2-,另一个因式是( )A .12++y xB .12-+y xC .12+-y xD .12--y x2、把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b )4D 、(a +b)2(a -b)23、若a 2—3ab-4b 2=0,则ba 的值为( ) A 、1 B 、—1 C 、4或-1 D 、- 4或14、已知a 为任意整数,且()2213a a +-的值总可以被(1)n n n ≠为自然数,且整除,则n 的值为( )A .13B .26C .13或26D .13的倍数 5、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -6、把x 2-y 2-2y -1分解因式结果正确的是( )。

A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)7、分解因式:222x xy y x y -++-的结果是( )A.()()1x y x y --+B.()()1x y x y --- C.()()1x y x y +-+ D.()()1x y x y +--8、因式分解:9x 2-y 2-4y -4=__________.9、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________.10、已知,01200520042=+++++x x x x 则.________2006=x11、若6,422=+=+y x y x 则=xy ___。

12、计算)1011)(911()311)(211(2232---- 的值是( ) 13、22414y xy x +--14、811824+-x x15、2ax a b ax bx bx -++--216、24)4)(3)(2)(1(-++++x x x x17、1235-+-x x x18、)()()(23m n n m n m +--+19、3)2(2)2(222-+-+a a a a20、已知312=-y x ,2=xy ,求 43342y x y x -的值。

21、已知2=+b a ,求)(8)(22222b a b a +--的值22、已知2,2-==+xy y x ,求xy y x 622++的值;23、已知21,122=+-=-y x y x ,求y x -的值; 24、已知21=+b a ,83-=ab ,求(1)2)(b a -;(2)32232ab b a b a +- 25、已知0516416422=+--+y x y x ,求x+y 的值;26、2222224)(b a b a c ---27、先分解因式,然后计算求值:(本题6分)(a 2+b 2-2ab )-6(a -b )+9,其中a=10000,b=9999。

28、已知,8=+n m ,15=mn 求22n mn m +-的值。

29、已知:,012=-+a a(1)求222a a +的值;(2)求1999223++a a 的值。

30、已知x (x -1)-(x 2-y)=-2.求xy y x -+222的值.答案: 1.C2.分析:本题首尾两项是a 2和b 2的平方,中间一项为它们乘积的2倍,符号完全平方公式结构特征,可以应用完全平方公式进行分解,再应用平方差公式继续分解.解答:a 4-2a 2b 2+b 4,=(a 2-b 2)2,=(a+b)2(a—b)2.故选D.点评:本题考查了完全平方公式和平方差公式进行因式分解.要灵活应用公式,分清谁是公式中的a和b,同时要注意分解彻底,应用完全平方公式分解后还要应用平方差公式继续分解,直到不能再分解为止.3.Ca²-3ab—4b²=0 →(a-4b)(a+b)=0 →a=4b 或a=—b →a/b=4 或a/b=-14.A5。

分析:先提公因式3x,再利用完全平方公式分解因式.解答:3x3—6x2y+3xy2,=3x(x2—2xy+y2),=3x(x—y)2.故选D.点评:本题主要利用提公因式法、完全平方公式分解因式,熟记公式结构特点是解题的关键.6。

分析:把后3项作为一组,提取负号后用完全平方公式进行因式分解,进而用平方差公式展开即可.解答:原式=x2-(y2—2y+1)=x2-(y—1)2=(x+y-1)(x—y+1),故选B.7。

分析:当被分解的式子是四,五项时,应考虑运用分组分解法进行分解.本题中x2-2xy+y2正好符合完全平方公式,应考虑1,2,3项为一组,x-y为一组.解答:x2—2xy+y2+x—y,=(x2—2xy+y2)+(x—y),=(x—y)2+(x—y),=(x—y)(x-y+1).故选A.点评:本题考查用分组分解法进行因式分解.难点是采用什么方法分组,本题中本题中x2—2xy+y2正好符合完全平方公式,应考虑1,2,3项为一组.x-y为一项.需要同学们熟知完全平方式公式,即(a±b)2=a2±2ab+b2.8。

9x2-y2—4y—4=9x2—(y2+4y+4)=(3x)2 -(y+2)2=(3x+y+2)(3x-y—2)9。

m=4 n=810. 1+X+X2+X3+.。

.。

..+X2004+X2005=0(1+X)+X2(1+X)+。

..。

.。

+X2004(1+X)=0(1+X)(1+X2+。

..。

.。

+X2004)=01+x=0 x=—1 (-1)2006=111. (x+y)2=x2+2xy+y=216 x2+y2=6 6+2xy=16 xy=512. 运用平方差公式:原式=(1- 1/2)(1+ 1/2)(1— 1/3)(1+ 1/3)..。

(1— 1/10)(1 + 1/10)=(1/2)(3/2)(4/3)(3/4)(5/4)。

..(9/10)(11/10)=(1/2)(11/10)=11/2013 (x-2y)2-1 = (x—2y)2-12= (x—2y+1)(x—2y-1)14。

=(x2—9)2=(x+3)2(x—3)215. =ax(x+1)—bx(x+1)—(a-b)=x(x+1)(a—b)—(a-b)=(a—b)(x²+x-1)16。

(x+1)(x+2)(x+3)(x+4)—24=﹙x+1))(x+4)(x+2)(x+3)-24=﹙x²+5x+4﹚﹙x²+5x+6﹚-24=﹙x²+5x﹚²+10﹙x²+5x﹚=﹙x²+5x﹚﹙x²+5x+10)17. X5-x3+x2—1=(x5—x3)+(x2—1)=x3(x2—1)+(x2-1)=(x2—1)(x3+1)=(x+1)(x-1)(x+1)(x2—x+1)=(x—1)(x+1)2(x2-x+1)18. =(m+n)[(m+n)²-(m—n)²]=(m+n)(m+n—m+n)(m+n+m—n)=4mn(m+n)19. 把(a2+2a)整体看成未知数X,相当于用十字相乘法分解X2—2X2—3=(X+1)(X-3),再把里面的X用a2+2a替换即可,所以:(a2+2a)2-2(a2+2a)-3=(a2+2a+1)(a2+2a-3)=(a+1)2(a—1)(a+3)202x4y3-x3y4 =x³y³(2x-y)=(xy)³(2x-y) =2³×(1/3)=8/321 (a2—b2)2-8(a2+b2) =(a+b)2(a-b)2—8(a2+b2)=4(a-b)2-8(a2+b2)=-(4a2+8ab+4b2)=-4(a+b)2=-1622.X2+y2+6xy=(x+y)2+4xy=—423。

x2—y2=(x+y)(x—y)=-1 x+y=1/2 x—y=—224。

1)(a-b)² =(a+b)²—4ab=(1/2)²+4x3/8 =1/4+3/2 =7/42)原式=ab(a²+2ab+b²)=ab(a+b)²=(3/8)×(1/2)² =3/3225 4x2+16y2-4x—16y+5=04x2-4x+1+16y2-16y+4=0(2x—1)2+4(4y2-4y+1)=0(2x-1)2+4(2y—1)2=0(2x-1)2=0,4(2y—1)2=0x=1/2 y=1/2x+y=1/2+1/2=126.(c2—a2—b2)2-4a2b2=(c²—a²—b²+2ab)(c²—a²—b²-2ab)=[c²—(a-b)²][c²-(a+b)²]=(c+a—b)(c-a+b)(c+a+b)(c—a—b)27(a2+b2—2ab)-(6a—6b)+9=(a—b)2-6(a-b)+9=(a-b-3)2=(10000—9999—3)2=(—2)2=428 m2—mn+n2 =(m+n)2-3mn =64-45 =1929. 1)∵a²+a-1=0 ∴a²+a=1 ∴2a²+2a =2(a²+a) =2×1 =22)a2+a—1=0则a*(a2+a-1)=a3+a2-a=0—-----—--Aa2+a-1=0 —--—-—————-BA+B得a3+2a2—1=0a3+2a2=1所以a3+2a2+1999=1+1999=200030x²—x-x²+y=-2-x+y=-2x-y=2(x²+y²)/2-xy=(x²-2xy+y²)/2=(x-y)²/2=(2)²/2=4/2=2。

相关文档
最新文档