济宁市兖州区2020年人教版七年级上数学期末试题(A卷全套)
2020年济宁市七年级数学上期末试题附答案

2020年济宁市七年级数学上期末试题附答案一、选择题1.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( ) A .不赔不赚B .赚9元C .赔18元D .赚18元2.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .3.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 4.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个5.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( ) A .16号B .18号C .20号D .22号6.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°7.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( ) A .不赚不亏 B .赚8元C .亏8元D .赚15元8.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +19.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁10.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 11.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣112.如图,C ,D ,E 是线段AB 的四等分点,下列等式不正确的是( )A .AB =4ACB .CE =12AB C .AE =34AB D .AD =12CB 二、填空题13.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元. 14.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.15.已知﹣5a 2m b 和3a 4b 3﹣n 是同类项,则12m ﹣n 的值是_____. 16.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有8个小圆,第2个图形有14个小圆,第3个图形有22个小圆,依此规律,第7个图形的小圆个数是__________.17.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).18.用科学记数法表示24万____________.19.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n20.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=1AB,则点C表示的数为_____.4三、解答题21.如下图时用黑色的正六边形和白色的正方形按照一定的规律组合而成的两色图案(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套块数;(2)当白色的正方形块数为201时,求黑色的正六边形的块数.(3)组成白色的正方形的块数能否为100,如果能,求出黑色的正六边形的块数,如果不能,请说明理由22.探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)、若将十字框上下左右移动,可框住五位数,设中间的数为x ,用代数式表示十字框中的五个数的和,(2)、若将十字框上下左右移动,可框住五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.23.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.24.观察下列三行数:第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为,第二行数的第8个数为;(2)第一行是否存在连续的三个数使得三个数的和是384?若存在,求出这三个数,若不存在,请说明理由;(3)取每一行的第n个数,这三个数的和能否为﹣2558?若能,求出这三个数,若不能,请说明理由.25.如图所示,已知线段m,n,求作线段AB,使它等于m+2n.(用尺规作图,不写做法,保留作图痕迹.)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.2.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.3.D解析:D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.4.C解析:C 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5.C解析:C 【解析】 【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解. 【详解】设那一天是x ,则左日期=x ﹣1,右日期=x+1,上日期=x ﹣7,下日期=x+7, 依题意得x ﹣1+x+1+x ﹣7+x+7=80 解得:x =20 故选:C . 【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.6.B解析:B 【解析】 【分析】从图形中可看出∠AOC 和∠DOB 相加,再减去∠DOC 即为所求. 【详解】∵∠AOC =∠DOB =90°,∠DOC =28°,∴∠AOB =∠AOC +∠DOB ﹣∠DOC =90°+90°﹣28°=152°. 故选:B . 【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.7.C解析:C 【解析】试题分析:设盈利的进价是x 元,则x+25%x=60, x=48.设亏损的进价是y 元,则y-25%y=60, y=80. 60+60-48-80=-8, ∴亏了8元. 故选C .考点:一元一次方程的应用.8.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.9.D解析:D 【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .10.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =-故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.11.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:Q 单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.12.D解析:D 【解析】 【分析】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB ,即可知A 、B 、C 均正确,则可求解 【详解】由C ,D ,E 是线段AB 的四等分点,得AC =CD =DE =EB =14AB , 选项A ,AC =14AB ⇒AB =4AC ,选项正确 选项B ,CE =2CD ⇒CE =12AB ,选项正确 选项C ,AE =3AC ⇒AE =34AB ,选项正确选项D,因为AD=2AC,CB=3AC,所以2AD CB3=,选项错误故选D.【点睛】此题考查的是线段的等分,能理解题中:C,D,E是线段AB的四等分点即为AC=CD=DE=EB=14AB,是解此题的关键二、填空题13.140【解析】【分析】首先根据题意设这件商品的成本价为x元则这件商品的标价是(1+40)x元;然后根据:这件商品的标价×80=15列出方程求出x的值是多少即可【详解】解:设这件商品的成本价为x元则这解析:140【解析】【分析】首先根据题意,设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元;然后根据:这件商品的标价×80%x-=15,列出方程,求出x的值是多少即可.【详解】解:设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元,∴(1+40%)x×80%-x=15,∴1.4x×80%-x=15,整理,可得:0.12x=15,解得:x=125;∴这件商品的成本价为125元.∴这件商品的实际售价为:125(140%)80%125 1.40.8140⨯+⨯=⨯⨯=元;故答案为:140.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.14.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键解析:1 20182【解析】【分析】按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可. 【详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+ =120182故答案为:120182【点睛】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.15.﹣1;【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同列出关于mn 的方程求出mn 的值继而可求解【详解】解:∵﹣5a2mb 和3a4b3﹣n 是同类项∴解得:m=2n=2∴m﹣n=1解析:﹣1; 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出关于m ,n 的方程,求出m ,n 的值,继而可求解. 【详解】解:∵﹣5a 2m b 和3a 4b 3﹣n 是同类项 ∴2413m n⎧⎨-⎩==,解得:m=2、n=2,∴12m ﹣n =1-2=-1, 故答案为-1. 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.74【解析】【分析】根据题意总结规律:第n 个图形有个小圆再代入求解即可【详解】由题意得第1个图形有个小圆第2个图形有个小圆第3个图形有个小圆由此我们可得第n 个图形有个小圆当时故第7个图形的小圆个数是 解析:74【解析】【分析】根据题意,总结规律:第n 个图形有()()+1+2+2n n ⨯个小圆,再代入7n =求解即可.【详解】由题意得第1个图形有23+2⨯个小圆,第2个图形有34+2⨯个小圆,第3个图形有45+2⨯个小圆由此我们可得,第n 个图形有()()+1+2+2n n ⨯个小圆当7n =时()()()()+1+2+27+17+2+274n n ⨯=⨯=故第7个图形的小圆个数是74个故答案为:74.【点睛】本题考查了图形类的规律题,掌握图形的规律是解题的关键.17.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.18.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.19.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:故剪n 次时共有4+3(n-1)=3n+1考点:规律型:图形的变化类解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1.试题解析:故剪n 次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.20.﹣6或2【解析】【分析】先利用AB 点表示的数得到AB =16则BC =4然后把B 点向左或向右平移4个单位即可得到点C 表示的数【详解】解:∵点A 表示的数为﹣18点B 表示的数为﹣2∴AB =﹣2﹣(﹣18)=解析:﹣6或2.【解析】【分析】先利用A 、B 点表示的数得到AB =16,则BC =4,然后把B 点向左或向右平移4个单位即可得到点C 表示的数.【详解】解:∵点A 表示的数为﹣18,点B 表示的数为﹣2.∴AB =﹣2﹣(﹣18)=16,∵BC =14AB ,∴BC =4,当C 点在B 点右侧时,C 点表示的数为﹣2+4=2;当C 点在B 点左侧时,C 点表示的数为﹣2﹣4=﹣6,综上所述,点C 表示的数为﹣6或2.故答案为﹣6或2.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题21.(1)16;51;(2)40;(3)成白色的正方形的块数不能为100,理由见解析【解析】【分析】(1)第一副图为黑1,白6,第二幅图黑色增加1,白色增加5,第三幅图黑色增加1,白色增加5,由此可知黑色为3,10时白色的配套数量;(2)由(1)可知白色的增加规律为51n +,其中n 为黑色正六边形的数量,根据关系式求出黑色即可;(3)根据关系式判断即可.【详解】(1)观察图形可知:每增加1块黑色正六边形,配套白色正方形增加5个,当黑色的正六边形块数为3,白色正方形为16,当黑色的正六边形块数为10,白色正方形为51;故答案为:16,51;(2)观察可知每增加1块黑色正六边形,配套白色正方形增加5个故第n 个图案中有51n +个正方形,当51201n +=时,40n =;故答案为:黑色的正六边形的块数为40;(3)当51100n +=时,n 无法取整数,故白色正方形无法为100.【点睛】本题考查了图形的变化规律,解题时必须仔细观察规律,通过归纳得出结论.注意由特殊到一般的分析方法,此题的规律为:第n 个图案中有51n +个正方形.22.(1)、5x ;(2)、不能,理由见解析【解析】【分析】(1)、根据题意可以得出五个数的和等于中间这个数的五倍,从而得出答案;(2)、根据题意求出中间这个数的值,然后进行判断.【详解】解:(1)设中间的一个数为x ,则其余的四个数分别为:x-10,x+10,x-2,x+2,则十字框中的五个数之和为:x+x-10+x+10+x-2+x+2=5x,(2)不可能依题意有5x=2010,解得x=402,∵402在第一列,∴402不能成为十字框中的5个数的中间的数,∴框住五位数的和不可能等于2010.23.214y=-.【解析】【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.24.(1) 256,﹣254;(2)存在,这三个数是128,﹣256,512;(3)存在,这三个数为:﹣1024,﹣1022,﹣512【解析】【分析】(1)由第一行,第二行数的规律得:第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,进而即可求解;(2)设第一行中连续的三个数为:x,﹣2x,4x,列出关于x的方程,即可求解;(3)由三行数列的规律,得第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,第三行的第n个数为:(﹣1)n+1•2n﹣1,进而列出关于n的方程,求解即可.【详解】(1)∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,∴第一行的第8个数为:(﹣1)8+1•28=﹣1×256=﹣256,第二行的第8个数为:﹣256+2=﹣254,故答案为:﹣256,﹣254;(2)存在,理由如下:设第一行中连续的三个数为:x,﹣2x,4x,则x+(﹣2x)+4x=384,解得:x=128,∴这三个数是128,﹣256,512,即存在连续的三个数使得三个数的和是384;(3)存在,理由如下:∵第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……∴第一行的第n个数为:(﹣1)n+1•2n,第二行的第n个数为:(﹣1)n+1•2n+2,第三行的第n 个数为:(﹣1)n+1•2n﹣1,令[(﹣1)n+1•2n]+[(﹣1)n+1•2n+2]+[(﹣1)n+1•2n﹣1]=﹣2558,n为偶数,解得:n=10,∴这三个数为:﹣1024,﹣1022,﹣512.【点睛】本题主要考查数列的排列规律,找到每行数列的第n个数的表达式,是解题的关键.25.见解析【解析】【分析】首先画射线,然后在射线上依次截取AC=CD=n,DB=m可得答案.【详解】解:如图所示:,线段AB=m+2n.【点睛】本题考查了尺规作图——作一条线段等于已知线段,熟记圆规的用法是解决此题的关键.。
2020-2021学年山东济宁市七年级上期末数学试卷及答案解析

2020-2021学年山东济宁市七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)数1,0,−2
3,﹣2中最大的是()
A.1B.0C.−2
3D.﹣2
2.(3分)如果一个数到原点的距离等于5,那么这个数是()
A.5B.﹣5C.5或﹣5D.以上都不是3.(3分)已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定
4.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=
1
2y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=−5
3,然后小明很快补好了
这个常数,这个常数应是()
A.−3
2B.
3
2
C.
5
2
D.2
5.(3分)实数a,b在数轴上的位置如图所示,则下列式子错误的是()
A.ab<0B.a+b>0C.b
a
<−1D.|a|>b
6.(3分)下列运算中,正确的是()
A.﹣22=﹣4B.3﹣|﹣2|=5
C.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b
7.(3分)已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC
=BC=1
2AB.选择其中一个条件就能得到“点C是线段AB中点”的是()
A.①B.③C.①或③D.①或②或③8.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()
第1 页共13 页。
济宁市人教版七年级上册数学期末试卷及答案-百度文库

济宁市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-25.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④ 8.方程3x +2=8的解是( )A .3B .103C .2D .129.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 10.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+11.3的倒数是( ) A .3B .3-C .13D .13-12.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-16.﹣30×(1223-+45)=_____. 17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.22.8点30分时刻,钟表上时针与分针所组成的角为_____度. 23.-2的相反数是__.24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.27.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.28.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.29.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
济宁市兖州区2019-2020年人教版七年级上数学期末试题

济宁市兖州区2019-2020年人教版七年级上数学期末试题4-15学年度第一学期期末试卷七年级数学(人教实验版)时间:100分钟 满分:100分一、精心选一选,慧眼识真!(每小题3分,共30分) 1.-13的倒数是( ). (A )3 (B )-3 (C )13 (D )-132.我校七年级(!)班的张明同学,今年1月1日至4日观测了每天的最高气温与最低气温如下表 其中温差最大的是( )A. 1月1日B. 1月2日C. 1月3日D. 1月4日3.下列各数据中,哪个是近似数( )A 、七年级上册数学课本共有200页;B 、小李称得体重67千克;C 、1纳米相当于1毫米的一百万分之一;D 、数学考试时间100分钟。
4.下面一些角中,可以用一副三角尺画出来的角是( )(1)15°的角, (2)65º的角, (3)75º的角,(4)135º的角,(5)145º的角。
A 、(1)(3)(4);B 、(1)(3)(5);C 、(1)(2)(4);D 、(2)(4)(5)5. 下列四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )A B C D6.据报载,目前移动彩铃声用户已超过40000000,占移动2亿余用户总数的近20%,40000000用科学记数法可表示为:( )A.74.010⨯ B.74010⨯ C.40×109 D.0.4×1097.下列说法正确..的是( ) A..两点之间直线最短 B..用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C..把一个角分成两个角的射线叫角的平分线D..直线l 经过点A ,那么点A 在直线l 上8.下列调查中不适合...抽样调查的是( ) A.调查居民日平均用水量; B.了解全国食盐加碘情况;C.调查某棉花新品种的发芽率;D. 保证“神舟6号”载入飞船的成功发射9.下图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )日 期1月1日 1月2日 1月3日 1月4日 最高气温5℃ 4℃ 0℃ 4℃ 最低气温-8℃ -7℃ -9℃ -6℃ 12 4 310.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为( )A.24204340x +⨯=⨯B.24724340x -⨯=⨯ C.24724340x +⨯=⨯ D.24204340x -⨯=⨯二、细心填一填,一锤定音!(每题3分,共24分)11. 比较大小:-π______-3.1412.请写出一个含有两个字母、系数为-2的二次单项式__________________________。
2020-2021学年山东省济宁市兖州区七年级(上)期末数学试卷 (含解析)

2020-2021学年山东省济宁市兖州区七年级第一学期期末数学试卷一、选择题(共10小题).1.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.42.下列运算正确的是()A.﹣2(a+b)=﹣2a﹣b B.﹣2(a+b)=﹣2a+bC.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b3.如图,学校(记作A)在蕾蕾家(记作B)南偏西25°的方向上,且与蕾蕾家的距离是4km,若∠ABC=90°,且AB=BC,则超市(记作C)在蕾蕾家的()A.南偏东65°的方向上,相距4kmB.南偏东55°的方向上,相距4kmC.北偏东55°的方向上,相距4kmD.北偏东65°的方向上,相距4km4.下列方程变形中,正确的是()A.方程5x﹣2=2x+1,移项,得5x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+1C.方程x=,系数化为1,得x=1D.方程=,去分母得x+1=3x﹣15.若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.86.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.7.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3ac=2bc+5C.3a+1=2b+6D.8.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,④﹣3÷(﹣)=9.其中正确的有()A.0个B.1个C.2个D.3个9.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元10.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36B.37C.55D.91二、填空题(共5小题).11.如果盈利100元记作+100元,那么亏损50元记作元.12.如图,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是:.13.2020年10月29日,中国共产党十九届五中全会在北京闭幕.会后发表公报指出,“十三五”时期,脱贫攻坚成果举世瞩目,农村55750000贫困人口脱贫.数据55750000用科学记数法表示为.14.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:.15.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.计算:(1)﹣8﹣(﹣8)﹣10+5;(2)(﹣1)2021+(﹣18)×|﹣|﹣4÷(﹣2);(3)先化简,再求值:(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.17.解方程:(1)2(2x+1)=1﹣5(x﹣2);(2).18.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有条.19.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.20.公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?21.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,求∠NEM的度数.并直接写出∠B′ME互余的角.22.某市出租车的起步价是7元(起步价是指不超过3km行程的出租车价格),超过3km 行程后,其中除3km的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距xkm(x<12)的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)参考答案一、选择题(共10小题).1.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.4【分析】符号和绝对值是确定有理数的两个必要条件,在原点右侧,符号为正,到原点的距离就是绝对值.解:点B在原点的右侧,且到原点3个单位长度,因此点B表示的数为3,故选:C.2.下列运算正确的是()A.﹣2(a+b)=﹣2a﹣b B.﹣2(a+b)=﹣2a+bC.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b【分析】利用去括号法则将﹣2(a+b)去括号后得到结果,即可作出判断.解:A、﹣2(a+b)=﹣2a﹣2b,本选项错误;B、﹣2(a+b)=﹣2a﹣2b,本选项错误;C、﹣2(a+b)=﹣2a﹣2b,本选项正确;D、﹣2(a+b)=﹣2a﹣2b,本选项错误.故选:C.3.如图,学校(记作A)在蕾蕾家(记作B)南偏西25°的方向上,且与蕾蕾家的距离是4km,若∠ABC=90°,且AB=BC,则超市(记作C)在蕾蕾家的()A.南偏东65°的方向上,相距4kmB.南偏东55°的方向上,相距4kmC.北偏东55°的方向上,相距4kmD.北偏东65°的方向上,相距4km【分析】直接利用方向角的定义得出∠2的度数,进而确定超市(记作C)与蕾蕾家的位置关系.解:如图所示:由题意可得:∠1=25°,∠ABC=90°,BC=4km,则∠2=65°,故超市(记作C)在蕾蕾家的南偏东65°的方向上,相距4km.故选:A.4.下列方程变形中,正确的是()A.方程5x﹣2=2x+1,移项,得5x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+1C.方程x=,系数化为1,得x=1D.方程=,去分母得x+1=3x﹣1【分析】根据移项、去括号法则、等式基本性质2分别判断即可得.解:A.方程5x﹣2=2x+1,移项,得5x﹣2x=1+2,此选项错误;B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,此选项错误;C.方程x=,系数化为1,得x=,此选项错误;D.方程=,去分母得x+1=3x﹣1,此选项正确;故选:D.5.若关于x的方程2x+a﹣4=0的解是x=2,则a的值等于()A.﹣8B.0C.2D.8【分析】把x=2代入方程计算即可求出a的值.解:把x=2代入方程得:4+a﹣4=0,解得:a=0,故选:B.6.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.【分析】根据展开图邻面间的关系,可得答案.解:由正方体图,得三角形面、正方形面、圆面是邻面,故A符合题意,故选:A.7.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3ac=2bc+5C.3a+1=2b+6D.【分析】根据等式的性质即可求出答案.解:(A)等式的两边同时减去5即可成立;(C)等式的两边同时加上1即可成立;(D)等式的两边同时除以3即可成立;故选:B.8.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,④﹣3÷(﹣)=9.其中正确的有()A.0个B.1个C.2个D.3个【分析】原式各项计算得到结果,即可做出判断.解:①(﹣5)+(+3)=﹣2,错误;②﹣(﹣2)3=﹣(﹣8)=8,错误;③(+)+(﹣)=,错误;④﹣3÷(﹣)=﹣3×(﹣3)=9,正确.则其中正确的有1个.故选:B.9.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元【分析】要计算赔赚,就要分别求出两个计算器的进价,再与售价作比较即可.因此就要先设出未知数,根据进价+利润=售价,利用题中的等量关系列方程求解.解:设盈利60%的进价为x元,则:x+60%x=64,解得:x=40,再设亏损20%的进价为y元,则;y﹣20%y=64,解得:y=80,所以总进价是120元,总售价是128元,售价>进价,所以赚了8元.故选:D.10.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36B.37C.55D.91【分析】让4和9的最小公倍数即为第二次同时经过这两种设施的千米数.解:∵4和9的最小公倍数为36,∴司机小王第二次同时经过这两种设施需要从A处继续行驶36千米.故选:A.二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.如果盈利100元记作+100元,那么亏损50元记作﹣50元.【分析】根据盈利为正,亏损为负,可以将亏损50元表示出来,本题得以解决.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.12.如图,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是:两点之间,线段最短.【分析】根据线段的性质:两点之间线段最短即可得出答案.解:根据线段的性质:两点之间,线段最短可得,从学校A到书店B最近的路线是①号路线,得到这个结论的根据是两点之间,线段最短.故答案为:两点之间,线段最短.13.2020年10月29日,中国共产党十九届五中全会在北京闭幕.会后发表公报指出,“十三五”时期,脱贫攻坚成果举世瞩目,农村55750000贫困人口脱贫.数据55750000用科学记数法表示为 5.575×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:数字55750000科学记数法可表示为5.575×107.故答案为:5.575×107.14.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:(n+1)2﹣n2=2n+1.【分析】根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:(n+1)2﹣n2=2n+1;故答案为:(n+1)2﹣n2=2n+1.15.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份.经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变.这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是14.【分析】设原来的进价为a元,则现在的进价为(1﹣0.05)a元,则原来的售价为a(1+x%),现在的售价为0.95a[1+(x+6)%],根据两次的售价相等建立方程求出其解得.解:原来的进价为a元,则现在的进价为(1﹣0.05)a元,由题意,得a(1+x%)=0.95a[1+(x+6)%],解得:x=14故答案为:14三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.计算:(1)﹣8﹣(﹣8)﹣10+5;(2)(﹣1)2021+(﹣18)×|﹣|﹣4÷(﹣2);(3)先化简,再求值:(3m2﹣mn+5)﹣2(5mn﹣4m2+2),其中m2﹣mn=2.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.解:(1)原式=﹣8+8﹣10+5=0﹣10+5=﹣5;(2)原式=﹣1﹣18×+4÷2=﹣1﹣4+2=﹣3;(3)原式=3m2﹣mn+5﹣10mn+8m2﹣4=11m2﹣11mn+1=11(m2﹣mn)+1,当m2﹣mn=2时,原式=22+1=23.17.解方程:(1)2(2x+1)=1﹣5(x﹣2);(2).【分析】(1)先去括号得4x+2=1﹣5x+10,然后移项、合并得到9x=9,再把x的系数化为1即可;(2)先去分母得45﹣5(2x﹣1)=3(4﹣3x)﹣15x,再去括号、移项、合并得14x=﹣38,然后把x的系数化为1即可.解:(1)去括号得4x+2=1﹣5x+10,移项得4x+5x=1+10﹣2,合并得9x=9,系数化为1得x=1;(2)去分母得45﹣5(2x﹣1)=3(4﹣3x)﹣15x,去括号得45﹣10x+5=12﹣9x﹣15x,移项得﹣10x+9x+15x=12﹣45﹣5,合并得14x=﹣38,系数化为1得x=﹣.18.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有8条.【分析】(1)依据直线、射线、线段的定义,即可得到直线AB,线段BC,射线AC;(2)依据在线段BC上任取一点D(不同于B,C),连接线段AD即可;(3)根据图中的线段为AB,AC,AD,AE,DE,BD,CD,BC,即可得到图中线段的条数.解:(1)如图,直线AB,线段BC,射线AC即为所求;(2)如图,线段AD和线段DE即为所求;(3)由题可得,图中线段的条数为8,故答案为:8.19.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.【分析】点B为CD的中点,根据中点的定义,得到CD=2BD,由BD=1cm便可求得CD的长度,然后再根据AC=AD﹣CD,便可求出AC的长度;(2)中由于E在直线AD 上位置不明定,可分E在线段DA的延长线和线段AD上两种情况求解.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.20.公园门票价格规定如表:购票张数1~50张51~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?【分析】(1)设(1)班有x人,根据共付1422元构建方程即可解决问题.(2)根据题意和表格中的数据可以解答本题.(3)计算购买51张票的费用与原来费用比较即可解决问题.解:(1)设(1)班有x人,则15x+13(102﹣x)=1422解得:x=48答:(1)班有48人,(2)班有54人.(2)1422﹣102×11=300(元)答:两个班联合购票比分别购票要少300元.(3)七(1)班单独组织去游园,如果按实际人数购票,需花费:48×15=720(元),若购买51张票,需花费:51×13=663(元),∴七(1)班单独组织去游园,直接购买51张票更省钱.21.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,求∠NEM的度数.并直接写出∠B′ME互余的角.【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM =×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM==×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.22.某市出租车的起步价是7元(起步价是指不超过3km行程的出租车价格),超过3km 行程后,其中除3km的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km,那么顾客还需付回程的空驶费,超过3km部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距xkm(x<12)的B 处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km的km数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.解:方案一的费用:7+(x﹣3)×1.6+0.8(x﹣3)+4×2=7+1.6x﹣4.8+0.8x﹣2.4+8=7.8+2.4x,方案二的费用:7+(x﹣3)×1.6+1.6x+1.6=7+1.6x﹣4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;②方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案一费用高;③方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案二费用高.。
2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷

2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分.1.(3分)如图所示,a 与b 的大小关系是( )A .a b <B .a b >C .a b =D .2b a =2.(3分)下列各式运算正确的是( ) A .(7)(7)0-+-= B .111()()326-+-=-C .0(101)101+-=D .11()()01010-++= 3.(3分)8时整,钟表的时针和分针构成多少度的角?( ) A .90︒B .110︒C .120︒D .150︒4.(3分)据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( ) A .60.104410⨯辆B .61.04410⨯辆C .51.04410⨯辆D .410.4410⨯辆5.(3分)如图,将一副三角尺按不同的位置摆放,下列各图中,α∠与β∠互余的是()A .B .C .D.6.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(0.8)a 元7.(3分)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.8.(3分)如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也保持平衡,如果在?处只放“■”那么应放“■”()A.5个B.4个C.3个D.2个9.(3分)如表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级12.543八年级10.533九年级7☆☆则九年级文艺小组活动次数和科技小组活动次数(表中的两个五星)分别是() A.2,2B.1,3C.3,1D.1,210.(3分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,⋯,按此规律排列下去,第⑨个图形中菱形的个数为()A.73B.81C.91D.109二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.(3分)如果收入15元记作15+元,那么支出20元记作元.12.(3分)3-的倒数是.13.(3分)如图,O是直线AB上的一点,5317AOC∠=︒',则BOC∠的度数是.14.(3分)一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a的值为.15.(3分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5)cm.现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤. 16.(6分)在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来: 2.5-,112,0,1-,3.517.(12分)计算: (1)144153411171711-+-; (2)231(10.5)[2(4)]43---÷⨯+-;(3)2211312()()2323x x y x y --+-+,其中23x =,2y =-18.(6分)已知:点D 在线段AB 上,点C 是线段AD 的中点,4AB =. (1)如图1,点D 是线段AB 的中点,求线段CD 的长度; (2)如图2,点E 是线段BD 的中点,求线段CE 的长度.19.(6分)整理一批图书,由一个人做要80h 完成.现计划由一部分人先做8h ,然后增加4人与他们一起做6h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?20.(8分)数学老师布置了一道思考题“计算115()()1236-÷-”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为15115()()()(12)4106361236-÷-=-⨯-=-+=,所以1151()()12366-÷-=. (1)请你通过计算验证小明的解法的正确性.(2)由此可以得到结论:一个数的倒数的倒数等于 . (3)请你运用小明的解法计算: 7377()(1)84812-÷--. 21.(8分)某通讯公司推出了移动电话的两种计费方式(详情见表).月使用费/元主叫限定时间/分 主叫超时费/(元/被叫分)方式一581500.25免费方式二883500.19免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t (150350)150t>t=350t<<350方式一计费/元58108方式二计费/元888888(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.22.(9分)如图,已知:OB是AOE∠的平分线.∠的平分线,OD是COE(1)若090∠=︒,求BOD∠的度数;COE∠=︒,30A C(2)若(1)中的(∠=为锐角),其它条件不变,求BODCOEαα∠的度数;(3)若(1)中的AOCβ∠=,其它条件不变,求BOD∠的度数;(4)从(1),(2),(3)的结果中猜想BOD∠的数量关系是,并说明理由.∠与AOC2019-2020学年山东省济宁市兖州区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分.1.(3分)如图所示,a 与b 的大小关系是( )A .a b <B .a b >C .a b =D .2b a =【解答】解: 根据数轴得到0a <,0b >,b a ∴>, 故选:A .2.(3分)下列各式运算正确的是( ) A .(7)(7)0-+-= B .111()()326-+-=-C .0(101)101+-=D .11()()01010-++= 【解答】解:A 、原式14=-,不符合题意; B 、原式56=-,不符合题意;C 、原式101=-,不符合题意;D 、原式0=,符合题意,故选:D .3.(3分)8时整,钟表的时针和分针构成多少度的角?( ) A .90︒B .110︒C .120︒D .150︒【解答】解:8时,时针和分针中间相差4个大格. Q 钟表12个数字,每相邻两个数字之间的夹角为30︒,8∴时,分针与时针的夹角是430120⨯︒=︒,答:早晨8时整,时针和分针构成120度的角, 故选:C .4.(3分)据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( ) A .60.104410⨯辆B .61.04410⨯辆C .51.04410⨯辆D .410.4410⨯辆【解答】解:104400用科学记数法表示应为51.04410⨯, 故选:C .5.(3分)如图,将一副三角尺按不同的位置摆放,下列各图中,α∠与β∠互余的是()A .B .C .D .【解答】解:A 、α∠与β∠不互余,故本选项错误;B 、α∠与β∠不互余,故本选项错误;C 、α∠与β∠不互余,故本选项错误;D 、α∠与β∠互余,故本选项正确.故选:D .6.(3分)苹果原价是每斤a 元,现在按8折出售,假如现在要买一斤,那么需要付费( ) A .0.8a 元B .0.2a 元C .1.8a 元D .(0.8)a +元【解答】解:根据题意知,买一斤需要付费0.8a 元, 故选:A .7.(3分)如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A ,C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .【解答】解:因圆柱的展开面为长方形,AC 展开应该是两线段,且有公共点C . 故选:A .8.(3分)如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也保持平衡,如果在?处只放“■”那么应放“■”( )A .5个B .4个C .3个D .2个【解答】解:根据图示可得,2⨯〇=△+□①,〇+□=△②, 由①、②可得, 〇2=□,△3=□,∴〇+△2=□3+□5=□,故选:A .9.(3分)如表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级 12.5 4 3 八年级 10.5 3 3 九年级7☆☆则九年级文艺小组活动次数和科技小组活动次数(表中的两个五星)分别是( ) A .2,2B .1,3C .3,1D .1,2【解答】解:设文艺小组每次活动时间为x 小时,科技小组每次活动时间为y 小时,由题意得,4312.53310.5x y x y +=⎧⎨+=⎩,解得,2x =, 1.5y =, 设九年级文艺小组活动次数为a 、科技小组活动次数为b ,则2 1.57a b +=, 又a Q 、b 都是正整数, 2a ∴=,2b =;故选:A .10.(3分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,⋯,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C .91D .109【解答】解:第①个图形中一共有3个菱形,2312=+; 第②个图形中共有7个菱形,2723=+; 第③个图形中共有13个菱形,21334=+;⋯,第n 个图形中菱形的个数为:21n n ++; 第⑨个图形中菱形的个数299191++=. 故选:C .二、填空题:本题共5道小题,每小题3分,共15分,请把正确答案填在试卷相应的横线上,要求只写出最后结果.11.(3分)如果收入15元记作15+元,那么支出20元记作 20- 元.【解答】解:“正”和“负”相对,所以如果收入15元记作15+元,那么支出20元记作20-元. 故答案20-元.12.(3分)3-的倒数是 13- .【解答】解:3-的倒数是13-.13.(3分)如图,O 是直线AB 上的一点,5317AOC ∠=︒',则BOC ∠的度数是 12643︒' .【解答】解:180AOC BOC ∠+∠=︒Q ,180180531712643BOC AOC ∴∠=︒-∠=︒-︒'=︒',故答案为:12643︒'.14.(3分)一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为 60 . 【解答】解:设第一件衣服的进价为x , 依题意得:(125%)x a +=, 设第二件衣服的进价为y , 依题意得:(125%)y a -=,因为卖出这两件衣服商店共亏损8元, 可得:821.250.75a aa +-=, 解得:60a =, 故答案为:60.15.(3分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5)cm .现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm ,则开始注入 35,3320,17140分钟的水量后,甲与乙的水位高度之差是0.5cm .【解答】解:Q 甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1, Q 注水1分钟,乙的水位上升56cm ,∴注水1分钟,丙的水位上升103cm , 设开始注入t 分钟的水量后,甲与乙的水位高度之差是0.5cm , 甲与乙的水位高度之差是0.5cm 有三种情况: ①当乙的水位低于甲的水位时, 有510.56t -=,解得:35t =分钟; ②当甲的水位低于乙的水位时,甲的水位不变时, Q510.56t -=, 解得:95t =, Q1096535⨯=>, ∴此时丙容器已向乙容器溢水,103532÷=Q 分钟,535624⨯=,即经过32分钟丙容器的水到达管子底部,乙的水位上升54,∴5532()10.5462t +⨯--=,解得:3320t =; ③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时, Q 乙的水位到达管子底部的时间为:35515(5)22464+-÷÷=分钟, 1015512()0.534t ∴--⨯-=, 解得:17140t =, 综上所述开始注入35,3320,17140分钟的水量后,甲与乙的水位高度之差是0.5cm .三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤. 16.(6分)在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:2.5-,112,0,1-,3.5【解答】解:以上各数在数轴上表示为:其中点A ,B ,C ,D ,E 分别表示 2.5-、1-、0、112、3.5所以,得出:12.51013.52-<-<<<.17.(12分)计算: (1)144153411171711-+-; (2)231(10.5)[2(4)]43---÷⨯+-;(3)2211312()()2323x x y x y --+-+,其中23x =,2y =-【解答】解:(1)原式114453451611111717=--+=+=; (2)原式313331827274244=--⨯⨯=--=-;(3)原式2221231232323x x y x y x y =-+-+=-+, 当23x =,2y =-时,原式242=-+=. 18.(6分)已知:点D 在线段AB 上,点C 是线段AD 的中点,4AB =. (1)如图1,点D 是线段AB 的中点,求线段CD 的长度; (2)如图2,点E 是线段BD 的中点,求线段CE 的长度.【解答】解:(1)因为4AB =,点D 在线段AB 上,点D 是线段AB 的中点, 所以114222AD AB ==⨯=, 因为点C 是线段AD 的中点, 所以112122CD AD ==⨯=. (2)因为点D 在线段AB 上,点C 是线段AD 的中点,点E 是线段BD 的中点, 所以12CD AD =,12DE BD =,所以1111()2222CE CD DE AD BD AD BD AB =+=+=+=, 因为4AB =, 所以2CE =.19.(6分)整理一批图书,由一个人做要80h 完成.现计划由一部分人先做8h ,然后增加4人与他们一起做6h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【解答】解:设应先安排x 人工作, 由题意可得:86(4)80x x ++=, 解得:4x =,答:应先安排4人工作.20.(8分)数学老师布置了一道思考题“计算115()()1236-÷-”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为15115()()()(12)4106361236-÷-=-⨯-=-+=,所以1151()()12366-÷-=. (1)请你通过计算验证小明的解法的正确性.(2)由此可以得到结论:一个数的倒数的倒数等于 它本身 . (3)请你运用小明的解法计算: 7377()(1)84812-÷--. 【解答】解:(1)115111()()()(2)6123612212-÷-=-÷-=-⨯-=Q , ∴小明的解法正确;(2)一个数的倒数的倒数等于它本身; 故答案为:它本身; (3)原式的倒数为:3777777878787821(1)()()()214812848127478712733--÷-=--⨯-=-⨯+⨯+⨯=-++=-, ∴原式3=-.21.(8分)某通讯公司推出了移动电话的两种计费方式(详情见表).方式一 58 150 0.25 免费 方式二883500.19免费设一个月内使用移动电话主叫的时间为t 分(t 为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t 的式子填写下表:150t …150350t << 350t = 350t >方式一计费/元 58 0.2520.5t +108 方式二计费/元888888(Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.【解答】解:(Ⅰ)①当150350t <<时,方式一收费:580.25(150)0.2520.5t t +-=+; ②当350t >时,方式一收费:1080.25(350)0.2520.5t t +-=+; ③方式二当350t >时收费:880.19(350)0.1921.5t t +-=+. 故答案是:0.2520.5t +;0.2520.5t +;0.1921.5t +;(Ⅱ)Q 当350t >时,(0.2520.5)(0.1921.5)0.0610t t t +-+=->,∴当两种计费方式的费用相等时,t 的值在150350t <<取得. ∴列方程0.2520.588t +=,解得270t =.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)当270t <时,选择方式一省钱; 当270t =时,两种方式收费一样多;当270t >时,选择方式二省钱.22.(9分)如图,已知:OB 是AOE ∠的平分线,OD 是COE ∠的平分线. (1)若090A C ∠=︒,30COE ∠=︒,求BOD ∠的度数;(2)若(1)中的(COE αα∠=为锐角),其它条件不变,求BOD ∠的度数; (3)若(1)中的AOC β∠=,其它条件不变,求BOD ∠的度数;(4)从(1),(2),(3)的结果中猜想BOD ∠与AOC ∠的数量关系是 12BOD AOC ∠=∠ ,并说明理由.【解答】解:(1)9030120AOE AOC COE ∠=∠+∠=︒+︒=︒ OB Q 平分AOE ∠,OD 平分COE ∠,111206022BOE AOE ∴∠=∠=⨯︒=︒,11301522DOE COE ∠=∠=⨯︒=︒.603045BOD BOE DOE ∴∠=∠-∠=︒-︒=︒.答:BOD ∠的度数为45︒;(2)90AOE AOC COE α∠=∠+∠=︒+ OB Q 平分AOE ∠,OD 平分COE ∠,111(90)45222BOE AOE αα∴∠=∠=⨯︒+=︒+,1122DOE COE α∠=∠=.11454522BOD BOE DOE αα∴∠=∠-∠=︒+-=︒.答:BOD ∠的度数为45︒;(3)30AOE AOC COE β∠=∠+∠=+︒ OB Q 平分AOE ∠,OD 平分COE ∠,111(30)15222BOE AOE ββ∴∠=∠=⨯+︒=+︒,11301522DOE COE ∠=∠=⨯︒=︒.11151522BOD BOE DOE ββ∴∠=∠-∠=+︒-︒=.答:BOD ∠的度数为12β;(4)OB Q 平分AOE ∠,OD 平分COE ∠, 12BOE AOE ∴∠=∠,12DOE COE ∠=∠.BOD BOE DOE ∴∠=∠-∠1()2AOE DOE =∠-∠ 12AOC =∠. 故答案为12BOD AOC ∠=∠.。
济宁市人教版七年级上册数学期末试卷及答案百度文库

济宁市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .5.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3C .2-D .2276.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=7.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2 C .4D .2 12.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=113.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .14.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .115.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.19.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.20.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.21.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.22.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 23.五边形从某一个顶点出发可以引_____条对角线. 24.计算:3+2×(﹣4)=_____.25.8点30分时刻,钟表上时针与分针所组成的角为_____度. 26.钟表显示10点30分时,时针与分针的夹角为________. 27.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 28.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .29.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?34.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.35.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.36.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?37.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.A解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.5.B解析:B 【解析】 【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】0.23是有限小数,是有理数,不符合题意,3是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B. 【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.6.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.7.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.8.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.9.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.13.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.14.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x 秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB 上;设乙再走y 秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC 上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD 上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA 上;乙在第5次追上甲时的位置又回到AB 上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD 上.故选:D .本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.18.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.19.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.20.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.21.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.22.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.23.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.24.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 25.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.26.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 27.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.28.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h= 解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.29.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.30.46°【分析】根据∠2=180°-∠COE-∠1,可得出答案. 【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°. 【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21,解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是。
济宁市人教版七年级上册数学期末试卷及答案百度文库

济宁市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1062.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒3.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-4.如图所示,数轴上A,B两点表示的数分别是2﹣1和2,则A,B两点之间的距离是()A.22B.22﹣1 C.22+1 D.15.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y6.如果a﹣3b=2,那么2a﹣6b的值是()A.4 B.﹣4 C.1 D.﹣17.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱8.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个9.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为()A.3.31×105B.33.1×105C.3.31×106D.3.31×10710.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣411.下列图形中,哪一个是正方体的展开图( )A .B .C .D .12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1 二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.15.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.16.把5,5,35按从小到大的顺序排列为______.17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.18.化简:2xy xy +=__________.19.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.20.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.3.6=_____________________′23.当12点20分时,钟表上时针和分针所成的角度是___________.24.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.三、解答题25.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A 、B 两种书籍.若购买A 种书籍1本和B 种书籍3本,共需要180元;若购买A 种书籍3本和B 种书籍1本,共需要140元.(1)求A 、B 两种书籍每本各需多少元?(2)该班根据实际情况,要求购买A 、B 两种书籍总费用不超过700元,并且购买B 种书籍的数量是A 种书籍的32,求该班本次购买A 、B 两种书籍有哪几种方案? 26.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 27.计算:(1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×21 28.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?29.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 30.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34) 四、压轴题31.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.32.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-15学年度第一学期期末试卷
七年级数学(人教实验版)
时间:100分钟 满分:100分
一、精心选一选,慧眼识真!(每小题3分,共30分)
1.-1
3
的倒数是( ).
(A)3 (B)-3 (C)13 (D)-1
3
2.我校七年级(!)班的张明同学,今年1月1日至4日观测了每天的最高气温与最低气温如下表 其中温差最大的是( )
A. 1月1日
B. 1月2日
C. 1月3日
D. 1月4日 3.下列各数据中,哪个是近似数( )
A 、七年级上册数学课本共有2020;
B 、小李称得体重67千克;
C 、1纳米相当于1毫米的一百万分之一;
D 、数学考试时间100分钟。
4.下面一些角中,可以用一副三角尺画出来的角是( )
(1)15°的角, (2)65º的角, (3)75º的角,(4)135º的角,(5)145º的角。
A 、(1)(3)(4);
B 、(1)(3)(5);
C 、(1)(2)(4);
D 、(2)(4)(5)
5. 下列四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )
A B C D
6.据报载,目前中国移动彩铃声用户已超过40000000,占中国移动2亿余用户总数的近20%,40000000用科学记数法可表示为:( )
A.74.010⨯ B.74010⨯ C.40×109 D.0.4×109 7.下列说法正确..
的是( ) A..两点之间直线最短 B..用一个放大镜能够把一个图形放大,也能够把一个角的度数放大 C..把一个角分成两个角的射线叫角的平分线 D..直线l 经过点A ,那么点A 在直线l 上
8.下列调查中不适合...
抽样调查的是( ) A.调查阿克苏市居民日平均用水量; B.了解全国食盐加碘情况;
C.调查某棉花新品种的发芽率;
D. 保证“神舟6号”载入飞船的成功发射
9.下图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )
10.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为( )
A.24204340x +⨯=⨯ B.24724340x -⨯=⨯ C.24724340x +⨯=⨯
D.24204340x -⨯=⨯
二、细心填一填,一锤定音!(每题3分,共24分) 11. 比较大小:-π______-3.14
12.请写出一个含有两个字母、系数为-2的二次单项式__________________________。
. 13.如果2
|1|(2)0a b -++=,则(a+b)2020值是______________。
14.如果2x m-1y 2与-x 2y n 是同类项,则n m = ______________。
.
15.下列单项式:-x ,2x 2,-3x 3,4x 4,… -19x 19,20200, …根据你发现的规律,第2020个单项式是______________。
16. 如果一个角的余角是30°36′,那么这个角是______。
17. 如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, 射线OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∠MON 等于_________________。
18.上美术课时,一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图6形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为______。
三、用心做一做,马到成功!(本大题共46分)
19. 计算:(每题5分,共10分)
(1)-22÷94
×(-
3
2)2 (2)
)3()4()2(8102-⨯---÷+-
日 期 1月1日 1月2日 1月3日 1月4日 最高气温 5℃ 4℃ 0℃ 4℃ 最低气温
-8℃
-7℃
-9℃
-6℃
1 2 1 2 4 3
第9题
A .
B . C. D.
2020方程:(每题5分,共10分)
(1)、-2(x -1)=4. (2)421
123
x x -+-=
21.先化简,后求值(本题共5分) (4a 2-2a-6)-2( 2a 2-2a-5 ),其中a = -1
22.(本题共5分)如图,延长线段AB 到C,使BC=3AB,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 的长度是多少?
23.(本题满分10分)为了了解学生参加体育活动的情况,我团中学教务处对学生进行随机抽样调查,其中一
个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:
A .1.5小时以上
B .1~1.5小时
C .0.5—1小时
D .0.5小时以下
图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题: (1)本次一共调查了多少名学生? (2)在图1中将选项B 的部分补充完整;
(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
24. (本小题满分6分)为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?
D
B
C
A
图1 图2。