集合练习题(包含详细答案)

合集下载

集合考试题及答案

集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。

以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。

求A∩B。

答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

集合B包含所有的偶数。

A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。

题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。

求C∪D。

答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

集合D包含所有的正整数,即D={1, 2, 3, ...}。

C与D的并集是包含C和D所有元素的集合,但去除重复元素。

因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。

求E∩F。

答案:集合E包含所有的奇数,集合F包含所有3的倍数。

E与F的交集是同时满足奇数和3的倍数的元素。

这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。

题目四:集合G={x | x²=1},求G。

答案:集合G包含满足x²=1的所有x值。

解这个方程,我们得到x=1或x=-1。

因此,G={1, -1}。

题目五:集合H={x | x²-4=0},求H。

答案:集合H包含满足x²-4=0的所有x值。

解这个方程,我们得到x²=4,所以x=2或x=-2。

因此,H={2, -2}。

总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案一、选择题1. 若集合A={x|x<5},B={x|x>3},则A∩B等于:A. {x|x<3}B. {x|x>5}C. {x|3<x<5}D. {x|x≤3}2. 对于集合A={1, 2, 3}和B={2, 3, 4},A∪B的元素个数是:A. 3B. 4C. 5D. 63. 若集合C={x|x是偶数},D={x|x是自然数},则C⊆D是:A. 真B. 假4. 集合E={x|x²-5x+6=0}的元素个数是:A. 0B. 1C. 2D. 35. 已知集合F={x|-2≤x≤2},G={x|x²-4=0},则F∩G等于:A. {-2}B. {2}C. {-2, 2}D. 空集二、填空题6. 集合H={x|x²-3x+2=0}的元素是_________。

7. 若集合I={x|x²-1=0},则I的补集(相对于实数集R)是_________。

8. 集合J={x|x>0且x<10}与K={x|x是整数}的交集J∩K包含的元素个数是_________。

9. 集合L={x|x²+4x+4=0}的元素个数是_________。

10. 若集合M={x|x²-4=0},则M的元素是_________。

三、解答题11. 给定集合N={1, 2, 3}和O={2, 3, 4},请找出N∩O,并说明其元素的个数。

12. 集合P={x|x²-4x+3=0},请列出集合P的所有元素。

13. 集合Q={x|x²+2x+1=0},请判断该集合是否为空集,并说明理由。

14. 若集合R={x|x²-6x+8=0},请找出R的补集(相对于实数集R)。

15. 集合S={x|x²-9=0},请列出S的元素,并计算S的元素个数。

答案:1. C2. B3. A4. C5. C6. 1, 27. 所有非-1和非1的实数8. 99. 010. -2, 211. N∩O={2, 3},元素个数为2。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∩B。

A. {1}B. {2,3}C. {4}D. {1,2,3}2. 集合A={1,2,3},集合B={2,3,4},求A∪B。

A. {1,2,3}B. {2,3,4}C. {1,2,3,4}D. {2,3}二、填空题1. 集合A={x|x是小于10的正整数},那么A的元素个数是_________。

2. 集合A={x|x是偶数},集合B={x|x是奇数},那么A∪B表示的数集是_________。

三、简答题1. 解释什么是子集,并给出一个例子。

2. 描述如何使用韦恩图表示两个集合的并集和交集。

四、计算题1. 给定集合A={1,2,3,4,5},集合B={3,4,5,6,7},求A∩B和A∪B。

2. 给定集合A={x|x是小于20的质数},集合B={x|x是小于20的合数},求A∪B。

五、证明题1. 证明:对于任意集合A和B,(A∪B)∩C = (A∩C)∪(B∩C)。

2. 证明:对于任意集合A,A∩A = A。

六、应用题1. 如果一个班级有30名学生,其中15名学生学习数学,12名学生学习物理,8名学生同时学习数学和物理。

求只学习数学的学生数量。

2. 如果一个图书馆有100本书籍,其中50本是小说,30本是科幻小说,15本同时属于小说和科幻小说。

求只属于科幻小说的书籍数量。

答案:一、选择题1. B2. C二、填空题1. 92. 所有整数三、简答题1. 子集是指一个集合中的所有元素都是另一个集合的元素。

例如,集合{1,2}是集合{1,2,3}的子集。

2. 韦恩图是一个用来表示集合的图形工具,其中两个圆圈重叠的部分表示交集,两个圆圈的总面积表示并集。

四、计算题1. A∩B={3,4,5},A∪B={1,2,3,4,5,6,7}。

2. A∪B={2,3,5,7,11,13,17,19}。

五、证明题1. 证明略。

2. 证明略。

集合的练习题及答案

集合的练习题及答案

集合的练习题及答案集合是数学中的基本概念,它描述了一组具有某种共同属性的元素的全体。

以下是一些集合的练习题及答案,供同学们练习和参考。

练习题1:确定以下集合的元素。

- A = {x | x 是小于10的正整数}- B = {y | y 是大于0且小于5的有理数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9}- B = {所有大于0且小于5的分数和整数,例如1/2, 3/4, 1, 2, 3, 4}练习题2:判断以下两个集合是否相等。

- A = {x | x 是偶数}- B = {2n | n 是自然数}答案2:- A 和 B 是相等的,因为每一个偶数都可以表示为2n(n为自然数)的形式。

练习题3:求集合A和B的并集、交集和差集。

- A = {1, 2, 3, 4, 5}- B = {4, 5, 6, 7, 8}答案3:- 并集A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}- 交集A ∩ B = {4, 5}- 差集 A - B = {1, 2, 3}练习题4:集合C包含所有A和B的元素,但不包含A和B的交集元素,求集合C。

- A = {1, 3, 5, 7}- B = {2, 4, 6, 8}答案4:- C = A ∪ B - (A ∩ B) = {1, 2, 3, 4, 5, 6, 7, 8}练习题5:如果集合D是A和B的子集,且D包含A和B的交集元素,求D的可能形式。

- A = {1, 2, 3}- B = {2, 3, 4}答案5:- D 可以是任何包含2和3的子集,例如:D = {2, 3} 或 D = {2}或 D = {3}练习题6:用描述法表示集合E,它包含所有A和B的元素,但不包含A和B的交集元素。

- A = {x | x 是小于10的正整数}- B = {y | y 是大于5的正整数}答案6:- E = {x | x ∈ A ∪ B 且 x ∉ (A ∩ B)} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}练习题7:如果集合F是A的幂集,求F的元素个数。

集合综合练习题及答案

集合综合练习题及答案

集合综合练习题及答案一、选择题1、下列哪个选项不是集合?A. {1,2,3,4,5}B. {x|x是正方形}C. {x|0<x<10}D. {x|x是中国的城市}答案:D. {x|x是中国的城市}。

因为D中的元素是不确定的,而集合中的元素必须是确定的。

2、下列哪个选项是集合?A. {1,2,3,4,5}的元素都是整数。

B. {x|x是正方形}的元素都是四边形。

C. {x|0<x<10}的元素都是正数。

D. {x|x是中国的城市}的元素都是城市。

答案:A. {1,2,3,4,5}的元素都是整数。

因为选项A中的元素都是确定的,符合集合的定义。

3、下列哪个选项不是集合?A. {1,2,3,4,5}的元素个数为5。

B. {x|x是正方形}中的元素为四边形。

C. {x|0<x<10}中的元素为正数。

D. {x|x是中国的城市}中的元素为城市。

答案:B. {x|x是正方形}中的元素为四边形。

因为B中的元素不是确定的,不符合集合的定义。

二、填空题1、写出集合{1,2,3,4,5}的所有子集:______。

2、写出集合{x|x是正方形}的所有子集:______。

3、写出集合{x|0<x<10}的所有子集:______。

4、写出集合{x|x是中国的城市}的所有子集:______。

答案:1、{∅,{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}。

2、{∅,{正方形}}。

3、{∅,{正数}}。

4、{∅,{城市}}。

2 集合综合练习题合作经营可行性分析报告一、引言随着全球化的深入发展,企业间的合作已经成为一种趋势。

通过合作经营,企业可以共享资源、降低风险、提高效率,进而实现更大的商业价值。

本报告旨在分析合作经营的可行性,为企业决策提供参考。

二、合作经营的定义与优势合作经营是指两个或多个企业在一定领域内共同出资、共同经营、共担风险、共享收益的一种经营模式。

数学集合练习题答案

数学集合练习题答案

数学集合练习题答案一、选择题1. 答案:C解析:集合的定义是由若干个确定的元素组成,可以用大写字母表示。

2. 答案:B解析:空集是不包含任何元素的集合。

3. 答案:A解析:一个集合除了包含自身的元素外,也可以包含其他集合。

4. 答案:D解析:一个集合的子集是指该集合中的元素组成的一个集合。

5. 答案:B解析:并集是指两个集合中所有的元素的集合。

二、填空题1. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有的元素即可。

2. 答案:{1, 2, 3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

3. 答案:{1, 2, 3}解析:按照集合的定义,列举出所有满足条件的元素即可。

4. 答案:{3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

5. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有满足条件的元素即可。

三、解答题1. 答案:集合A的元素个数为7个。

解析:集合A中的元素有1, 2, 3, 4, 5, 6, 7,共7个元素。

2. 答案:集合B的元素个数为8个。

解析:集合B中的元素有1, 2, 3, 4, 5, 6, 7, 8,共8个元素。

3. 答案:集合A与集合B的交集为{2, 4, 6}。

解析:集合A与集合B的交集为两个集合中共有的元素组成的集合。

4. 答案:集合A与集合B的并集为{1, 2, 3, 4, 5, 6, 7, 8}。

解析:集合A与集合B的并集是指两个集合中所有的元素的集合。

5. 答案:集合A与集合B的差集为{1, 3, 5, 7}。

解析:集合A与集合B的差集是指在集合A中但不在集合B中的元素组成的集合。

总结:通过本次数学集合练习题,我们复习了集合的基本概念和运算。

集合是由若干个确定的元素组成,可以用大写字母表示。

空集是不包含任何元素的集合。

一个集合的子集是指该集合中的元素组成的一个集合。

并集是指两个集合中所有的元素的集合。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 集合A和集合B的并集表示为:A. A∪BB. A∩BC. A-BD. A∪B答案:A2. 集合A中所有元素都属于集合B,则称集合A是集合B的:A. 子集B. 并集C. 交集D. 补集答案:A3. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B二、填空题1. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是________。

答案:{4, 5}2. 若A={x | x是偶数},B={x | x是3的倍数},则A∩B的元素包括所有________。

答案:6的倍数三、简答题1. 描述什么是集合的幂集,并给出一个具体的例子。

答案:集合的幂集是指一个集合的所有子集构成的集合,包括空集和该集合本身。

例如,集合A={1, 2}的幂集是{∅, {1}, {2}, {1, 2}}。

2. 解释什么是集合的差集,并给出一个例子。

答案:集合的差集是指属于集合A但不属于集合B的所有元素组成的集合。

例如,如果A={1, 2, 3},B={2, 3, 4},则A-B={1}。

四、计算题1. 给定集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},求A∪B,A∩B,A-B。

答案:A∪B = {1, 2, 3, 4, 5, 6}A∩B = {3, 4}A-B = {1, 2}2. 如果集合C={x | x是小于10的正整数},求C的幂集。

答案:C的幂集包含从空集到C本身的所有子集,即{∅, {1},{2}, ..., {1, 2, ..., 9}}。

五、论述题1. 讨论集合论在数学中的重要性,并给出至少两个应用领域的例子。

答案:集合论是现代数学的基础,它提供了一种形式化的方法来描述数学对象和它们之间的关系。

例如,在逻辑学中,集合论用于定义命题的真值;在计算机科学中,集合论的概念被用来设计数据结构和算法。

集合练习题加答案

集合练习题加答案

集合练习题加答案1. 定义集合A = {x | x > 0},集合B = {x | x < 0},求A∪B(A并B)。

2. 集合C = {1, 2, 3},集合D = {2, 3, 4},求C∩D(C交D)。

3. 已知集合E = {x | x是偶数},集合F = {x | x是奇数},判断E和F是否为补集关系。

4. 集合G = {x | x是小于10的自然数},求G的补集G'。

5. 如果集合H = {1, 2, 3, 4, 5},求H的所有子集。

6. 集合I = {x | x是3的倍数},集合J = {x | x是5的倍数},求I∩J(I交J)。

7. 集合K = {1, 2, 3},求K的所有非空子集。

8. 已知集合L = {x | x是3的倍数},集合M = {x | x是小于20的自然数},求L∪M(L并M)。

9. 集合N = {x | x是小于10的质数},求N的元素个数。

10. 集合O = {x | x是偶数},集合P = {x | x是大于10的自然数},求O∩P(O交P)。

答案1. A∪B = R(实数集),因为所有实数要么大于0,要么小于0。

2. C∩D = {2, 3},因为2和3同时属于集合C和D。

3. E和F是补集关系,因为E和F的元素加起来覆盖了所有整数,并且没有重叠。

4. G' = {x | x是大于等于10的自然数},因为G包含了所有小于10的自然数。

5. H的子集有:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合练习题
1.设M={x|x≤211},a=2 015,则下列关系中正确的是()
A.a⊆M B.a∉M
C.{a}∉M D.{a}⊆M
答案 D
解析∵2 015<211=2 048,∴{2 015}⊆M,故选D.
2.已知集合P={x|x2-4<0},Q={x|x=2k+1,k∈Z},则P∩Q=() A.{-1,1} B.[-1,1]
C.{-1,-3,1,3} D.{-3,3}
答案 A
3.若P={x|x<1},Q={x|x>-1|,则()
A.P⊆Q B.Q⊆P
C.∁R P⊆Q D.Q⊆∁R P
答案 C
解析由题意,得∁R P={x|x≥1},画数轴可知,选项A,B,D错,故选C.
4.(2013·广东)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()
A.{0} B.{0,2}
C.{-2,0} D.{-2,0,2}
答案 D
解析M={-2,0},N={0,2},故M∪N={-2,0,2}.
5.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()
A.1 B.2
C.3 D.4
答案 D
解析由题意可得,A={1,2},B={1,2,3,4}.
又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D项.
6.(2013·山东文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()
A.{3} B.{4}
C.{3,4} D.∅
答案 A
解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B={3}.
7.(2014·苏锡常镇一调)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()
A.a≤1 B.a<1
C.a≥2 D.a>2
答案 C
解析∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.
又∵A={x|x<a}且A∪(∁R B)=R,∴a≥2.
8.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()
A.P⊆Q B.Q⊆P
C.∁R P⊆Q D.Q⊆∁R P
答案 C
解析依题意得集合P={y|y≤1},Q={y|y>0},∴∁R P={y|y>1},∴∁R P⊆Q,选C.
9.已知全集U=R,A={x∈Z||x-3|<2},B={x|x2-2x-3≥0},则A∩∁U B 为()
A.{2} B.{1,2}
C.{1,2,3} D.{0,1,2,3}
答案 A
解析A={x∈Z|1<x<5}={2,3,4},
∁U B={x∈Z|x2-2x-3<0}={x∈Z|-1<x<3}={0,1,2},
∴A∩∁U B={2},故选A.
10.已知集合P={x|5x-a≤0},Q={x|6x-b>0},a,b∈N,且P∩Q∩N ={2,3,4},则整数对(a,b)的个数为()
A.20 B.30
C.42 D.56
答案 B
11.(2014·人大附中期末)已知集合A={1,10,1
10},B={y|y=lg x,x∈A},
则A∩B=()
A.{1
10} B.{10}
C.{1} D.∅答案 C
解析∵B={y|y=lg x,x∈A}={y|y=lg1,y=lg10,y=lg 1
10}={0,1,-1},∴A∩B={1},选C.
12.已知集合A={1,2,k},B={2,5}.若A∪B={1,2,3,5},则k=________.
答案 3
13.将右面韦恩图中阴影部分用集合A、B、C之间的关系式表示出来________.
答案A∩B∩(∁U C)
14.(2014·皖南八校联考)已知集合A={-1,0,a},B={x|0<x<1},若A∩B≠∅,则实数a的取值范围是________.
答案(0,1)
解析∵A中-1,0不属于B,且A∩B≠∅,∴a∈B,∴a∈(0,1).
15.已知集合A={x|log2x<1},B={x|0<x<c},(c>0).若A∪B=B,则c的取值范围是________.
答案[2,+∞)
解析A={x|0<x<2},由数轴分析可得c≥2.
16.设集合S n={1,2,3,…,n},若x是S n的子集,把x中的所有元素的乘积称为x的容量(若x中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若x的容量为奇(偶)数,则称x为S n的奇(偶)子集.则S4的所有奇子集的容量之和为________.
答案7
解析由奇子集的定义,可知奇子集一定是S n中为奇数的元素构成的子集.由题意,可知若n=4,S n中为奇数的元素只有1,3,所以奇子集只有3个,分别是{1},{3},{1,3},则它们的容量之和为1+3+1×3=7.
17.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈A∩B;(2){9}=A∩B.
答案(1)a=5或a=-3(2)a=-3
解析(1)∵9∈A∩B且9∈B,∴9∈A.
∴2a-1=9或a2=9.∴a=5或a=±3.
而当a=3时,a-5=1-a=-2,故舍去.
∴a=5或a=-3.
(2)∵{9}=A∩B,∴9∈A∩B.
∴a=5或a=-3.
而当a=5时,A={-4,9,25},B={0,-4,9},
此时A∩B={-4,9}≠{9},故a=5舍去.
∴a =-3.
讲评 9∈A ∩B 与{9}=A ∩B 意义不同,9∈A ∩B 说明9是A 与B 的一个公共元素,但A 与B 允许有其他公共元素.而{9}=A ∩B 说明A 与B 的公共元素有且只有一个9.
18.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.
(1)若A B ,求a 的取值范围;
(2)若A ∩B =∅,求a 的取值范围;
(3)若A ∩B ={x |3<x <4},求a 的取值范围.
答案 (1)43≤a ≤2 (2)a ≤23或a ≥4 (3)3
解析 ∵A ={x |x 2-6x +8<0},
∴A ={x |2<x <4}.
(1)当a >0时,
B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧ a ≤2,3a ≥4
且等式不能同时成立⇒43≤a ≤2. 当a <0时,B ={x |3a <x <a },应满足⎩
⎪⎨⎪⎧
3a ≤2,a ≥4⇒a ∈∅. ∴43≤a ≤2时,A B .
(2)要满足A ∩B =∅,
当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2,
∴0<a ≤23或a ≥4.
当a <0时,B ={x |3a <x <a },a ≤2或a ≥43.
∴a <0时成立.验证知当a =0时也成立.
综上所述,a≤2
3或a≥4时,A∩B=∅.
(3)要满足A∩B={x|3<x<4},显然a>0且a=3时成立.∵此时B={x|3<x<9},而A∩B={x|3<x<4},
故所求a的值为3.。

相关文档
最新文档