应用统计学:参数估计习题及答案
参数估计练习题

参数估计练习题一、选择题1. 在统计学中,参数估计通常指的是:A. 估计总体参数的值B. 估计样本的均值C. 估计样本的方差D. 估计样本的中位数2. 下列哪项不是点估计的特点?A. 唯一性B. 精确性C. 随机性D. 简洁性3. 区间估计与点估计的主要区别在于:A. 区间估计提供了一个范围B. 点估计提供了一个范围C. 点估计比区间估计更精确D. 区间估计比点估计更精确4. 以下哪个分布的参数估计通常使用最大似然估计法?A. 正态分布B. 均匀分布C. 二项分布D. 泊松分布5. 以下哪个统计量是正态分布的参数估计?A. 方差B. 均值C. 标准差D. 所有上述选项二、填空题6. 点估计的误差可以通过________来衡量。
7. 区间估计的置信水平为95%,表示我们有95%的把握认为总体参数位于________内。
8. 样本均值的抽样分布服从________分布,当样本量足够大时。
9. 样本方差的抽样分布服从________分布,当样本量足够大时。
10. 正态分布的参数估计中,均值μ的估计量是________。
三、简答题11. 简述点估计与区间估计的区别。
12. 描述最大似然估计法的基本原理。
13. 解释为什么在样本量较大时,样本均值的分布会接近正态分布。
14. 说明在进行区间估计时,置信水平和置信区间宽度之间的关系。
15. 描述如何使用样本数据来估计总体比例。
四、计算题16. 假设有一个样本数据集{2, 4, 6, 8, 10},请计算样本均值和样本方差。
17. 假设你有一个正态分布的样本,样本均值为50,样本标准差为10,样本量为100。
请计算总体均值的95%置信区间。
18. 假设你有一个二项分布的样本,样本量为200,样本比例为0.4。
请使用最大似然估计法估计总体比例。
19. 假设你有一个泊松分布的样本,样本量为100,总观察值为200。
请估计泊松分布的参数λ。
20. 假设你有一个均匀分布的样本,样本最小值为1,样本最大值为10。
统计学习题答案参数估计

第5章参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n=40,为大样本,样本均值=25,(1)样本均值的抽样标准差===0。
7906(2)已知置信水平1-=95%,得=1。
96,于是,允许误差是E ==1.96×0.7906=1.5496。
●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本.(3)假定总体标准差为15元,求样本均值的抽样标准误差;(4)在95%的置信水平下,求允许误差;(5)如果样本均值为120元,求总体均值95%的置信区间。
解:(1)已假定总体标准差为=15元,则样本均值的抽样标准误差为===2.1429(2)已知置信水平1-=95%,得=1.96,于是,允许误差是E ==1.96×2.1429=4.2000。
(3)已知样本均值为=120元,置信水平1-=95%,得=1.96,这时总体均值的置信区间为=120±4。
2=可知,如果样本均值为120元,总体均值95%的置信区间为(115。
8,124.2)元。
●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3。
1 6。
2 5.8 2。
3 4。
1 5.4 4。
5 3。
24。
4 2。
0 5。
4 2。
6 6。
4 1.8 3.5 5.7 2。
32。
1 1.9 1.2 5.1 4.3 4。
2 3.6 0。
8 1。
54。
7 1。
4 1.2 2。
9 3。
5 2.4 0.5 3.6 2。
5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
解:⑴计算样本均值:将上表数据复制到Excel表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到=3。
参数估计试题及答案

参数估计试题及答案一、选择题(每题10分)1. 在统计学中,参数估计是指:a) 对总体参数进行估计b) 对样本参数进行估计c) 对总体与样本参数进行估计d) 对无限制的参数进行估计2. 下列哪个方法可以用于参数估计?a) 极大似然估计b) 最小二乘估计c) 贝叶斯估计d) 所有上述方法3. 哪个估计方法被广泛应用于正态分布的参数估计?a) 极大似然估计b) 最小二乘估计c) 方法一与二皆可d) 都不对4. 在参数估计中,抽样误差是指:a) 由于样本选择的随机性引起的误差b) 对总体参数的估计误差c) 由于参数估计方法的限制引起的误差d) 都对5. 当总体方差未知时,参数估计常常采用:a) Z检验b) T检验c) F检验d) 卡方检验二、判断题(每题10分)判断下列陈述的正误,并简要说明理由。
1. 在参数估计中,估计量的无偏性意味着样本均值等于总体均值。
2. 极大似然估计方法只适用于正态分布的参数估计。
3. 参数估计的置信区间给出了总体参数的准确范围。
4. 使用最小二乘法进行参数估计时,要求误差项满足正态分布假设。
5. 参数估计方法的选择应根据研究对象和研究目的来确定。
三、填空题(每题10分)1. 参数估计的基本思想是通过样本信息来推断总体的____________。
2. 参数估计的精度通常通过计算估计值的____________来衡量。
3. 极大似然估计方法的核心思想是选择使得样本观测出现的概率最____________的参数值。
4. 估计量的____________性是指估计值的抽样分布的中心与参数真值之间的偏离程度。
5. 参数估计的优良性包括无偏性、____________和一致性。
答案:一、选择题1. a2. d3. a4. a5. b二、判断题1. 正确。
估计量的无偏性意味着估计值的期望等于总体参数的真值。
2. 错误。
极大似然估计方法不仅限于正态分布,适用于各种分布的参数估计。
3. 错误。
大学统计学第七章练习题及答案

大学统计学第七章练习题及答案第7章参数估计练习题从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。
样本均值的抽样标准差?x 等于多少? 在95%的置信水平下,边际误差是多少?解:⑴已知??5,n?40,x?25 样本均值的抽样标准差?x??n?540?10? 4⑵已知??5,n?40,x?25,?x?10,1???95% 4?Z?2?? 边际误差某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
假定总体标准差为15元,求样本均值的抽样标准误差;在95%的置信水平下,求边际误差;如果样本均值为120元,求总体均值?的95%的置信区间。
解.已知.根据查表得z?/2= 标准误差:E?Z?2?n?*10? 4?X??n?1549? .已知z?/2= 所以边际误差=z?/2*sn?* 1549= 置信区间:x?Z?2sn?120?1549???,? 1 从一个总体中随机抽取n?100的随机样本,得到x?104560,假定总体标准差??85414,构建总体均值?的95%的置信区间。
Z?? 2Z???96*854142n?? x?Z?.?104560?? 2n?x?Z??.?104560?? 2n置信区间:从总体中抽取一个n?100的简单随机样本,得到x?81,s?12。
构建?的90%的置信区间。
构建?的95%的置信区间。
构建?的99%的置信区间。
解;题意知n?100, x?81,s?12. 置信水平为1???90%,则Z?? 2公式x?zs??81??12 2n?100?81?即81???,?, 则?的90%的置信区间为~ 置信水平为1???95%,z?? 2公式得x?z??s2n=81??12100?81? 即81?=,则?的95%的置信区间为~ 置信水平为1???99%,则Z?? 2 2 s12公式x?z??=?81??0962n100?81?3.即81? 则?的99%的置信区间为利用下面的信息,构建总体均值的置信区间。
应用统计学课后习题与参考答案

应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)。
A.只能有一个标志B.只能有一个指标C.可以有多个标志D.可以有多个指标2.对100名职工的工资收入情况进行调查,则总体单位是(D)。
A.100名职工B.100名职工的工资总额C.每一名职工D.每一名职工的工资3.某班学生统计学考试成绩分别为65分、72分、81分和87分,这4个数字是(D)。
A.指标B.标志C.变量D.标志值4.下列属于品质标志的是(B)。
A.工人年龄B.工人性别C.工人体重D.工人工资5.某工业企业的职工数、商品销售额是(C)。
A.连续变量B.离散变量C.前者是离散变量,后者是连续变量D.前者是连续变量,后者是离散变量6.下面指标中,属于质量指标的是(C)。
A.全国人口数B.国内生产总值C.劳动生产率D.工人工资7.以下指标中属于质量指标的是(C)。
A.播种面积B.销售量C.单位成本D.产量8.下列各项中属于数量指标的是(B)。
A.劳动生产率B.产量C.人口密度D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?总体是“所有的网上购物者”。
(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。
(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。
(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。
(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。
2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。
总体:该商店销售的所有冰箱。
总体单位:该商店销售的每一台冰箱。
品质标志:型号、产地、颜色。
数量标志:容量、外形尺寸;数量指标:销售量、销售额。
质量指标:不合格率、平均每天销售量、每小时电消耗量。
参数估计习题及答案

参数估计习题及答案参数估计在统计学中是一个重要的概念,它涉及到根据样本数据来估计总体参数的过程。
下面,我将提供一些参数估计的习题以及相应的答案,以帮助学生更好地理解这一概念。
习题一:假设有一个班级的学生数学成绩,我们从这个班级中随机抽取了10名学生的成绩,得到样本均值 \(\bar{x} = 85\),样本标准差 \(s = 10\)。
请估计总体均值 \(\mu\)。
答案:根据样本均值 \(\bar{x}\) 来估计总体均值 \(\mu\),我们可以使用以下公式:\[ \hat{\mu} = \bar{x} \]因此,\(\hat{\mu} = 85\)。
习题二:在习题一中,如果我们想要估计总体方差 \(\sigma^2\),我们应该如何操作?答案:总体方差 \(\sigma^2\) 通常使用样本方差 \(s^2\) 来估计,样本方差的计算公式为:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]其中 \(n\) 是样本大小,\(x_i\) 是第 \(i\) 个观测值。
在这个例子中,\(n = 10\),\(\bar{x} = 85\),\(s = 10\)。
因此,我们可以使用以下公式来估计总体方差:\[ \hat{\sigma}^2 = s^2 = \frac{1}{10-1} \times 10^2 = 100 \]习题三:一个工厂生产的产品长度服从正态分布,样本均值为 \(\bar{x} =50\) 厘米,样本标准差为 \(s = 2\) 厘米。
如果我们知道总体均值\(\mu\) 为 \(50\) 厘米,我们如何估计总体标准差 \(\sigma\)?答案:根据已知的样本均值 \(\bar{x}\) 和样本标准差 \(s\),我们可以使用以下公式来估计总体标准差 \(\sigma\):\[ \hat{\sigma} = s \]因此,\(\hat{\sigma} = 2\) 厘米。
参数估计练习题

参数估计练习题参数估计练习题参数估计是统计学中的一个重要概念,它用于根据样本数据来估计总体参数的值。
在实际应用中,参数估计扮演着至关重要的角色,它可以帮助我们了解总体特征,并做出相应的决策。
本文将介绍一些参数估计的练习题,通过解答这些问题来加深对参数估计的理解。
1. 假设我们有一个服从正态分布的总体,我们希望估计其均值。
我们从该总体中抽取了一个样本,样本容量为n,样本均值为x̄,样本标准差为s。
请问,如何利用这些信息来估计总体均值的值?答:根据中心极限定理,当样本容量足够大时,样本均值的分布将近似于正态分布。
因此,我们可以使用样本均值x̄作为总体均值的估计值。
同时,我们可以计算样本均值的标准误差,即s/√n,来衡量估计的精确程度。
2. 在某个电商平台上,我们想要估计用户对某个产品的满意度。
我们从该平台上随机抽取了100个用户进行调查,他们对该产品的满意度进行了评分,评分范围为1到10。
请问,如何利用这些信息来估计用户对该产品的满意度的平均值?答:我们可以计算样本的平均得分,即样本均值x̄,作为用户对该产品满意度的估计值。
同时,我们可以计算样本均值的标准误差,即样本标准差s/√n,来衡量估计的精确程度。
此外,我们还可以计算样本的置信区间,来估计总体平均得分的范围。
3. 在某个城市的交通调查中,我们想要估计每天通勤时间的均值。
我们从该城市的不同地区随机抽取了100个通勤者,并记录了他们的通勤时间。
请问,如何利用这些信息来估计每天通勤时间的均值?答:我们可以计算样本的平均通勤时间,即样本均值x̄,作为每天通勤时间均值的估计值。
同时,我们可以计算样本均值的标准误差,即样本标准差s/√n,来衡量估计的精确程度。
此外,我们还可以计算样本的置信区间,来估计总体通勤时间均值的范围。
4. 在一项医学研究中,我们想要估计某种药物的治疗效果。
我们从患者中随机抽取了100个人,其中50人接受了药物治疗,另外50人接受了安慰剂。
《统计学》第10讲 参数估计(复习+习题)

(二)方差的区间估计
1.总体方差的区间估计
对于来自正态总体的容量为n的简单随机样本,统 计量 n 1s 2 / 2 服从自由度为 n 1 的卡方分布。
n 1 s 2
2
~ 2 n 1
总体方差在1- 置信水平下的置信区间为
2 n 1 s
2
2 2 2 2 s1 s2 s1 s2 , F 2 F1 2
F分布两个自由度
24
(三)总体比率区间估计
1.单样本比率的区间估计
当样本容量充分大时,样本比率p近似服从以总体比
率P为数学期望,以P(1-P)/n为方差的正态分布。
1. 样本比率的数学期望
E (p) P
2. 样本比率的方差
P (1 P ) n
n1 n2
18
( n1 3 0, n 2 3 0 )
大样本,方差已知(两个总体分布没有要求)
1. 两个样本均值之差 x 1 x 2 的抽样分布服从正态
分布,其数学期望为两个总体均值之差
E (x1 x 2 ) 1
2
2. 方差为各自的方差之和
2 x1 x 2
12 22 n1 n2
•
分别从两个独立的随机总体中抽取容量为n1和n2的 独立样本,当两个样本都为大样本时,两个样本比 率之差的抽样分布可用正态分布来近似。 数学期望为
• •
E ( p 1 p 2 ) P1 P 2
方差为各自的方差之和
27
2 p1 p 2
P1 (1 P1 ) P2 (1 P2 ) n1 n2
2
2 2 x n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简答题
1、矩估计的推断思路如何?有何优劣?
2、极大似然估计的推断思路如何?有何优劣?
3、什么是抽样误差?抽样误差的大小受哪些因素影响?
4、简述点估计和区间估计的区别和特点。
5、确定重复抽样必要样本单位数应考虑哪些因素?
计算题
1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准
2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。
要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少?
3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。
根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。
现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少?
4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25
公顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。
试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973)
5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下:
试推断:
(1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围
(2)以同样条件推断其合格率的可能范围
(3)比较两车间产品质量
6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求:
(1)计算样本合格品率及其抽样平均误差
(2)以95.45%的概率保证程度对该批产品合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其概率保证程度是多少?
7、某单位按重复抽样方式随机抽取40名职工,对其业务考试成绩进行检查,资料如下:
6889 88 84 86 87 75 73 72 68
7582 99 58 81 54 79 76 95 76
7160 91 65 76 72 76 85 89 92
6457 83 81 78 77 72 61 70 87
(1)根据上述资料按成绩分成以下几组:60分以下、60-70分、70-80分、80-90分、90-100分。
整理成变量分配数列。
(2)根据整理后的变量数列,以95.45%的概率保证程度推断全体职工业务考试成绩的区间范围。
(3)其他条件不变,将允许误差缩小一半,应抽取多少名职工?
参考答案
简答:
1、矩估计属于常用点估计法的一种,它的推断思路是认为样本矩等于总体矩。
这种推断方法的优势在于计算简便,适用范围广;其缺陷在于手段相对粗糙,估计结果不唯一,且在据镇估计体系内,无法判断不同估计量的优劣。
2、极大似然估计认为在一次单一的抽样实验中,该样本表现在所有可能的样本中,是出现概率相对最大的一个,通过对其概率的极值计算推断总体参数。
这种推断方法的缺陷在于,适用面较窄,对于某些分布形式或参数无效;其优势则在于计算相对精密,估计效果唯一。
3、抽样误差实际包含两个概念:一是指抽样平均误差,在数理上表现为样本平均数的标准差别,计算上表现为n
σ,仅具有理论意义;另一个是指抽样极限误差,在区间估计中表现为估计量
,其值由允许的置信度、描的浮动额度,计算上表现为n
Zσ
α2
述总体离散程度的标准差,和样本容量三个因素共同决定。
4、所谓点估计,是指估计结果表现为点值的估计方法,常用的有矩法和极大似然法;区间估计的结果则表现为域值。
除了结果表现形式上的区别外,两者对结果的评价方式也不同。
点估计只能够一些标准评价估计量的构造方式的优劣,不能对具体的一次估计结果进行评价;区间估计则可以对该次估计具体结果的可靠
程度进行度量,且结果的可信度与于估计的精确度之间存在某种非数量性的互补。
两者之间也存在一定的联系:区间估计是以点估计量和中心,向数轴两边等距离扩展,形成域值。
5、重复抽样条件下,能够满足指定精度和信度要求的样本最低容量计算公式为22)(∆=σ
αZ n ,式中可见,影响因素有三:分别为由要求信度决定的正态临界值αZ 、描述总体离散度的标准差σ,
和要求的估计精度∆。
计算:
1、两种点估计技术:
泊松分布: 矩估计:x e k x
x E k ===∑-λλλ!)(
极大似然估计:
极大似然函数为λλn k k L i i --=∑∑!ln ln ln
令其导数为0有0=-∑n k i λ,解得k =λ
正态分布: 矩估计:x x xf x E ===⎰μ)()(;2222)(1)(x x n Ex x E -=
=-=σσ 极大似然估计:
极大似然函数为222)(ln 2ln 2ln σμσπ∑
----=x n n L
令其导数为0有02=-∑σμ
x 和0)
(32=-+-∑σμσx n 两方程联立解得x =μ;n x x ∑-=22)(σ
2、不重复抽样下总体平均数的区间估计:
)1
1000100100010036.4896.150()1(222--⨯⨯±=--±∈N n N n s Z x αμ 3、样本容量的确定:
25)40
1002()(222=⨯=∆=σ
αZ n 4、总体平均数的区间的概率计算:
9545.0)22()25
12009000948025120090008520(=≤≤-=-≤-≤-Z P n s x P μ 5、总体平均数和比例的区间估计、双总体平均数比例差的估计:
(1)两个车间数据拟合(加权算术平均)有
567.1)()(212211=++=n n x n x n x ;453.0))(2122
22112=++=n n s n s n s )60453.02567.1()(1,2⨯±=±∈-n
s t x n αμ (2)93.0)()(212211=++=n n p n p n p
)60
)93.01(93.096.193.0())1((2-⨯⨯±=-±∈n p p Z p P α (3)))1()1()((2
221111,22121n p p n p p t p p P P n -+-±-∈--α 6、总体比例的参数、区间估计和概率计算:
(1)此处的样本合格品率明显是指此次试验得到的实证数据,因此有95.0200190==p ;抽样平均误差则是一个理论概念,描述的是样本比例作为一个随机变量的标准差,在重复抽样条件下其计算:200)95.01(95.0)1(2-⨯=-=n p p p σ;不重复抽样条件下需要有修正因子:120002002000200)95.01(95.01)1(2--⨯-⨯=--⨯-=N n N n p p p σ。
(2)重复)20005.095.0295.0())1((⨯⨯±=-±∈n p p Z p P α 不重复)12000200200020005.095.0295.0()1)1((2--⨯⨯⨯±=--⨯-±∈N n N n p p Z p P α 无论重复或不重复,合格品数量均为NP 。
(3)按题意0231.0)1(2=-n p p Z α 则05.095.02000231.0)1(0231.02⨯⨯=-=p p n Z α,查表可得α-1
7、数据整理、平均数区间估计和样本容量确定
(2)根据整理后的变量数列,以95.45%的概率保证程度推断全体职工业务考试成绩的区间范围。
(3)其他条件不变,将允许误差缩小一半,应抽取多少名职工?
根据分组数据计算,有77=x ,1112=s
)40111277()(2⨯±=±∈n s
Z x αμ 22)2(∆=s
Z n α,由式中可见,若要求允许误差减半,则要求样本容量应比原来扩大4倍。