导数各类题型方法总结
导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。
2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。
2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。
3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。
题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。
2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。
导数各类题型方法总结(绝对经典)

依题得
0 a 1,2a a 1
第三种:构造函数求最值 题型特征 : f (x) g(x)恒成立
f (x) g(x) 恒成立, 从而转化成第一、 二种处理方法
2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否 需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数) -----(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
3、根分布;
2
4、判别式法 f (x) x3 3ax2 3在R上单调递增,则a
5、二次函数区间最值求法:
(1)对称轴(重视单调区间)与定义域的关系
(2)端点处和顶点是最值所在
一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下四个步骤进行解决: 第一步:写定义域并求导 第二步:令导函数为0求根 第三步:列表或画图(注意又赋值) 第四步:作答求值。
1 1 3
3 4或1 1 1 3
t
3 4,
t
t
(i)0 t 2 3时, h(4) 0, t 1
1 t 2 3
4
4
(ii)t 2 3时, h(1 1) 0, t
此时 0, 2 3 t 2 3(舍去) 综上所述t的取值范围是1 t 2 3
--(已知谁的范围就把谁作为主元); 第三种:构造函数求最值
二、常考题型一:已知函数在某个区间上的单调性求参数的范围
解法一 : 转化为f '(x) 0或f '(x) 0恒成立,回归基础题型
解法二:利用子区间(即子集思想); 首先求出函数的单调增或减区间, 然后让所给区间是求的增或减区间的子集;
导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数各类题型方法总结(含答案)

导数各类题型⽅法总结(含答案)导数各种题型⽅法总结⼀、基础题型:函数的单调区间、极值、最值;不等式恒成⽴; 1此类问题提倡按以下三个步骤进⾏解决:第⼀步:令f '(x)0得到两个根;第⼆步:画两图或列表;第三步:由图表可知;其中不等式恒成⽴问题的实质是函数的最值问题, 2、常见处理⽅法有三种:第⼀种:分离变量求最值 -----⽤分离变量时要特别注意是否需分类讨论( >0,=0,<0)第⼆种:变更主元 (即关于某字母的⼀次函数)-----(已知谁的范围就把谁作为主元);例1:设函数y f (x)在区间D 上的导数为f (x), f (x)在区间D 上的导数为g(x),若在区间D4…、 x3mx 3x 2f (x)126 2(1 )若y f (x)在区间0,3上为“凸函数”,求m 的取值范围;(2)若对满⾜ m 2的任何⼀个实数 m ,函数f (x)在区间a,b 上都为“凸函数”,求b值?4 3^23 2x mx 3xx mx o解:由函数f (x)得f (x)3x12 6 23 2g (x) x 2 mx 3(1) Q y f (x)在区间0,3上为“凸函数”,贝V g(x) x 2 mx 30在区间[0,3]上恒成⽴解法⼀:从⼆次函数的区间最值⼊⼿:等价于g max (x)2x x 3 0 2 1 x 12x x 3 0上,g(x) 0恒成⽴,则称函数y f (x)在区间D 上为“凸函数”,已知实数 m 是常数, a 的最⼤g(0) g(3)3 0 9 3m 3 0解法⼆:分离变量法:0 时,g(x)x 3时,g(x) x 2 3 2x2 x mx mx3 0恒成⽴, 0恒成⽴等价于m -—3x由 3门⽽ h(x) x ( 0 xm 23的最⼤值x(0x3 )恒成⽴, 3 )是增函数,贝 y h max (x) h(3) 2(2) v 当 m 2时f (x)在区间a,b 上都为“凸函数”则等价于当m 2时g(x)2x mx 3 0恒成⽴变更主元法2再等价于F(m) mx x 32恒成⽴ (视为关于 m 的⼀次函数最值问题)F( 2) 0 F(2)例2:设函数f(x) 〔x3 2ax2 3a2x b(0 a 1,b R)3(I)求函数f (x)的单调区间和极值;(⼆次函数区间最值的例⼦)g(x) x2 4ax 3a2在[a 1,a 2]上是增函数.g(x)max g(a 2) 2a 1.g(x)min g(a 1) 4a 4.于是,对任意x [a 1,a 2],不等式①恒成⽴,等价于a 1.4⼜0 a 1, a 1.5点评:重视⼆次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成⽴h(x) f (x) g(x) 0恒成⽴;从⽽转化为第⼀、⼆种题型(n)若对任意的x [a 1,a 2],不等式f (x) a恒成⽴,求a的取值范围.x 3a x a3 3x=a 时,f(x)4b;由| f (x) |< a,得:对任意的[a 1,a 2], x2 4 ax 3a2 a恒成⽴①则等价于g(x)这个⼆次函数gmax(x) ag min(x) a2g(x) x24ax 3a的对称轴x 2a Q 0 a 1, a 1 2a (放缩法)g(x)这个⼆次函数的最值问题:单调增函数的最值问题。
导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,解得 k 20
1
3
综上,所求 k 的取值范围为 k 1 3
根的个数知道,部分根可求或已知。
例 7、已知函数 f (x)
3
ax
12 x
2x c
2
( 1)若 x 1 是 f ( x) 的极值点且 f (x) 的图像过原点,求 f ( x) 的极值;
( 2)若 g( x) 1 bx2 x d ,在( 1)的条件下,是否存在实数 b ,使得函数 g(x) 的图像与函 2
例 4:已知 a R,函数 f ( x) 1 x 3 a 1 x 2 ( 4a 1) x .
12
2
(Ⅰ )如果函数 g (x) f ( x) 是偶函数,求 f (x) 的极大值和极小值;
(Ⅱ )如果函数 f (x) 是 ( ,
) 上的单调函数,求 a 的取值范围.
解: f ( x) 1 x 2 (a 1)x (4a 1) . 4
(Ⅲ )当 x [1,4] 时,不等式 f ( x) g( x) 恒成立,求实数 t 的取值范围。
解:(Ⅰ) f / ( x) 3x2 2ax ∴ f / (1)
3,
a 解得
3
b1a
b2
(Ⅱ)由( Ⅰ)知, f (x) 在 [ 1,0] 上单调递增,在 [0,2] 上单调递减,在 [2,4] 上单调递减
(二次函数区间最值的例子) 解:(Ⅰ) f (x) x2 4ax 3a2
x 3a x a
0a1
f (x)
a
3a
a
3a
令 f ( x) 0, 得 f ( x) 的单调递增区间为( a,3a)
令 f ( x) 0, 得 f ( x) 的单调递减区间为(- , a)和( 3a,+ )
∴当 x=a 时, f ( x) = 极小值 3 a3 b; 4
导数各种题型方法总结
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决: 第一步:令 f ' ( x) 0 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中 不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种: 第一种:分离变量求最值 ----- 用分离变量时要特别注意是否需分类讨论( >0,=0,<0) 第二种:变更主元 (即关于某字母的一次函数) ----- ( 已知谁的范围就把谁作为主元 )
x
x
而 h(x)
x
3 (0
x 3 )是增函数,则 hmax ( x)
h (3)
2, m
2
x
(2)∵ 当 m 2 时 f ( x) 在 区 间 a,b 上 都 为 “凸 函 数 ” , 则 等 价 于 当 m 2 时
g (x) x2 mx 3 0 恒成立 变更主元法 再等价于 F (m) mx x2 3 0 在 m 2 恒成立 (视为关于 m 的一次函数最值问题)
1、 当 a 0时 , f ( x) ( x 1)2 0恒成立 ,
当且仅当 x 1 时取 “ =”号, f (x)在 ( , ) 单调递增。
2、 当 a 0时 ,由 f ( x) 0, 得 x1 1, x2 a 1,且x1 x2 ,
f (x)
单调增区间: ( , 1 )a, ( 1 ,
单调增区间: ( 1a, 1 )
x3
1 x2
2x
1 bx 2
x
1 (b 1) 整理得:
2
2
2
即: x3
1 (b
1) x 2
x
1 (b 1)
0 恒有含 x
2
2
(计算难点来了: ) h(x)
x3
1 (b
1) x 2
x
2
1 的三个不等实根
1 (b 1)
0 有含 x
2
1 (b 1)
2 1 的根,
则 h( x) 必可分解为 ( x 1)(二次式 ) 0 ,故用 添项配凑法因式分解,
-2
2
F ( 2) 0 F (2) 0
ba
2x x2 3 0 2x x2 3 0 2
1x1
例 2:设函数 f ( x)
1 x 3 2ax 2 3a 2x b(0 a 1, b R) 3
( Ⅰ)求函数 f( x)的单调区间和极值;
( Ⅱ)若对任意的 x [ a 1, a 2], 不等式 f (x) a 恒成立,求 a 的取值范围 .
解:(1)由题意 f ( x) x2 (k 1)x ∵ f ( x) 在区间 ( 2, ) 上为增函数,
∴ f (x) x2 (k 1) x 0在区间 (2, ) 上恒成立 (分离变量法)
即 k 1 x 恒成立,又 x 2 , ∴ k 1 2 ,故 k 1 ∴ k 的取值范围为 k 1
(2)设 h( x)
例 1:设函数 y f ( x) 在区间 D 上的导数为 f (x) , f ( x) 在区间 D 上的导数为 g( x) ,若在区
间 D 上, g ( x) 0恒成立,则称函数 y f (x) 在区间 D 上为 “凸函数 ”,已知实数 m 是常数,
4
3
2
f (x) x mx 3x
12 6 2
( 1)若 y f ( x) 在区间 0,3 上为 “凸函数 ”,求 m 的取值范围;
递增
极大值
递减
可知: f ( x) 的极大值为 f ( 2 3) 4 3 ,
极小值
递增
f (x) 的极小值为 f (2 3)
4 3.
(Ⅱ )∵函数 f (x) 是 ( ,
) 上的单调函数,
∴ f (x) 则
12 x
4 (a
( a 1) x (4a 1) 0 , 在给定区间 R 上恒成立 判别式法
1)2
又 f ( 1) 4, f (0) 0, f (2) 4, f (4) 16
∴ f (x) 的值域是 [ 4,16]
(Ⅲ)令 h( x) f (x) g ( x)
t x2 (t 1)x 3 x [1,4] 2
思路 1:要使 f ( x) g ቤተ መጻሕፍቲ ባይዱ x) 恒成立,只需 h( x) 0 ,即 t (x2 2x) 2x 6 分离变量
系;
第三步:解不等式(组)即可;
例 6、已知函数 f (x) 1 x3 (k 1) x 2 , g(x) 1 kx ,且 f (x) 在区间 (2, ) 上为增函数.
3
2
3
( 1) 求实数 k 的取值范围;
( 2) 若函数 f (x) 与 g( x) 的图象有三个不同的交点,求实数 k 的取值范围.
数 f ( x) 的图像恒有含 x 1 的三个不同交点?若存在,求出实数 b 的取值范围;否则说明理
由。 高 1 考 1 资 1 源 2 网 解:(1)∵ f ( x) 的图像过原点,则 f (0) 0 c 0
f ( x) 3ax2 x 2 ,
又∵ x 1 是 f ( x) 的极值点,则 f ( 1) 3a 1 2 0 a 1
( 2)若对满足 m 2 的任何一个实数 m ,函数 f ( x) 在区间 a, b 上都为 “凸函数 ”,求 b a 的
最大值 .
解 :由函数 f ( x)
x4
mx3
3x2 得 f (x)
x3
mx 2 3x
12 6 2
32
g( x) x2 mx 3
( 1) y f ( x) 在区间 0,3 上为 “凸函数 ”, 则 g ( x) x2 mx 3 0 在区间 [0,3]上恒成立
-1
a-1
(II )当 f (x)在 [0,1]上单调递增 , 则 0 , 1是上述增区间的
子集:
1、 a 0 时, f ( x)在 ( , ) 单调递增 符合题意
2、 0,1 a 1, , a 1 0 综上, a 的取值范围是 [0,1]。
a1
三、题型二:根的个数问题 题 1 函数 f(x)与 g(x)(或与 x 轴)的交点 ====== 即方程根的个数问题 解题步骤 第一步: 画出两个图像即 “穿线图 ”(即解导数不等式) 和 “趋势图 ”即三次函数的大致趋势 “是 先增后减再增 ”还是 “先减后增再减 ”; 第二步: 由趋势图结合交点个数或根的个数写不等式 (组);主要看极大值和极小值与 0 的关
解法一:从 二次函数的区间最值 入手:等价于 gmax (x) 0
g(0) 0 g(3) 0
30 m2
9 3m 3 0
解法二: 分离变量法:
∵ 当 x 0 时 , g( x) x2 mx 3 3 0 恒成立 ,
当 0 x 3 时 , g( x) x2 mx 3 0恒成立
等价于 m x2 3 x 3 的最大值( 0 x 3 )恒成立,
f (x) 3x2 x 2 (3 x 2)( x 1) 0
f (x)
3
2
22
f极大值 (x) f ( 1)
f 极小值 ( x ) f ( )
2
3
7
-1
2
3
( 2)设函数 g (x) 的图像与函数 f (x) 的图像恒存在含 x 1 的三个不同交点,
等价于 f (x) g( x) 有含 x 1 的三个根,即: f ( 1) g ( 1) d
思路 2:二次函数区间最值
二、题型一: 已知函数在某个区间上的单调性求参数的范围 解法 1: 转化为 f ' ( x) 0或 f ' ( x) 0 在给定区间上恒成立, 回归基础题型 解法 2:利用子区间(即子集思想) ;首先求出函数的单调增或减区间,然后让所给区间是求 的增或减区间的子集; 做题时一定要看清楚 “在( m,n)上是减函数 ”与“函数的单调减区间是( a,b) ”,要弄清楚两 句话的区别:前者是后者的子集