第六章 狭义相对论
合集下载
第六章狭义相对论

原长最长
2
l
l0
l0
u 1 2 c
运动长度 l l0
★ 注意:长度收缩只发生在速度方向
例4(4357)在O参照系中,有一个静止的正方
形,其面积为100cm2。观测者O’以0.8C的
匀速度沿正方形的对角线运动求O’所测得
的该图形的面积。 解:在O参照系中A、B间对角线长度
在O’参照系中A、B间长 度 ★ O’所测得的该图形的面积
u
例5(4370)在K惯性系中,相距 的两个地方发生两事件,时间间隔 而在相对于K系沿正 方向匀速运动的K’系中 观测到这两事件却是同时发生的。试计算:在 K’系中发生这两事件的地点间的距离是多少? 解1 :
解2 :
作业:P339~340 6.1 6.3
6.4
6.5 6.6
练习(5616)一列高速火车以速度 驶过车站时, 固定在站台上的两只机械手在车厢上同时划 出两个痕迹,静止在站台上的观察者同时测 出两痕迹之间的距离为1m,则车厢上的观察 者应测出这两个痕迹之间的距离为多少? 解:车上观察者测的两痕迹之间的距离 =原长 l0 静止在站台上的观察者同时测出两痕迹之间 的距离 =运动长 l
5 4 u2 1 2 c
0
(2)乙测得这两个事件发生的地点的距离
例2(4167) 子是一种基本粒子,在相对于它静 止的坐标系中测得其寿命为 ,如 果 子相对于地球的速度为 ( 为真空中光速),则在地球坐标系中测 出的 子的寿命 解:设:相对于 子静止的参照系为 S’
★ 在地球坐标系中测出的 子的寿命
两个事件的空间间隔 事件二:测量尺子(棒) 右端坐标
长度 右端坐标 — 左端坐标
★
在相对于尺子(棒)运动的参照系中要 条件: 同时记录尺子(棒)两端的坐标。 (如:相对于尺子(棒)运动的参照系是S’ 系 则: t1’ ) t2’ l x’ x ’
2
l
l0
l0
u 1 2 c
运动长度 l l0
★ 注意:长度收缩只发生在速度方向
例4(4357)在O参照系中,有一个静止的正方
形,其面积为100cm2。观测者O’以0.8C的
匀速度沿正方形的对角线运动求O’所测得
的该图形的面积。 解:在O参照系中A、B间对角线长度
在O’参照系中A、B间长 度 ★ O’所测得的该图形的面积
u
例5(4370)在K惯性系中,相距 的两个地方发生两事件,时间间隔 而在相对于K系沿正 方向匀速运动的K’系中 观测到这两事件却是同时发生的。试计算:在 K’系中发生这两事件的地点间的距离是多少? 解1 :
解2 :
作业:P339~340 6.1 6.3
6.4
6.5 6.6
练习(5616)一列高速火车以速度 驶过车站时, 固定在站台上的两只机械手在车厢上同时划 出两个痕迹,静止在站台上的观察者同时测 出两痕迹之间的距离为1m,则车厢上的观察 者应测出这两个痕迹之间的距离为多少? 解:车上观察者测的两痕迹之间的距离 =原长 l0 静止在站台上的观察者同时测出两痕迹之间 的距离 =运动长 l
5 4 u2 1 2 c
0
(2)乙测得这两个事件发生的地点的距离
例2(4167) 子是一种基本粒子,在相对于它静 止的坐标系中测得其寿命为 ,如 果 子相对于地球的速度为 ( 为真空中光速),则在地球坐标系中测 出的 子的寿命 解:设:相对于 子静止的参照系为 S’
★ 在地球坐标系中测出的 子的寿命
两个事件的空间间隔 事件二:测量尺子(棒) 右端坐标
长度 右端坐标 — 左端坐标
★
在相对于尺子(棒)运动的参照系中要 条件: 同时记录尺子(棒)两端的坐标。 (如:相对于尺子(棒)运动的参照系是S’ 系 则: t1’ ) t2’ l x’ x ’
第六章狭义相对论

′ = αλν αµσTνσ 二阶张量: Tλµ
对称张量: Tµν = Tνµ ,有10个独立分量(四维) 例如三维空间中对称张量:电四极矩张量Qij;转动惯量 张量I;材料力学中的应力张量 ;Maxwell应力张量;电 磁场动量流密度张量Tij等等。
Tµν = −Tνµ 只有6个独立分量,因为 Tµ µ=0 反对称张量:
三阶张量有43=64个分量:Tµνλ
三阶全反对称张量:Tµνλ ,若对每两个脚标都是反对称的 称之为三阶全反对称张量。即有二个及二个以上脚标相同 时矩阵元为零,共40个0元素,24个非零元素。 24个非零元素中只有4个独立元素T234,T314,T412 和 T123. 它们可用一个4维矢量表示。
A′ µ = α µν A ν
同意味着求和。
约定脚标希腊字母从1取到4,英文字母从1取到3,脚标相 这种约定求和的脚标如上式中ν称为“哑标”,对不参加求和 的脚标,如上式中的μ称为“自由脚标”。 等式两边的自由脚标必须对应。 由于哑标只表示对该脚标从1到4求和的一个约定,所以哑 脚标的字母可以更换,如上式中 A′ µ = α µν A ν = α任意一个二阶张量总可以分解为一个二阶对称张量和一个 二阶反对称张量之和”。 证明:设Tµ σ 为任意一个二阶张量,
Tµ σ = Tµ σ + Tσµ 2 + Tµ σ − Tσµ 2 = Sµ σ + Aµ σ
式中 S µ σ = S σµ 是对称张量,
A µ σ = − A σ µ 是反对称张量,证毕。
三维空间中反对称张量是两矢量叉乘出来的,又叫赝矢 r r r r r r r r r r r υ = ω× r,L = r × F , J = r × p 量。例如 B = ∇ × A , r r r r B, ω, L, J 构成三维空间的二阶反对称张量,因只有三个独 立分量故可用一矢量表示,叫赝矢量。 在坐标变换时不能当矢量处理,否则会出错。 在四维空间二阶反对称张量有六个独立分量,比空间维数 多2,不能用4-矢量表示。 坐标变换时必须还物理量的本来面目。 顺便指出:在正交变换下,对称张量保持为对称;反对称张量 保持为反对称。
第6章 狭义相对论简介

一、同时的相对性
v
A B
闪光 同时 到达A 、B镜子; 小兰看到: 闪光 先 到达A镜子, 后 达到B镜子; 小红看到: 由此可见:不同地点的“同时”是相对性(与惯性系有关)
闪 电
闪 电
先 发 生
v
若小红看到:两束闪电(闪光) 同时 击中车头和车尾; 车头 ,后击中_______ 则小兰看到:闪电先击中_______ 车尾 ; 所以:不同地点的“同时”是相对性(与惯性系有关)
◆相对惯性系做匀速直线运动的另一个参考系也是惯性系。
2、推论: ◆推论1: 通过任何力学实验,都不可能 证明惯性系是处于绝对静止还是 在做绝对匀速直线运动状态。
◆推论2:
任何惯性参考系都是平权的。
二、经典时空观、伽利略速度变换
1、经典时空观: (绝对时空观) 长度L 是 时间和空间彼此独立、互不关联, 时间t 是 且不受物质或运动的影响。 质量m 是 同时性是 2、伽利略速度变换: 绝对的 绝对的 绝对的 绝对的
若地面上小红观察到A、B两地有两个事件同时发生,对于 坐在火箭中沿A、B连线飞行的小兰来说,哪个事件先发生?
A事件先发生
A B
v
二、时间的相对性 (动钟变慢)
u t0
u
u
t
思考:小红测得的时间t 和小兰测得的时间t0 相等吗?
(不相等,t > t0)
狭义相对论的时间变换公式 发生在同一地点的参考系内 所测量的时间 t 称为固有时
v人地 v人车 v车地
3、狭义相对论产生的背景:
v人车
v车地
光速问题
三、狭义相对论的两个基本假设:
(爱因斯坦相对性原理) 1、第一条假设: 在任何惯性系参考系中,物理规律(包括力学和电磁学) 都是一样的。
v
A B
闪光 同时 到达A 、B镜子; 小兰看到: 闪光 先 到达A镜子, 后 达到B镜子; 小红看到: 由此可见:不同地点的“同时”是相对性(与惯性系有关)
闪 电
闪 电
先 发 生
v
若小红看到:两束闪电(闪光) 同时 击中车头和车尾; 车头 ,后击中_______ 则小兰看到:闪电先击中_______ 车尾 ; 所以:不同地点的“同时”是相对性(与惯性系有关)
◆相对惯性系做匀速直线运动的另一个参考系也是惯性系。
2、推论: ◆推论1: 通过任何力学实验,都不可能 证明惯性系是处于绝对静止还是 在做绝对匀速直线运动状态。
◆推论2:
任何惯性参考系都是平权的。
二、经典时空观、伽利略速度变换
1、经典时空观: (绝对时空观) 长度L 是 时间和空间彼此独立、互不关联, 时间t 是 且不受物质或运动的影响。 质量m 是 同时性是 2、伽利略速度变换: 绝对的 绝对的 绝对的 绝对的
若地面上小红观察到A、B两地有两个事件同时发生,对于 坐在火箭中沿A、B连线飞行的小兰来说,哪个事件先发生?
A事件先发生
A B
v
二、时间的相对性 (动钟变慢)
u t0
u
u
t
思考:小红测得的时间t 和小兰测得的时间t0 相等吗?
(不相等,t > t0)
狭义相对论的时间变换公式 发生在同一地点的参考系内 所测量的时间 t 称为固有时
v人地 v人车 v车地
3、狭义相对论产生的背景:
v人车
v车地
光速问题
三、狭义相对论的两个基本假设:
(爱因斯坦相对性原理) 1、第一条假设: 在任何惯性系参考系中,物理规律(包括力学和电磁学) 都是一样的。
大学物理第6章 狭义相对论基础

第6章
狭义相对论基础
1905年6月, A. Einstein发表 了长论文《论动体的电动力学》, 完整地提出了狭义相对性理论,即 狭义相对论。它是区别于牛顿时空 观的一种新的时空理论。
狭义(特殊)——只适用于惯 性参照系。 相对论和量子论是近代物理学的两大基础理论。
第6章 狭义相对论基础
狭义相对论的产生背景
3
x' x
Δt t2 t1
S' 系 (车厢参考系 )
y'
1
( x'1 , y '1 , z '1 , t '1 ) ( x '2 , y '2 , z '2 , t '2 )
u
12
2
12
o'9
3 6
9 6
3
x'
在一个惯性系同 时发生的两个事件, 在另一个惯性系是 否同时?
u Δt Δx c Δt 1
设 S系中x1、x2两处发生两事件,时间 间隔为 Δt t2 t1 .问 S′系中这两事件 发生的时间间隔是多少?
S 系 ( 地面参考系 ) 事件 1
( x1, y1, z1, t1 )
y
y'
1
12
u
12
事件 2
2
12
( x2 , y2 , z2 , t2 )
o o'9
3 6
9 6
3
9 6
例3 设想一光子火箭以 u 0.95c 速率相对地球作直线运动 ,火箭上宇航 员的计时器记录他观测星云用去 10 min , 则地球上的观察者测此事用去多少时间 ? 解 设火箭为 S 系、地球为 S 系
大学物理曲晓波-第6章 狭义相对论

x
x u t 1 u2 /c2
洛 仑
y
y
兹 z z
逆 变 换
t
t
ux c2
1 u2 /c2
洛伦兹逆变换只是把洛伦兹变换中的u→ - u,x与x’,
y与y’,z与z’交换位置。
说明:
①洛伦兹变换表示同一事件在不同惯性系中时空坐标的变换关系。 规定每个惯性系使用对该系统为静止的时钟和尺进行量度。
在所有惯性系中,物理定律的表达形式都相同。这就是爱因 斯坦相对性原理,即相对性原理。
此原理说明所有惯性系对于描述物理规律都是等价的,不存 在特殊的惯性系。可以看出,爱因斯坦相对性原理是力学相对 性原理的推广。
由此可得出,在任何惯性系中进行物理实验,其结果都是一 样的,运动的描述只有相对意义,而绝对静止的参考系是不存 在的。因此不论设计力学实验,还是电磁学实验,去寻找某惯 性系的绝对速度是没有意义的。
S 系v 中 x d d x t,v y d d y t,v z d d z t
v
x
vx 1
u
uvx c2
速 度 变 换
v
y
vy
1 u2 /c2
1
uvx c2
v
z
vz
1 u2 /c2
1
uvx c2
vx
v
x
1
u
u v x c2
速 度 逆 变 换
v
y
v
y
1 u2 /c2Biblioteka 1u v x c2
vz
v
z
1 u2 /c2
1
u v x c2
讨论:
①当u,v(vx,vy,vz)远小于光速c时,相对论速度变换式退化
第6章狭义相对论基础

设相对S’系静止有一光脉冲仪
Mo
d
发射光信号与接受光信号时间差 o
t' 2d
X’
c
发射与接受在同一地点
t ' 称之为固有时或本征时,常用 o
在S系中观察,光脉冲仪以 u 向右运动
光脉冲走的是一个三角形的两边,每边长为
d 2 ( ut )2 2
Su Y
t 2 2 d 2 ( ut )2
由洛仑兹逆变换
t
t
u c2
x
1
u2 c2
t
1
u2 c2
x 0
t
1
>1
1
u2 c2
t
原时最短
长度缩短
对运动长度的测量问题。 怎么测? 同时测。
S S
u
l0
原长:棒静止时测得的它的长度 也称静长
棒静止在 S 系中, l0 静长
S
事件1:测棒的左端 事件2:测棒的右端
1
u2 c2
同时性的相对性
x2 x1 t2 t1
5) 时序,因果关系
x2 x1 t2 t1
6) 由洛仑兹变换看时间膨胀 长度缩短
时间膨胀 研究的问题是: 在某系中,同一地点先后发生的两个事件的时间 间隔(同一只钟测量) ,与另一系中,两个地点发 生的两个事件的时间间隔(两只钟分别测量)的关系。
零结果
c
1
u2 c2
1
u2 c2
b 2
否定以太存在 否定伽利略变换
M2
cu
a2 a1 M1
1 b1
C2 u2
b 1
狭义相对论

不存在特殊方向. b.时空均匀性:同参照系中空间间隔(即二事件发生地间距离)与
坐标位置无关,时间间隔与时空位置无关.
2.间隔不变性:
事件p1和p2:在 :(x1, y1, z1,t1), (x2 , y2 , z2 ,t2 )
: (x1, y1, z1,t1), (x2, y2 , z2 ,t2)
两朵小乌云: 迈克耳逊——莫雷“以太漂移”实验
黑体辐射实验
狭义相对论 量子力学
近代物理学的两大 支柱,逐步建立了 新的物理理论。
强调:
近代物理不是对经典理论的补充,是全新的理论。
近代物理不是对经典理论的简单否定。
§6.1相对论的实验基础
一.伽利略的相对性原理
1.伽利略变换:
设以v相对于运动,t=0时,两坐标系原点重合
2.光速不变原理:真空中的光速在任意惯性系中沿各
个方向均为c,与光源运动无关.
• 说明: • ⑴它否定了经典速度公式,即否定伽利略变换。 • ⑵光的速度大小与参照系无关,但方向在不同参照系中
可以不同。 • ⑶光速数值不变,则不同参照系中时间、空间、尺度关系
不同。
狭义相对论原理与经典时空的不同:
'
按照二事件间隔将相对论时空划分为三个区域. (1)类时区域(类时间隔):
s2 0,即c2t2 x2
x 2
二事件可用小于光速的信号联系,信号速度 u
c
t
(2)类空区域: s2 0,即c2t2 x2 ,u c,这种讯号不存在
(3)类光区域:s2 0, u c
类空
类时 类空
类时
系中静止。 • 在以太中静止的物体为绝对静止,相对以太运动的物体为
绝对运动。
二.相对论实验基础:
坐标位置无关,时间间隔与时空位置无关.
2.间隔不变性:
事件p1和p2:在 :(x1, y1, z1,t1), (x2 , y2 , z2 ,t2 )
: (x1, y1, z1,t1), (x2, y2 , z2 ,t2)
两朵小乌云: 迈克耳逊——莫雷“以太漂移”实验
黑体辐射实验
狭义相对论 量子力学
近代物理学的两大 支柱,逐步建立了 新的物理理论。
强调:
近代物理不是对经典理论的补充,是全新的理论。
近代物理不是对经典理论的简单否定。
§6.1相对论的实验基础
一.伽利略的相对性原理
1.伽利略变换:
设以v相对于运动,t=0时,两坐标系原点重合
2.光速不变原理:真空中的光速在任意惯性系中沿各
个方向均为c,与光源运动无关.
• 说明: • ⑴它否定了经典速度公式,即否定伽利略变换。 • ⑵光的速度大小与参照系无关,但方向在不同参照系中
可以不同。 • ⑶光速数值不变,则不同参照系中时间、空间、尺度关系
不同。
狭义相对论原理与经典时空的不同:
'
按照二事件间隔将相对论时空划分为三个区域. (1)类时区域(类时间隔):
s2 0,即c2t2 x2
x 2
二事件可用小于光速的信号联系,信号速度 u
c
t
(2)类空区域: s2 0,即c2t2 x2 ,u c,这种讯号不存在
(3)类光区域:s2 0, u c
类空
类时 类空
类时
系中静止。 • 在以太中静止的物体为绝对静止,相对以太运动的物体为
绝对运动。
二.相对论实验基础:
第6章狭义相对论

1905 年爱因斯坦在《论动体的电动力学》中提 出两条基本原理:
1. 物理规律对所有惯性系都是一样的。
这后来被称为爱因斯坦相对性原理。
2. 任何惯性系中,真空中光的速率都为 c 。
这一规律称为光速不变原理。 光速不变原理与伽利略变换是彼此矛盾的, 若保持光速不变原理,就必须抛弃伽利略变换, 也就是必须抛弃绝对时空观。
力学相对性原理的另一种表述: 在一个惯性系内部 所作的任何力学的实验都不能区分这一惯性系本身 是在静止状态还是在作匀速直线运动状态。
6
2. 经典力学的绝对时空观
(1)同时性是绝对的。
S系:两事件同时发生,S 系:也是同时发生。 (2)时间间隔是绝对的。
t1 t 2 t1 或写为 t t t2
8
—— 常量
根据伽利略变换,光在不同惯性系中速度不同。
那么在哪个参考系中才是标准光速? 经典理论中认为光在以太中传播,于是以太可以 被视为“绝对静止参考系”。也即通过光学实验, 可以区分惯性系的运动状态。
9
于是必然导致以下结论之一: 一、麦克斯韦方程组不正确。
二、麦克斯韦方程组在伽利略变换下不满足力 ? 学相对性原理。
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c
23
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c t t u2 1 2 c
ux t ( t 2 ) c ( x 0 )
u 1 2 c
2
1
2
19
1 u 1 2 c
2
1 1
2
如果u≥c,则 就变为无穷大或有虚数值,这显然 是没有物理意义的。 因而得出推论:任何物体相对于另一物体的速 度不可能等于或大于真空中的光速。即真空中的光 速c是一切物体运动速度的极限。 这一推论与实验符合,也符合因果律的要求。
1. 物理规律对所有惯性系都是一样的。
这后来被称为爱因斯坦相对性原理。
2. 任何惯性系中,真空中光的速率都为 c 。
这一规律称为光速不变原理。 光速不变原理与伽利略变换是彼此矛盾的, 若保持光速不变原理,就必须抛弃伽利略变换, 也就是必须抛弃绝对时空观。
力学相对性原理的另一种表述: 在一个惯性系内部 所作的任何力学的实验都不能区分这一惯性系本身 是在静止状态还是在作匀速直线运动状态。
6
2. 经典力学的绝对时空观
(1)同时性是绝对的。
S系:两事件同时发生,S 系:也是同时发生。 (2)时间间隔是绝对的。
t1 t 2 t1 或写为 t t t2
8
—— 常量
根据伽利略变换,光在不同惯性系中速度不同。
那么在哪个参考系中才是标准光速? 经典理论中认为光在以太中传播,于是以太可以 被视为“绝对静止参考系”。也即通过光学实验, 可以区分惯性系的运动状态。
9
于是必然导致以下结论之一: 一、麦克斯韦方程组不正确。
二、麦克斯韦方程组在伽利略变换下不满足力 ? 学相对性原理。
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c
23
ux 22 ) t 2 (t 2 c ux1 2 ) t1 ( t1 c t t u2 1 2 c
ux t ( t 2 ) c ( x 0 )
u 1 2 c
2
1
2
19
1 u 1 2 c
2
1 1
2
如果u≥c,则 就变为无穷大或有虚数值,这显然 是没有物理意义的。 因而得出推论:任何物体相对于另一物体的速 度不可能等于或大于真空中的光速。即真空中的光 速c是一切物体运动速度的极限。 这一推论与实验符合,也符合因果律的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 ut1 1 u2 c2
[(x2 x1) u(t2 t1)]
因为需同时测得杆两端长度,所以t1=t2
L
x2 x1 1 u2 c2
L 1 u2 c2
L 1 u2 c2 L
观测者与被测物体相对静止时,长度的测量值最大,
叫固有长度(L0),观测者与被测物体有相对运动时,测
得的长度等于其固有长度的 缩效应。
( x2,t2)
解:设地面为S系,火车为S´系
在S´系中观测
t1'
t1
u c2
x1
1 u2 c2
(x1 ,t1)
( x2,t2)
t
' 2
t2
u c2
x2
1 u2 c2
t
' 2
t1'
(t2
t1 )
u c2
( x2
1 u2 c2
x1 )
∵ t1 = t2 x1 < x2 ∴ t1´ > t2´
c2 t2 t1
x2 x1 为子弹飞行的速率,小于c t2 t1
所以
t2' t1' 0
飞船上的观察者也看到子弹先出膛,后击中靶子
由于真空中的光速c是物体运动或信息传递速度 的极限,因此对于有因果关系的两个事件,不会 因参考系的不同而使因果顺序颠倒。
二 时间膨胀(动钟变慢)
u
y
y'
S
S'
质量乘光速的平方 E = mc2 。
本章内容提要
第一节 伽利略变换和经典力学时空观 第二节 狭义相对论的基本假设
洛仑兹变换 第三节 狭义相对论的时空观 第四节 狭义相对论动力学
第一节 伽利略变换和经典力学时空观
一 伽利略相对性原理(Galileo principle of relativity )
dr
d (mv)
dt
dr
v
0 d (mv) v
d
(mv)
v
dmv
v
mdv
v
v2dm
mvdv
由质速关系可得
m2
m0 2 1 v2 c2
m2 (c2 v2 ) m02c2
m2v2 m2c2 m02c2
对上式两边取微分
2v2mdm 2m2vdv 2c2mdm
v2dm mvdv c2dm
Ek
m c2dm
m0
mc2
m0c 2
此式为相对论动能公式
Ek mc2 m0c2 m0c2 (
1
1)
1 v2 / c2
当 v<<c 时,可将(1 v2 / c作2 )泰12勒展开
(1
v2 c2
1
)2
1
1 2
v2 c2
3 v4 8 c4
取前两项代入上式
Ek
m0c2 (1
1 2
v2 c2
1)
洛仑兹速度变换
vx'
vx u 1 uvx / c2
v
' y
vy 1u2 / c2 1 uvx / c2
或
vz'
vz 1 u2 / c2 1 uvx / c2
vx
vx' u 1 uvx' / c2
vy
v'y 1 u2 / c2 1 uvx' / c2
vz
vz' 1 u2 / c2 1 uvx' / c2
倍。1这 u个2 c效2 应叫长度收
L L0
1u2
c2
L0
物体沿其运动方向缩短了
例三 隧道和列车静止时长度相等。现列车以速度u高 速通过隧道。地面上的观察者观测到当列车完全进入 隧道时,隧道的进、出口处同时发生了雷击,当然并 未击中列车,问列车上的旅客会观测到列车遭到雷击 了吗?
(x1 ,t1)
1971 年 , 美 国空军用两组 CS ( 铯 ) 原 子 钟绕地球一周, 得到运动钟变 慢 : 20310ns , 而理论值为: 184 23ns , 在误差范围内 二者相符。
例二 有两只事前对准的完全相同的钟A、B。A钟放 在宇宙飞船内,B钟留在地面上。飞船在某日上午8时 出发,以 3的c 速度相对地球飞行。宇航员经过1小时 飞行后,看2到A钟指到9时整。问地面上的观测者看到 B钟此刻指在几点。
m
m0 1 v2 c2
m0 称为静质量
m 称为相对论质量
二 . 相对论动力学基本方程
相对论动量:
P mv
m0v 1 v2 c2
F
ma
m
dv
d (mv)
dp
dt
dt
dt
F
dp
dt
d( dt
m0v ) 1 v2 c2
此式称为相对论动力学基本方程
三 . 相对论动能
Ek
F
x' x ut
由
y' y z' z
t' t
r r
在伽利略变换下时间和空间均与参考系的运 动状态无关,时间和空间之间互不相联系,是绝 对的,这就是经典力学的时空观,也称为绝对时 空观。伽利略变换是其具体体现。
返回
第二节 狭义相对论的基本假设 洛仑兹变换
一 狭义相对论产生的背景和条件
u c c u
L0
0
方法二:设火车为S系,地面为S´系,则S系中 任意时刻车头均在L0处。
S´系:A(0,0);B( L0,0) S系:A(0,0);B( L,t)
xB xB (utB ) xB L0
tB
tB
(
u c2
xB
)
u c2
L0
u c2
L0
0
第四节 狭义相对论动力学
一. 质速关系
解:设地球为S系,飞船为S´系
0 1h
0
1
2h
1u2 c2
1 ( 3 c)2 / c2 2
所以 B 钟指10点整
三 长度收缩
y
S
u
y' S'
o
z
o' x1´
z'
x2´ x 'x
在S´系中 在 S 系中
L x2' x1' L x2 x1
L x2' x1' x2 ut2 1 u2 c2
当 x1 x2 时
u( x1 x2 )
t t2' t1'
c2 0 1 u2 c2
在一个惯性系中同时同地发生的两个事件,在其 他的惯性系中观测也是同时发生的。
例一 一射击运动员在t1时刻扣动扳机,t2时刻子弹 击中百米以外的靶子。问在以速率u相对于地球运动 的宇宙飞船上观测,是否会出现子弹先击中靶子而 后出膛的现象。
解:设地球为S系,飞船为S`系
t1
t2
x1
x2
t2 t1
t1'
t1 ux1 c 2 1 u2 c2
t
' 2
t2 ux2 c 2 1 u2 c2
tx11
tx22
t2 t1
t2' t1'
(t2
t1)
u c2
( x2
x1 )
1 u2 c2
t2 t1 (1 u x2 x1 )
1u2 c2
1905 年 , 除 去 博 士 论 文 外,爱因斯坦连续发表了4 篇重要论文,其中任何一篇, 都够得上拿诺贝尔奖。
3月,发表了解释光电效应的论文,提出光子说;
5月,发表关于布朗运动的论文,间接证明了分子 的存在;
6月,发表“论运动媒质的电动力学”的论文,提 出了狭义相对论;
9月发表了有关质能关系式的论文,指出能量等于
v
'
S系
vz'
vz
v u
F ma
a
' x
ax
a'y ay
aa'z'
S`系
az a F
ma
三 经典力学的时空观
(1)同时性是绝对的
y
St
A
y' u
S'
B
o
o'
x
x'
z
t1' t t2' t
z' t1' t2' 或t t '
(2)时间间隔是绝对的
S y t1
A
y' u
S'
t2 B
o
A
o
z
o' x
z'
B
x'
设S´系中x0´处先后发生二事件A、B
A: t1´ B: t2´
t t2' t1'
在S系中这两个事件发生的时刻分别为t1和t2
t t2 t1
t' 2
ux0' c 2
1 u2 c2
t' 1
ux0'
c2
1 u2 c2
t2' t1' t
1u2 c2
1u2 c2
在与事件发生地点相对静止的参考系中测得
x x ut 1u2 / c2
x x ut 1u2 / c2
y y
或
z z
t t ux / c2 1u2 /c2
y y
z z
t t ux / c2 1u2 /c2
t'
t ux c2 1 u2 c2
因为 t 必须是实数,所以速率u必须满足
1
u c
2 2
0
uc
一切物体的运动速度都不能超过真空中的光速c, 或者说真空中的光速c是物体运动的极限速度。