分层抽样案例

合集下载

逐渐深入研究,借助问题翻转——以“分层抽样”教学设计为例

逐渐深入研究,借助问题翻转——以“分层抽样”教学设计为例

精品案例逐渐深入研究,借助问题翻转———以“分层抽样”教学设计为例文|王玉娟“分层抽样”是湖南教育出版社遵循《普通高中数学课程标准(2017年版2020年修订)》确立的基本理念和目标要求,2019年国家教材委员会专家委员会审核通过的数学(必修第一册)第6章“统计学初步”中第二节部分6.2“抽样”中第二节课的内容,对于统计数据的收集与应用起到关键作用。

一、教学内容分析(一)地位与作用分层抽样是在学习了简单随机抽样的基础上,主要介绍分层抽样的概念以及如何实施分层抽样。

综合两种不同的抽样方法,为统计数据的收集与应用提供条件,为学习数据的典型性和代表性奠定了基础。

这也为后续统计知识的学习起到承上启下的作用。

(二)重点、难点重点:正确理解分层抽样的定义以及对应的操作步骤,并会选取恰当的抽样方法来解决统计中的一些现实抽样问题。

难点:掌握分层抽样的实施步骤;会计算总体平均数;两种抽样方法的比较及选择。

二、学情分析学生已学习过简单随机抽样,但对设计合理的抽样方法,以使样本具有良好代表性的意识还不强。

学生对于分层的标准理解不清晰,一定程度影响着教学目标的完成。

三、教法学法分析教法:启发探究、互动讨论。

学法:自主探究、合作交流、归纳总结。

四、教学过程(一)教学流程设计(二)教学过程设计音环节一:回顾旧知,引入新课问题1:回顾简单抽样的概念、特点和常用方法。

概念:简单随机抽样的概念(略)。

特点:样本中的总体个数有限,逐个进行抽取,机会均等抽样;不放回抽取。

常用方法:抽签法和随机数法。

注意:抽样调查最核心的问题是样本的代表性,简单随机抽样是使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性有可能会出现比较“极端”的样本。

(设计意图:通过复习上节所学知识,引入本节新课。

建立知识之间的联系,提高学生的概括、类比推理能力)问题2:在上节课的情境三《1936年美国大选》中,当地杂志对候选的结果产生错误的预测,究其注:本文系白银市教育科学“十四五”规划2023年度课题“微课在高中数学翻转课堂教学中的应用研究”(课题编号:BY [2023]G261)的研究成果。

典型的抽样方法(案例)

典型的抽样方法(案例)

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法。

例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查。

但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一. 简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。

在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。

这就是抽签法,与直接抽样法类似。

另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算当然,随机抽样也有不足之处,它只适用于总体单位数量有限的情况,否则编号工作繁重;对于复杂的总体,样本的代表性难以保证;不能利用总体的已知信息等。

分层抽样典例剖析

分层抽样典例剖析

《分层抽样》典例剖析一、分层抽样的步骤第一步,将总体按一定标准进行分层;第二步,计算各层的个数与总体的个数的比;第三步,按各层个体数占总体的比确定各层应抽取的样本容量;第四步,在每一层进行抽样.二、典型剖析例1 某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.分析. 因个体差异较大,故采用分层抽样法.解. 因机构改革关系到各人的不同利益,故采用分层抽样的方法为妥.∵100520=,1025=,70145=,2045=,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数表法抽取14人.说明. 分层后,各层的个体数较多时,可采用系统抽样或随机数表法抽取各层中的个体,一定要注意按比例抽取.例2. 在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本,分别用三种方法计算总体中每个个体被抽取的机会是多少?解法1. 简单随机抽样法. 因为总体中的个体数120N=,样本容量20n=,故每个个体被抽取的机会为16.解法2. 系统抽样法. 将120个零件分成120620k==,即6个零件一组,每组取1个,显然每个个体被抽到的机会均为16.解法3. 分层抽样法. 由于一、二、三级品之比为2:3:5,所以320610⨯=,320610⨯=,5201010⨯=,故分别从一、二、三级品中抽取4个、6个、10个,每个个体被抽到的机会分别为424,636,1060,即都是16. 说明. 三种抽样方法的共同点是每个个体被抽到的机会都相等.例析三种抽样方法统计的基本思想方法是用样本估计总体,即用局部推断整体,这就要求样本应具有很好的代表性,而样本的良好客观的代表性,则完全依赖于抽样方法,而弄清简单随机抽样、系统抽样和分层抽样的客观合理性,才会在不同的情况下采用适当的抽样方法.下面举例解析这三种抽样方法.例1 经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多_____人.解析. 设班里“喜欢”摄影的同学有人,“一般”的有人,“不喜欢”的有12x -人,则121353x x y x -⎧=⎪⎪⎨⎪=⎪⎩,,解得1830.x y =⎧⎨=⎩, ∴全班共有3018654++=人,又543032-=. ∴“喜欢”摄影的比全班人数的一半还多3人.例2 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况. ①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是().(A)②、③都不能为系统抽样(B)②、④都不能为分层抽样(C)①、④都可能为系统抽样(D)①、③都可能为分层抽样解析. 由定义知,①、③为分层抽样或系统抽样;②为分层抽样或简单随机抽样;④为简单随机抽样.故答案选(D).例3 某服装厂平均每小时大约生产服装362件,要求质检员每小时抽取40件服装检验其质量状况,请你设计一个调查方案.分析. 因为总体中的个体数较多,并且总体是由没有明显差异的个体组成,所以本题宜采用系统抽样法.解. 第一步. 把这些服装分成40组,由于的商是9,余数是2,所以每个组有9件服装还剩2件服装,这时分段间隔就是9.第二步. 先用简单随机抽样的方法从这些服装中抽取2件服装不进行检验.第三步. 将剩下的服装进行编号,编号分别为0、1、2、 (359)第四步. 从第一组(编号分别为0、1、…、8)的服装中按照简单随机抽样的方法抽取1件服装,比如,编号为.第五步. 依次抽取编号分别为下面数字的服装、、18k+、…、k+、27k+⨯,这样就抽取了一个容量为40的样本.399点评. 本题总体中的个体数较多,可用系统抽样的方法抽取,每组9件还余2件,先随机去掉2个不影响抽样的合理性,后面学习了概率的知识后可进行证明.解决抽样问题,最关键的问题是分析清楚哪一种抽样方法最合适,简单随机抽样适用于总体中的个体数较少;系统抽样适用于总体中的个体数较多,并且总体是由没有明显差异的个体组成;分层抽样适用于总体由差异明显的几部分组成.注意. 在系统抽样时,如果不能平均分组,则可以剔除多余的个体,这并不影响抽样的公平性;在分层抽样时,若某一部分不能均衡分配,也可以剔除多余的个体,这也不影响抽样的公平性.。

例题_分层抽样

例题_分层抽样

例2:一个地区共有5个乡镇,人口3万人,其中人口 比例为3:2:5:2:3,从3万人中抽取一个300人的 样本,分析某种疾病的发病率,已知这种疾病与不同 的地理位置及水土有关,问应采取什么样的方法?并 写出具体过程. 解:因为疾病与地理位置和水土均有关系,所以不同 乡镇的发病情况差异明显,因而采用分层抽样的方法 . 具体过程如下: (1)将3万人分为5层,其中一个乡镇为一层. (2)按照样本容量的比例求得各乡镇应抽取的人数 分别为60人、40人、100人、40人、60 人. (3)按照各层抽取的人数随机抽取各乡镇应抽取的 样本. (4)将300人组到一起,即得到一个样本.
某学校青年志愿者协会共有250名成员其中高一学生88名高二学生112名高三学生50名为了了解志愿者活动与学校学习之间的关系需要抽取50名学生进行调查试确定抽取方法并写出过程
【例题解析】 例1.某高中共有900人,其中高一年级 300人,高二年级200人,高三年级400 人,现采用分层抽样抽取容量为45的 样本,那么高一、高二、高三各年级 抽取的人数分别为( D ) A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20
Hale Waihona Puke 例3:某学校青年志愿者协会共有250名成员, 其中高一学生88名,高二学生112名,高三学 生50名,为了了解志愿者活动与学校学习之 间的关系,需要抽取50名学生进行调查,试 确定抽取方法,并写出过程. 解:由于各年级的学习情况不同,因此应采 用分层抽样。由于青年人志愿者由三个年级 的学生组成,故分三层进行抽样。因为 50/250=1/5,所以高一年级抽取 88*1/5=17.8=18(人);在高二年级抽取 112*1/5=22.4=22(人);在高三年级抽取 50*1/5=10(人).

分层抽样案例

分层抽样案例

分层抽样案例分层抽样是一种常用的抽样方法,其主要目的是在保证样本的代表性的同时,减少样本调查的成本和工作量。

下面以某公司人力资源部门进行员工满意度调查为例,来说明分层抽样的应用。

某公司人力资源部门计划进行员工满意度调查,以了解员工对公司的态度和对工作环境的满意程度,并据此采取相应的措施提高员工的工作积极性和工作效率。

为了保证所得的样本数据具有代表性,我们可以采用分层抽样的方法。

首先,我们需要将员工按照不同的部门进行划分。

假设公司有3个部门:销售部、技术部和财务部。

这些部门在公司中起到不同的作用,员工的背景和工作内容也存在差异。

因此,按照部门进行分层划分,可以保证抽样样本能够代表整个员工群体。

其次,在每个部门中,我们可以进一步划分不同的职位层级。

例如,在销售部门,可以将员工分为销售代表、销售主管和销售经理等层级。

这样的划分可以反映不同职位层级的员工对工作满意度的不同。

在技术部和财务部也可以依据不同的职位层级进行划分。

接下来,我们需要确定每个层级中要抽取的样本量。

样本量的确定可以根据每个部门中不同层级员工的比例进行合理划分。

例如,如果销售部门共有100名员工,销售代表占比60%,销售主管占比30%,销售经理占比10%,那么在抽取样本时,我们可以按照这个比例来确定每个层级的样本量。

最后,在每个层级中,我们可以通过简单随机抽样的方法来选取相应数量的样本。

例如,在销售部门中,有60名销售代表,我们可以随机选取20名销售代表作为样本。

同样地,在技术部和财务部的每个职位层级中,也可以采取相同的抽样方法。

通过以上的分层抽样方法,我们可以保证样本的代表性,并且减少了调查的成本和工作量。

在调查过程中,还可以进一步分析不同部门和职位层级之间的员工满意度差异,为公司提供宝贵的参考意见。

总之,分层抽样是一种有效的抽样方法,可以在满足样本代表性的同时,减少调查成本和工作量。

在人力资源调研中,合理运用分层抽样方法可以为公司提供准确的数据支持,帮助改善员工的工作环境和提高员工的满意度。

分层抽样(计算详解)

分层抽样(计算详解)

实验题目:1、某居委会辖有三个居民新村,居委会欲对居民购买彩票的情况进行调查。

调查者考虑以新村分层,在每个新村中随机抽取了10个居民户并进行了调查每户最近一个月购买彩票花费的金额(元),下表为每个新村及调查的情况:请估计该小区居民户购买彩票的平均支出,并给出估计的标准差。

给出95%的置信区间,并与简单随机抽样进行精度比较。

2、随着经济发展,某市居民正在悄悄改变过年的习惯,虽然大多数居民除夕夜在家吃年夜饭、看电视节目,但是有些家庭到饭店吃年夜饭,或逛夜市,或用过年的假期到外地旅游。

为研究这种现象,某研究机构以市中心165万居民户作为研究对象,将居民户按6个行政区分层,每个行政区随机抽取了30户居民户进行了调查(各层抽样比可以忽略),每个行政区的情况以及在家吃年夜饭、看电视节目的居民户比例如下表:试估计该市居民在家吃年夜饭的比例,并给出估计的标准差。

9.030273011===a p933.030283022===a p9.030273033===a p 867.030263044===a p933.030283055===a p 967.030293066===a p867.0*09.09.0*14.0933.0*21.09.0*18.0+++==∑pw p hHhst923.0967.0*22.0933.0*16.0≈++06.0*933.0*301*1.0*9.0*301*)1(1)(ˆ21.018.0222+=--=∑p p nf w p hhhhhhstV067.0*933.0*301*133.0*867.0*301*1.0*9.0*301*16.009.014.0222+++838.322.042033.0*967.0*301*-=+P:[)(ˆ96.1p pststV±]=[0.923±1.96*838.34-]=[0.866,0.979]。

分层抽样案例

分层抽样案例

分层抽样案例
某市有300所小学,共有240000名学生,这些小学分布在全市5个行政区中,其中重点小学有30所,一般小学有240所,较差的小学有30所。

现在要从全市小学生中抽取1200名学生进行调查,以了解全市小学生的学习情况。

请设计一份抽样方案。

答:
分层抽样方案:
1、因为有300所小学,240000名学生,假设每所小学的学生人数相同,所以每所小学有学生人数800名。

2、又因为有重点小学30所,一般小学240所,较差小学30所,所以重点小学有学生人数24000名,一般小学有学生人数192000名,较差小学有学生人数24000名。

3、因为要从240000名学生中抽取1200名学生进行调查,所以
1200:240000=1:200,即每200名学生中抽取1名学生进行调查,所以由第2步得出24000×1/200=120名;192000×1/200=960名;24000×1/200=120名,然后按照简单随机抽样的方法分别抽取相应的人数。

4、综上所述,要从240000名学生中抽取1200名学生进行调查,应当从30所重点小学中抽取120名学生,从240所一般小学中抽取960名学生,从30所较差小学中抽取120名学生,共计1200名学生。

河北省武邑中学高中数学 分层抽样教案 新人教A版必修3

河北省武邑中学高中数学 分层抽样教案 新人教A版必修3
②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.
③当总体个体差异明显时,采用分层抽样.
三、应用示例
例1一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
河北武邑中学教师课时教案







问题与情境及教师活动
学生活动
分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5
解:用分层抽样来抽取样本,步骤是:
(1)分层:按区将20 000名高中生分成三层.
(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.
(4)分层抽样的步骤:
①分层:按某种特征将总体分成若干部分(层);
②按抽样比确定每层抽取个体的个数;
③各层分别按简单随机抽样的方法抽取样本;
④综合每层抽样,组成样本.
(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.
我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.
二、新知探究
提出问题,学生讨论
(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某市有300所小学,共有240000名学生,这些小学分布在全市5个行政区中,其中重点小学有30所,一般小学有240所,较差的小学有30所。

现在要从全市小学生中抽取1200名学生进行调查,以了解全市小学生的学习情况。

请设计一份抽样方案。

答:
分层抽样方案:
1、因为有300所小学,240000名学生,假设每所小学的学生人数相同,所以每所小学有学生人数800名。

2、又因为有重点小学30所,一般小学240所,较差小学30所,所以重点小学有学生人数24000名,一般小学有学生人数192000名,较差小学有学生人数24000名。

3、因为要从240000名学生中抽取1200名学生进行调查,所以1200:240000=1:200,即每200名学生中抽取1名学生进行调查,所以由第2步得出24000×1/200=120名;192000×1/200=960名;24000×1/200=120名,然后按照简单随机抽样的方法分别抽取相应的人数。

4、综上所述,要从240000名学生中抽取1200名学生进行调查,应当从30所重点小学中抽取120名学生,从240所一般小学中抽取960名学生,从30所较差小学中抽取120名学生,共计1200名学生。

相关文档
最新文档