分层抽样PPT-课件

合集下载

2.1.3 分层抽样-课件ppt

2.1.3 分层抽样-课件ppt

解: 六年级占 1000 ,应取 1000 100 40 名;
2500
2500
初三年级占
800 2500 ,应取
800 100 32 2500
名;
高三年级占 700 ,应取 700 100 28 名。
2500
2500
然后分别在各年级(层)运用系统抽样方法抽取.
一、分层抽样的定义 一般地,在抽样时,将总体分成互不交叉
很喜爱 喜爱 一般 不喜爱 2 435 4 567 3 926 1 072 电视台为了进一步了解观众的具体想法和意见,打算从中再 抽取 60 人进行更为详细的调查,应怎样进行抽样?
[思路点拨] 确定每层
人数多,差异大 → 分层抽样 → 抽取比例 → 在各层中 合在一起 分别抽取 → 得样本
[解析] 采用分层抽样的方法,抽样比为1260000. “很喜爱”的有 2 435 人,应抽取 2 435×1260000≈12(人); “喜爱”的有 4 567 人,应抽取 4 567×1260000≈23(人); “一般”的有 3 926 人,应抽取 3 926×1260000≈20(人); “不喜爱”的有 1 072 人,应抽取 1 072×1260000≈5(人). 因此,采用分层抽样的方法在 “很喜爱”“喜爱”“一 般”“不喜爱”的人中分别抽取 12 人、23 人、20 人和 5 人.
[练习 2] 一个地区共有 5 个乡镇,人口 3 万人,其人口比 例为 3∶2∶5∶2∶3,从 3 万人中抽取一个 300 人的样本,分析 某种疾病的发病率,已知这种疾病与不同的地理位置及水土有 关,问应采取什么样的方法?并写出具体过程.
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的 发病情况差异明显,因而采用分层抽样的方法.

分层抽样-PPT

分层抽样-PPT
②按照地区分类:大城市、中等城市、城镇、乡镇四个层次。
③按照学校分类:重点、非重点两个层次。
7
为了了解高一年级12000名学生的数学成绩,需要抽 取容量为120的样本,请用合适的方法抽取.
解:(1)对全体学生的数学成绩进行编号:1,2,3……,12000.
(2)分段:由于样本容量与总体容量的 比是1:100,我们 将总体平均分为100个部分,其中每一部分包含100个 个体.
数学必修3
分层抽样
1
数理统计是研究如何有效地收集,整理,分 析受随机影响的数据,并对所考虑的问题作出推断 或预测,直至为采取决策和行动提供依据和建议的 一门学科。它是一门应用性很强的学科,凡是有大 量数据出现的地方,都要用到数理统计。现在,数 理统计的内容已异常丰富,成为数学中最活跃的学 科之一。教科书选择了数理统计中最基本问题来介 绍这门学科的思想与方法。
由于分层抽样的要求不同,各层的抽样的样本容量也不相同, 所以,应当按照实际情况,合理地将样本容量分配到各个层, 以确保抽样的合理性,研究时可以根据不同的要求来分层抽样。
分层抽样适用于总体由差异明显的几部分组成的情况, 每一部分称为层,在每一层中实行简单随机抽样。这种方法较 充分地利用了总体己有信息,是一种实用、操作性强的方法。
(4)按照规则抽取样本:l;l+k;l+2k;……l+nk
系统抽样时,将总体中的个体均分后的每一段进 行抽样时,采用简单随机抽样;系统抽样每次抽样时, 总体中各个个体被抽取的概率也是相等的;如总体的个体 数不能被样本容量整除时,可以先用简单随机抽样从总 体中剔除几个个体,然后再按系统抽样进行。需要说明 的是整个抽样过程中每个个体被抽到的概率仍然相等。11
数理统计所要解决的问题是如何根据样本来推 断总体,第一个问题就是采集样本,然后才能作统 计推断。

《分层抽样的方法》课件

《分层抽样的方法》课件
分层抽样通过考虑不同层之间的差异 ,能够更准确地估计总体参数,提高 样本的代表性和降低抽样的误差。
分层抽样的特点
针对性 灵活性 高效性 可靠性
分层抽样能够针对不同特征或属性的群体进行有针对性的抽样 ,从而提高样本的代表性和准确性。
分层抽样可以根据研究目的和实际情况灵活地选择分层依据, 如年龄、性别、地区、职业等。
分层抽样可以减少总体样本量,提高抽样的效率,降低调查成 本。
分层抽样通过考虑不同层之间的差异,能够更准确地估计总体 参数,提高样本的可靠性。
分层抽样的应用场景
社会调查
在社会调查中,分层抽样常用于调查 不同群体或地区的特定问题,如人口 普查、消费者调查等。
医学研究
在医学研究中,分层抽样常用于临床 试验、流行病学调查等领域,以提高 样本的代表性和准确性。
简单随机抽样
简单随机抽样样本代表性好,但当总体规模 较大时,实施难度较大。
整群抽样
整群抽样实施方便,但样本代表性取决于群 内差异的大小。
04
分层抽样的应用案例
某地区居民收入情况的分层抽样调查
总结词
通过分层抽样调查,了解该地区居民收入分 布情况,为政府制定相关政策提供依据。
样本抽取
在每个层次内随机抽取一定数量的样本,确保样本 的代表性。
确定调查目标
了解该企业员工对工作环境、福利待遇等方面的满意度 。
划分层次
根据员工的职位、部门等因素,将调查总体划分为若干 个层次。Fra bibliotek样本抽取
在每个层次内随机抽取一定数量的样本,确保样本的代 表性。
数据收集与分析
收集样本数据,进行统计分析,得出各层次员工满意度 情况和总体平均水平。
报告撰写
撰写调查报告,将结果呈现给企业相关部门,为企业改 进管理提供依据。

分层抽样PPT_课件

分层抽样PPT_课件
2、某公司生产三种型号的轿车,产量分别是 1200辆、6000辆和2000辆,为检验该公司产品 的质量,现用分层抽样方法抽取46辆进行检验, 这三种型号的轿车依次应抽取 6 、 30 、 10 。
3、某学校有30个班,其中小学部6个班,初中部 12 个班,高中部12个班,现要从中抽取5个班进 行调查,那么应在小学部抽 1个 班,初中部抽 2个 班,高中部抽 2个 班。
课堂小结
1 、分层抽样是当总体由差异明显的几部分组成时采 用的抽样方法,进行分层抽样时应注意以下几点: ( 1 )分层抽样中分多少层、如何分层要视具体情况 而定,总的原则是,层内样本的差异要小,面层之间的 样本差异要大,且互不重叠。 ( 2 )为了保证每个个体等可能入样,所有层应采用 同一抽样比等可能抽样。 ( 3 )在每层抽样时,应采用简单随机抽样或系统抽 样的方法进行抽样。 2 、分层抽样的优点是:使样本具有较强的代表性, 并且抽样过程中可综合选用各种抽样方法,因此分层抽 样是一种实用、操作性强、应用比较广泛的抽样方法。
• 注:样本容量与总体的个数之比是分层抽样的比例常数, 按这个比例可以确定各层应抽取的个体数,如果各层应抽 取的个体数不都是整数该如何处理? 应该调整样本容量,剔除个体
练:在下列问题中,各采用什么抽样方法抽取样 本较为合适??
(1)从20台彩电中抽取4台进行质量检验 (2)科学会堂有32排座位,每排有40个座位 (1~40),一次报告会坐满了听众,会后为了听 取意见,留下了座位号为18的所有32名听众进行 交谈
分析:由题意知
高中抽取人数为
2400*1%=24
初中抽取人数为 10900*1%=109 小学抽取人数为 11000*1%=110 所以总共抽取样本人数为 24+109+110=259 思考:为什么要这样取各个学段的个体数呢?

分层抽样课件

分层抽样课件

PART 05
分层抽样的未来发展
分层抽样与其他统计方法的结合
结合多元统计分析
分层抽样可以与多元统计分析方法结合,如主成分分析、聚类分析等,以更全 面地揭示数据的内在结构和关系。
与机器学习算法的融合
通过结合分层抽样和机器学习算法,可以更准确地预测和分类数据,提高模型 的泛化能力。
分层抽样在大数据时代的应用
拓展应用领域
分层抽样不仅在社会科学领域有 广泛应用,还可以拓展到自然科 学的各个领域,如生物学、环境 科学等。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
实例一:市场调研中的分层抽样
总结词:精准高效
VS
详细描述:市场调研中,为了更准确 地了解不同消费群体的需求和行为特 征,常常采用分层抽样方法。通过对 不同年龄、性别、收入等特征的消费 者进行分层,能够提高样本的代表性 和调研的准确性,进而为企业制定更 加精准的市场策略提供依据。
实例二:社会调查中的分层抽样
2023-2026
ONE
KEEP VIEW
分层抽样ppt课件
REPORTING
CATALOGUE
目 录
• 分层抽样的定义 • 分层抽样的实施步骤 • 分层抽样的优缺点 • 分层抽样的实例分析 • 分层抽样的未来发展
PART 01
分层抽样的定义
什么是分层抽样
定义
分层抽样是一种统计学方法,它将总 体分成若干个层,然后从每个层中随 机抽取一定数量的样本,最终将这些 样本合并成一个样本。
样本抽取
实施抽样过程
按照确定的分层标准,在各层内进行 随机抽样,确保样本的多样性和代表 性。同时,应记录抽样过程的所有细 节,以便后续的分析和评估。

分层抽样课件

分层抽样课件

分层抽样的选取
当总体具有明显的差异性时,为使样本更具 有代表性,宜采用分层抽样法进行抽样.
例1 下列问题中,最适合用分层抽样抽取样
本的是( ) A.从10名同学中抽取3人参加座谈会 B . 某 社 区 有 500 个 家 庭 , 其 中 高 收 入 的 家 庭 125户,中等收入的家庭280户,低收入的家庭 95户,为了了解生活购买力的某项指标,要从 中抽取一个容量为100户的样本 C.从1000名工人中,抽取100人调查上班途中
例3 为了考察某学校教学水平,将抽取这个 学校高三年级的部分学生本学年的考试成绩
进行考察,为了全面反映实际情况,采取以 下三种方式进行抽查(已知该学校高三年级共 有20个教学班,并且每个班内的学生按随机
方式编好了学号,假定该校每班学生人数都 相同): ①从全年级20个班中任意抽取一个班,再从 该班任意抽取20人,考察他们的学习成绩; ②每个班都抽取1人,共计20人,考察这20个 学生的成绩;
1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照 _一__定__的__比__例_____,从各层_独__立__地___抽取一定数量 的个体,将各层取出的个体合在一起作为样本, 这种抽样方法是一种_分__层__抽__样_______. 2.分层抽样的适用条件 当总体是由__差__异__明__显_____的几部分组成时,往 往选用分层抽样的方法.
(2)上面三种抽取方式中,第一种方式采用的 是简单随机抽样法;第二种方式采用的是系 统抽样法和简单随机抽样法;第三种方式采 用的是分层抽样法和简单随机抽样法. (3)第一种方式抽样的步骤如下: 第一步:在这20个班中用抽签法任意抽取一 个班; 第二步:从这个班中按学号用随机数法或抽 签法抽取20名学生,考察其考试成绩. 第二种方式抽样的步骤如下:

2.1.3分层抽样课件人教新课标

2.1.3分层抽样课件人教新课标

步骤3—定数:确定每一层应抽取的个体数目,并使每一层 应抽取的个体数目之和为样本容量 步骤4—抽样:按步骤3确定的数目在各层中随机抽取个体, 合在一起得到样本
当你每天醒来,口袋里便装着24小时的时 间,这是属于你自己最宝贵的财产.
(2)每次 抽出个体 后不再将 它放回, 即不放回 抽样
各自特点
联系
适用 范围
从总体中逐 个抽取
是系统抽样 总体中 和分层抽样 个体较 的基础 少
将总体平均分成 几部分,按预先 制定的规则在各 部分抽取
将总体分成几 层,分层进行 抽取
在起始部分 总体中 时采用简单 个体较 随机抽样 多
各层抽样时 采用简单随 机抽样或系 统抽样
160 则样本中的老年职工人数为 90 86 18.
430
3.某工厂生产A、B、C三种不同型号的产品,相应产品 数量比为2∶3∶5,现用分层抽样方法抽取一个容量为n 的样本,样本中A型号产品有16件,那么样本的容量 n=_8_0__.
解:由已知得: 2 n=∴1n6,=80.
10
答案:80
4.某农场在三种地上种玉米,其中平地210亩,河沟地 120亩,山坡地180亩,估计产量时要从中抽取17亩作为 样本,则平地、河沟地、山坡地应抽取的亩数分别是 __7_,4__,6___.
160人,中年职工人数是老年职工人数的2倍.为了解职
工身体状况,现采用分层抽样方法进行调查,在抽取的
样本中有青年职工32人,则该样本中的老年职工人数为27
(D)36
解:选B.由已知得中年职工人数和老年职工人数共为 430-160=270(人). 中年职工人数是老年职工人数的2倍,则 中年职工人数为180,老年职工人数为90, 样本的容量为 32 430 86,

9.1.2 分层抽样课件(共32张PPT)

9.1.2 分层抽样课件(共32张PPT)
9.1.2 分层随机抽样 9.1.3 获取数据的途径
复习回顾
1、简单随机抽样的概念:
设一个总体含有有限个个体,并记其个体数为 N.如果通过逐个抽取的方法从中抽取一个样本, 且每次抽取时各个个体被抽到的机会相等,就称这 样的抽样为简单随机抽样.
2、简单随机抽样的特点:
①总体个数有限;②逐个进行抽取;③机会均等抽样.
8、某中学高一年级有学生600人,高二年级有
学生450人,高三年级有学生750人,若该校取一
个容量为n的样本,每个学生被抽到的可能性均
讲 课
为0.2,
则n=
360 .



启 强
17
巩固练习
9、某单位有职工160人,其中业务员有104人,管 理人员32人,后勤24人,现用分层抽样从中抽取
一容量为20的样本,则抽取管理人员( B)人
人、60 人。 (3)将300人组到一起,即得到一个样本。





启 强
13
巩固练习
3.某公司共有1000名员工,下设若干部门, 现用分层抽样法,从全体员工中抽取一个容 量为80的样本,已知策划部被抽取4个员工,
求策划部的员工人数是多少? 50人.
4. 某中学有180名教职员工,其中教学人员 144人,管理人员12人,后勤服务人员24人, 设计一个抽样方案,从中选取15人去参观学习.
Mx Ny M N
M M N
x N M N
y
估计总体平均数 W
对各层样本平均数加权(层权)求和
M
N
xi yi
w i1
i1
m
x
n
y
M
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用范围:分层抽样适用于总体由差异明显的几部分构成
分层抽样的操作步骤为:
第一步,计算样本容量与总体的个体数之比。 第二步,将总体分成互不交叉的层,按比例确定各 层要抽取的个体数。 第三步,用简单随机抽样或系统抽样在各层中抽取 相应数量的个体。 第四步,将各层抽取的个体合在一起,就得到所取 样本。
• 注:样本容量与总体的个数之比是分层抽样的比例常数, 按这个比例可以确定各层应抽取的个体数,如果各层应抽 取的个体数不都是整数该如何处理? 应该调整样本容量,剔除个体
• 15,13,12
三种抽样方法的比较
共同点 各自特点 相互联系 使用范围 总体中的个 简单随机 抽样过 从总体中 体较少 程中每 逐个抽取 抽样 系统抽样 个个体 被抽到 分层抽样 的可能 性相等
将总体分成均衡 在起始部分抽 的几部分,按事 样时采用简单 随机抽样 先确定的规则在 各部分抽取
类别
1 1 1 , 10800 ,11100 100 100 100
即抽取24名高中生,109名初中生和110名小学生作为样本。
分层抽样
分层抽样
当总体有明显差别的几部分组成时,常 采用分层抽样。将总体中各个个体按某种特 征分成若干个互不重叠的几部分,每一部分 叫做层,在各层中按层在总体中所占的比样。
数学必修3
2.1.3 分层抽样
知识回顾:
* 2.1.1 简单随机抽样 * 2.1.2 系统抽样
知识回顾:
简单随机抽样
• 一般地,设一个总体含N个个体,从中逐 个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到 的机会都相等,就把这样的抽样方法叫做 简单随机抽样。 • 适用范围:总体的个体数不多时。
分层抽样
探究 某地区有高中生2400人,初中生10800人,小学 生11100人,当地教育部门为了了解本地区中小 学生的近视率及其形成原因,要从本地区的中小 学生中抽取1%的学生进行调查。你认为应当如 何抽取样本?
• 不同年龄阶段的学生的近视情况可能存在明显差异,因 此,宜将全体学生分成高中、初中和小学三部分分别抽 样。另外,三部分的学生人数相差较大,因此,为了提 高样本的代表性,还应考虑他们在样本中所占比例的大 小。
分层抽样例题: 【例一】一个单位的职工500人,其中不到35岁的有125 人,35到49岁的有280人,50岁以上的有95人。为了了 解这个单位职工与身体状况有关的某项指标,要从中抽 取一个容量为100的样本。试问:应用如何抽取?
解:(1)确定样本容量与总体的个体数之比100:500=1:5。 (2)利用抽样比确定各年龄段应抽取的个体数,依次
总体中的 个体数较 多
分组成
将总体分成 几层,分层 进行抽样
各层抽样时采 总体由差异 用简单随机抽 明显的几部 样或系统抽样
探究
某地区有高中生2400人,初中生10800人,小学生11100 人,当地教育部门为了了解本地区中小学生的近视率及其 形成原因,要从本地区的中小学生中抽取1%的学生进行 调查。你认为应当如何抽取样本?
• 由于样本容量与总体个体数之比为1:100,因此,样本中包含的各部 门的个体数应该是:
2400

125 280 95 , , ,即25,56,19。 5 5 5
(3)利用简单随机抽样或系统抽样的方法,从各年龄 段分别抽取25,56。19人,然后合在一起,就是所抽取 的样本。
分层抽样例题:
【例二】 已知甲、乙、丙三个车间一天内 生产的产品分别是150件、130件、120件, 为了掌握各车间产品质量情况,需从中取 出一个容量为40的样本,应如何抽取?
知识回顾:
系统抽样
• 将总体分成均衡的n个部分,然后按照预 先定出的规则,从每一部分抽取一个个体, 得到容量为n的样本,这种抽样叫做系统 抽样(也称为等距抽样)。
注:在抽样过程中每个个体被抽取的概率也 是相同的
设计科学、合理的抽样方法,其核心 问题是保证抽样公平,并且样本具有好的 代表性。 例如要调查我校高一学生的平均身高, 由于男生一般比女生高,故用简单随机抽 样或系统抽样,都可能使样本不具有好的 代表性。对于此类抽样问题,我们需要一 个更好的抽样方法来解决。 下面我们探究:
相关文档
最新文档