有理数混合运算培优训练题
有理数的混合运算练习题集(大综合17套)

有理数的混合运算练习题有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′) (1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯- (2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中()A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元; D.甲亏本1.1元.有理数的四则混合运算练习第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10=_______.◆Exersising7.(1)若-1<a<0,则a______1a ; (2)当a>1,则a_______1a ; (3)若0<a ≤1,则a______1a. 8.a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则||4a b m+2m 2-3cd 值是( ) A .1 B .5 C .11 D .与a ,b ,c ,d 值无关 9.下列运算正确的个数为( )(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A .3个B .4个C .2个D .1个10.a ,b 为有理数,在数轴上的位置如右上图所示,则( )A .1a >1b >1 B .1a >1>-1bC .1>-1a >1bD .1>1a >1b11.计算: (1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________o ba有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
部编数学七年级上册专题有理数的混合运算大题专练(重难点培优)同步培优【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48)÷82-(-25)÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32)÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51)×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac0;如果0,0<<cbb a ,那么ac 0; (2)若042=-++++c c b a ,则abc= ;-a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73(2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a =1,则a____0;若||a a =-1,则a______0. 4.(教材变式题)若a<b<0,那么下列式子成立的是() A .1a <1b B .ab<1 C .a b <1 D .a b>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-30 2. 计算2223(23)-⨯--⨯=( )A.0 B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<- 5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。
11有理数的混合运算-2021年七年级数学上册尖子生同步培优题库(教师版含解析)

2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•崂山区期末)用分配律计算(14−38−112)×(−43),去括号后正确的是( )A .−14×43−38−112 B .−14×43−38×43−112×43 C .−14×43+38×43−112×43D .−14×43+38×43+112×43【分析】根据乘法分配律可以将括号去掉,本题得以解决,注意符号的变化. 【解析】(14−38−112)×(−43)=−14×43+38×43+112×43, 故选:D .2.(2019秋•丰台区期末)在“﹣(﹣0.3),−13+13,|﹣1|,(﹣2)2,﹣22”这5个算式中,运算结果为非负有理数的个数是( ) A .5B .4C .3D .2【分析】各式化简得到结果,即可作出判断.【解析】﹣(﹣0.3)=0.3,是;−13+13=0,是;|﹣1|=1,是;(﹣2)2=4,是;﹣22=﹣4,不是, 则运算结果为非负数有理数的个数是4, 故选:B .3.(2020•碑林区校级模拟)下列算式中,计算结果是负数的是( ) A .3×(﹣2)B .|﹣1|C .(﹣2)+7D .(﹣1)2【分析】针对各个选项进行计算,根据计算的结果进行判断即可. 【解析】3×(﹣2)=﹣6,|﹣1|=1,(﹣2)+7=5,(﹣1)2=1, 故选:A .4.(2019秋•宿州期末)计算(﹣1)2019+(﹣1)2020的结果是( ) A .2B .﹣1C .0D .1【分析】直接利用有理数的乘方运算法则计算得出答案. 【解析】(﹣1)2019+(﹣1)2020 =﹣1+1 =0. 故选:C .5.(2020•唐山一模)三位同学在计算:(14+16−12)×12,用了不同的方法:小小说:12的14,16,12分别是3,2和6,所以结果应该是3+2﹣6=﹣1; 聪聪说:先计算括号里面的数,14+16−12=−112,再乘以12得到﹣1;明明说:利用分配律,把12与14,16,−12分别相乘得到结果是﹣1对于三个同学的计算方式,下面描述正确的是( ) A .三个同学都用了运算律 B .聪聪使用了加法结合律C .明明使用了分配律D .小小使用了乘法交换律【分析】根据题意和各个选项中的说法可以判断哪个选项中的描述是正确的,本题得以解决. 【解析】由题意可得,只有明明的方法是使用了乘法分配律,故选项C正确,选项A、B、D描述错误;故选:C.6.(2019秋•卫辉市期末)若x、y互为相反数,c、d互为倒数,m的绝对值为9,则(x+y3)2019−(−cd)2020+m的值为()A.8B.9C.10D.8或﹣10【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解析】根据题意得:x+y=0,cd=1,m=9或﹣9,当m=9时,原式=0﹣1+9=8;当m=﹣9时,原式=﹣1﹣9=﹣10,故选:D.7.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为() A.﹣7B.﹣1C.1D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.8.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④(0.25−5 8)÷(−178);⑤−48×(12−58+13−1316);⑥32+1.52−3×22−[2−(−0.2)×(−53)];计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意; ②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意; ④原式=(−38)×(−815)=15,符合题意; ⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2+13=−414+13=−11912,不符合题意, 故选:C .10.(2019秋•德惠市期中)计算(−112)÷(23−14+16)的结果是( )A .17B .−724C .−17D .﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减.. 【解析】(−112)÷(23−14+16)=(−112)÷(812−312+212) =(−112)÷712 =−17, 故选:C .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2019秋•揭西县期末)计算:1﹣(﹣2)2×(−18)= 112.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1﹣4×(−18)=1+12=112,故答案为:11212.(2020春•肇州县期末)若a ,b 互为相反数,x ,y 互为倒数,则2(a +b )+74xy 的值是 74.【分析】利用相反数,倒数的性质求出a +b 与xy 的值,代入原式计算即可求出值. 【解析】根据题意得:a +b =0,xy =1, 则原式=2×0+74×1=74.故答案为:74.13.(2020春•海淀区校级月考)计算:﹣223×(−14)+59÷(−123)=13.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可. 【解析】原式=−83×(−14)+59×(−35)=23−13=13, 故答案为13.14.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是 [(﹣2)+(﹣3)﹣1]×(﹣4)=24 . 【分析】根据“24点”游戏规则列出算式即可. 【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24, 故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•虹口区校级月考)若规定一种新运算:a *b =(a +b )÷3,则2*3= 53.【分析】根据a *b =(a +b )÷3,可以求得所求式子的值. 【解析】∵a *b =(a +b )÷3, ∴2*3 =(2+3)÷3 =5×13 =53, 故答案为:53.16.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为 1 . 【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值. 【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘) =1, 故答案为:117.(2020•黄岩区模拟)定义一种新运算:a ※b ={a −b(a ≥b)3b(a <b),则2※3﹣4※3的值 8 .【分析】根据新定义规定的运算法则列式计算,即可解答本题. 【解析】∵a ※b ={a −b(a ≥b)3b(a <b),∴2※3﹣4※3=3×3﹣(4﹣3)=9﹣1=8,18.(2019秋•西湖区期末)定义新运算:若a@b=n(n是常数),则(a+1)@b=n+1,a@(b+1)=n﹣2.若1@1=2,则1@2=0,2@2=1,2020@2020=﹣2017.【分析】根据题目中的新定义,可以分别计算出题目中所求式子的值.【解析】∵若a@b=n(n是常数),则(a+1)@b=n+1,a@(b+1)=n﹣2,1@1=2,∴1@2=1@(1+1)=2﹣2=0,2@2=(1+1)@2=0+1=1,2@3=﹣1,3@3=0,3@4=﹣2,4@4=﹣1,∴2020@2020=﹣2017,故答案为:0,1,﹣2017.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•成华区期末)计算:(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)16÷(﹣2)3﹣(−18)×(﹣4)+(﹣1)2020=16÷(﹣8)−12+1=﹣2−12+1=−32;(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2] =﹣1−12×13×(2﹣9) =﹣1−16×(﹣7) =16.20.(2020春•浦东新区期末)计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1−13). 【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题. 【解析】(﹣1)2﹣|2﹣5|÷(﹣3)×(1−13) =1﹣3÷(﹣3)×23 =1+3×13×23=1+23 =53.21.(2019秋•南岸区期末)有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:2+3﹣5﹣9;(2)若2÷3×5 × 9=30,请推算横线上的符号;(3)在“2 ﹣ 3 × 5+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.【分析】(1)根据计算法则进行计算即可; (2)根据运算顺序得出103___9=30,因此横线上应是乘号;(3)要使结果最小,其中必有负号,即减号,然后使负数的绝对值最大,因此考虑用乘法,从而得出答案. 【解析】(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”; (3)2﹣3×5+9=﹣4, 故答案为:﹣×.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米). (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米? (3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置, (2)计算出每一次离开球门的距离,比较得出答案, (3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0, 答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0, 答:守门员离开球门的位置最远是13米; (3)6+5+9+10+13+9+4=56(米) 答:守门员一共走了56米.23.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③…… 探索以上式子的规律:(1)写出第5个等式: 35﹣34=2×34 ; (2)试写出第n 个等式,并说明第n 个等式成立; (3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n 表示上述规律,通过提取公因式法进行证明便可; (3)把原式化成2×30+2×31+2×32+⋯+2×320202,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34, 故答案为:35﹣34=2×34;(2)根据题意得,3n ﹣3n ﹣1=2×3n ﹣1,证明:左边=3n ﹣1(3﹣1)=2×3n ﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020=2×30+2×31+2×32+⋯+2×320202=31−30+32−31+33−32+⋯+32021−320202=32021−1 2.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:与标准质量的差值(单位:千克)﹣310 2.5﹣2﹣1.5袋数123842(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.。
有理数的混合运算专项训练(100题)

专题2.4 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2022•黄冈开学)计算:(1)(−514)+(−3.5); (2)23+(−15)+(−1)+13;(3)−22÷(−12)−(138+213−334)×48; (4)(﹣2)2×3+(﹣3)3÷9.【分析】(1)先通分,然后根据有理数的加法法则计算即可;(2)根据加法的交换律和结合律解答即可;(3)先算乘方,然后算乘除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加法即可.【解答】解:(1)(−514)+(−3.5)=(﹣514)+(﹣324) =﹣834; (2)23+(−15)+(−1)+13=(23+13)+[(−15)+(﹣1)] =1+(﹣115)=−15;(3)−22÷(−12)−(138+213−334)×48 =﹣4×(﹣2)−118×48−73×48+154×48=8﹣66﹣112+180=10;(4)(﹣2)2×3+(﹣3)3÷9=4×3+(﹣27)÷9=12+(﹣3)=9.2.(4分)(2022•垦利区期末)计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.3.(4分)(2022•呼和浩特期末)计算:(1)(﹣8)×(﹣7)÷(−12);(2)(23−34+16)÷(−124);(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|;(4)|13−12|÷(−112)−18×(−2)3.【分析】(1)先把除法统一成乘法,按乘法法则计算即可;(2)利用乘法的分配律计算比较简便;(3)先算乘方,再算绝对值和括号里面的,最后算乘法和加减;(4)先算乘方和绝对值里面的,再算乘除,最后算加减.【解答】解:(1)(﹣8)×(﹣7)÷(−12)=﹣8×7×2=﹣112;(2)(23−34+16)÷(−124)=(23−34+16)×(﹣24)=23×(﹣24)−34×(﹣24)+16×(﹣24)=﹣16+18﹣4=﹣2;(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|=﹣1−12×13−|1﹣25|=﹣1−16−24=﹣2516;(4)|13−12|÷(−112)−18×(−2)3 =|−16|×(﹣12)−18×(﹣8)=16×(﹣12)+1=﹣2+1=﹣1.4.(4分)(2022•重庆期末)计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12); (4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2 =﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.5.(4分)(2022•镇平县校级期末)计算:(1)|﹣2|÷(−12)+(﹣5)×(﹣2); (2)(23−12+56)×(﹣24); (3)15÷(−32+56);(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2.【分析】(1)首先计算绝对值,然后计算除法、乘法,最后计算加法即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的加法,然后计算小括号外面的除法即可.(4)首先计算乘方、绝对值,然后计算除法、乘法,最后从左向右依次计算即可.【解答】解:(1)|﹣2|÷(−12)+(﹣5)×(﹣2)=2×(﹣2)+10=﹣4+10=6.(2)(23−12+56)×(﹣24)=23×(﹣24)−12×(﹣24)+56×(﹣24)=﹣16+12﹣20=﹣24.(3)15÷(−32+56)=15÷(−23)=15×(−32)=﹣.(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2 =4﹣7﹣3×(﹣4)+(﹣27)×19=4﹣7+12+(﹣3)=﹣3+12+(﹣3)=9+(﹣3)=6.6.(4分)(2022•高青县期末)计算:(1)(14+38−712)÷124; (2)﹣23÷8−14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2;(4)[(﹣2)3+43]÷4+(−23). 【分析】(1)运用乘法对加法的分配律,简化计算.(2)先算乘方,再算乘除,最后算加减.(3)先算乘方,再算乘除,最后算加减.(4)先算乘方,再算中括号里的,再算除法,再算加法.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1.(2)原式=−8÷8−14×4 =﹣1﹣1=﹣2.(3)原式=﹣16+(﹣4)2﹣2×1=﹣16+16﹣2=﹣2.(4)原式=(−8+43)÷4+(−23) =−203÷4+(−23) =−53+(−23)=−73.7.(4分)(2022•莱西市期末)计算:(1)﹣﹣﹣;(2)(−613)+(−713)﹣5; (3)25×34−(﹣25)×12+25×;(4)5×(﹣6)﹣(﹣4)2÷(﹣8).【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)利用加减运算的法则进行求解即可;(3)先把式子进行整理,再利用乘法的分配律进行求解即可;(4)先算乘方,再算乘法与除法,最后算加法即可.【解答】解:(1)﹣﹣﹣=﹣﹣=﹣=﹣12;(2)(−613)+(−713)﹣5 =﹣1﹣5=﹣6;(3)25×34−(﹣25)×12+25× =25×0.75+25×0.5+25×=25×()=25×=;(4)5×(﹣6)﹣(﹣4)2÷(﹣8)=5×(﹣6)﹣16÷(﹣8)=﹣30+2=﹣28.8.(4分)(2022•越城区校级月考)计算(1)10﹣1÷(16−13)÷112(2)﹣12﹣6×(−13)2+(﹣5)×(﹣3)(3)32÷(﹣22)×(﹣114)+(﹣5)6×(−125)3 (4)[1﹣(38+16−34)×24]÷5.【分析】(1)先算括号里面的,再算除法,最后算减法即可;(2)先算乘方,再算乘法,最后算加减即可;(3)先算乘方,再算除法和乘法,最后算加减即可;(4)先算乘法,再算加减,最后算除法即可.【解答】解: (1)原式=10﹣1÷(−16)×12=10+72=82;(2)原式=﹣1﹣6×19+15 =﹣1−23+15 =1313;(3)原式=32÷(﹣4)×(−54)+(﹣1)=10﹣1=9;(4)[1﹣(38+16−34)×24]÷5.=[1﹣(9+4﹣18)]÷5=[1﹣(﹣5)]÷5=6÷5=.9.(4分)(2022•宜兴市期中)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53; (3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3. 【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=−1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−18×24+114×24+1﹣27 =﹣32﹣3+66﹣26=5.10.(4分)(2022•镇平县月考)计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12) (4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12; (2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125; (3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.11.(4分)(2022•饶平县校级期中)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315. 12.(4分)(2022•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣+103; (3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣+103=(﹣134)+(﹣613)+(﹣214)+313 =[(﹣134)+(﹣214)]+[(﹣613)+313] =(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2) =94×(−67)÷(−32) =94×67×23=97; (4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2022•甘州区期末)计算:(1)(18−13+16)×(−24); (2)|−2|×(−1)2023−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−12×13×25 =﹣1+76 =−316; (4)原式=48.14.(4分)(2022•江都区期中)计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(−23)﹣(﹣48)÷(﹣8) (3)﹣12×(12−34+112)(4)﹣12﹣(1﹣)×13×[3﹣(﹣3)2].【分析】(1)先将减法转化为加法,再利用加法法则计算;(2)先算乘除,再算加法即可;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=0﹣3﹣5+7+3=﹣8+10=2;(2)原式=﹣32﹣6=﹣38;(3)原式=﹣12×12+12×34−12×112=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣1−12×13×(3﹣9) =﹣1−12×13×(﹣6) =﹣1+1=0.15.(4分)(2022•铁力市校级期中)计算:(1)25−|−112|−(+214)+(−2.75) (2)[(−12)2+(−14)×16+42]×[(−32)−3](3)−13−(1−0.5)×13×[2−(−3)2](4)(−5)×313+2×313+(−6)×313.【分析】(1)先计算绝对值、将减法转化为加法,再根据法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得;(3)根据有理数混合运算顺序和运算法则计算可得;(4)逆用乘法分配律提取313,再计算括号内的,最后计算乘法即可得.【解答】解:(1)原式=25−32−94−114=−1110−5=﹣6110;(2)原式=(14−4+16)×(−92)=494×(−92)8(3)原式=﹣1−12×13×(﹣7)=﹣1+76=16;(4)原式=103×(﹣5+2﹣6) =103×(﹣9)=﹣30.16.(4分)(2022•禄丰县校级期中)计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(223)2﹣312×(−14)(4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(223)2﹣312×(−14)=﹣24×964+72×14=−278+788=−52 (4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.=﹣2﹣(9+1)+1=﹣1117.(4分)(2022•高新区校级期中)计算:(1)12﹣(﹣18)+(﹣12)﹣15(2)(−13)﹣(−25)+(−23)+35(3)(14−12+16)×(﹣24)(4)﹣14+(﹣2)3×(−12)﹣(﹣32)【分析】(1)减法转化为加法,依据法则计算可得;(2)减法转化为加法,运用加法的交换律和运算法则计算可得;(3)运用乘法分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=12+18﹣12﹣15=30﹣27=3;(2)原式=−13−23+25+35=−1+1=0;(3)原式=14×(﹣24)−12×(﹣24)+16×(﹣24)=﹣6+12﹣4=2;(4)原式=﹣1+8×12+9=﹣1+4+9=12.18.(4分)(2022•如皋市校级月考)计算:(1)11+(﹣22)﹣3×(﹣11)(2)(−36911)÷9(3)3.52×(−47)+2.48×(−47)−13×(−47) (4)(13−12)×(−6)+(−14)÷(−18).【分析】(1)先计算乘法,再计算加减可得;(2)将除法转化为乘法,再计算乘法可得;(3)逆用乘法分配律提取公因数−47,再计算括号内的,最后计算乘法即可得;(4)先计算乘法、除法,然后计算加减可得.【解答】解:(1)原式=11﹣22+33=22;(2)原式=﹣(36+911)×19=−4−111=−4111;(3)原式=(−47)×(﹣13)=(−47)×(﹣7)=4;(4)原式=﹣2+3+2=3.19.(4分)(2022•郯城县月考)计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)113×(13−12)×311÷54(3)(512+23−34)×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×35)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=113×(−16)×311×45=−215; (3)原式=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4;(4)原式=﹣3+5−110=.20.(4分)(2022•南川区校级月考)计算(1)(+45)﹣91+5+(﹣9)(2)(−34)×113÷(﹣112) (3)(−74)÷78−23×(−6)(4)[1124−(38+16−34)×24]÷5.【分析】(1)根据加法交换律和结合律简便计算;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除法,再算加法即可求解;(4)先算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的运用.【解答】解:(1)(+45)﹣91+5+(﹣9)=(45+5)+(﹣91﹣9)=50﹣100=﹣50;(2)(−34)×113÷(﹣112) =34×43×23 =23;(3)(−74)÷78−23×(−6)=﹣2+4=2;(4)[1124−(38+16−34)×24]÷5 =[1124−9﹣4+18]÷5=6124÷5=1524. 21.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.22.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.23.(4分)(2022•兴隆台区校级月考)计算(1)(1−38+712)×(﹣24)(2)25×16+25×13−25×12(3)(﹣1)4−17×[2﹣(﹣4)2](4)﹣32+16÷(﹣2)×12−(﹣1)2015.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解: (1)原式=﹣24+9﹣14=﹣29;(2)原式=25×(16+13−12)=25×0=0;(3)原式=1−17×(﹣14)=1+2=3; (4)原式=﹣9﹣4+1=﹣12.24.(4分)(2022•苏仙区校级期中)计算(1)23+(﹣37)﹣23+7(2)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(3)(23−112−415)×(﹣60).(4)﹣12022+|﹣5|×(−85)﹣(﹣4)2÷(﹣8).【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣23﹣37+7=﹣30;(2)原式=﹣10+2﹣12=﹣20;(3)原式=﹣40+5+16=﹣19;(4)原式=﹣1﹣8+2=﹣7.25.(4分)(2022•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×2+179×(﹣112)2.【分析】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−138;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×+169×94=﹣8+1+2+4=﹣1.。
2020-2021学年度初中数学有理数的混合运算培优提升训练题3(附答案详解)

2020-2021学年度初中数学有理数的混合运算培优提升训练题3(附答案详解) 1.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( ) ①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个2.如图所示是一个运算程序的示意图,若开始输入的x 值为27,则第5次输出的结果为( )A .3B .27C .9D .13.1×2+2×3+3×4+…+99×100=( )A .223300B .333300C .443300D .433300 4.小华用甲、乙两个容积相同的试管做实验,甲管原来装满纯酒精,乙管是空的,第1次实验:把甲管中的酒精倒一半到乙管中,用水把甲管装满;第2次实验:用甲管中的液体把乙管装满;第3次实验:用乙管中的液体把甲管装满;第4次实验:用甲管中的液体把乙管装满.则做完4次实验后,甲管中的纯酒精是原来的( )A .14B .58C .516D .11165.计算:(1)77281489⎛⎫-+ ⎪⎝⎭÷7; (2)1211351513335⎛⎫-÷-÷+⨯ ⎪⎝⎭; (3)121131(8)8233⎡⎤⎛⎫⨯⨯---⨯-- ⎪⎢⎥⎝⎭⎣⎦; (4)1321134323----⨯--; (5)117111172311233218663218⎛⎫⎛⎫⎛⎫⎛⎫-+÷-+-÷-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.阅读下面的文字,完成后面的问题,我们知道:11=1122-⨯;111=2323-⨯;111=3434-⨯;111=4545-⨯….那么: (1)120182019⨯= _______;1n(n 1)+= _______; (2)计算:112⨯+123⨯+134⨯+…+189⨯+1910⨯; (3)计算:113⨯+135⨯+157⨯+…+120152017⨯+120172019⨯. 7.用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =221ab ab ++,如1※3=1×23+2×1×3+1=16.(1)求3※(-2)的值;(2)若()2410x y -++=,求12⎛⎫- ⎪⎝⎭※(x ※y )的值; (3)若12n +⎛⎫ ⎪⎝⎭※3=16,则n 的值为 。
有理数的混合运算- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题2.6 有理数的混合运算套卷为24题,卷末附20道有理数混合运算专题训练模块一:知识清单有理数混合运算的顺序: (1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·天津·模拟预测)计算1(2)(4)2⎛⎫-⨯-÷- ⎪⎝⎭的结果为( )A .4B .-4C .16D .-16【答案】D【分析】根据有理数的乘法和除法的运算法则运算即可. 【详解】解:原式=8(2)⨯- =-16.故选:D .【点睛】本题考查了有理数的乘除混合运算,解题的关键是掌握有理数乘法和除法的运算法则. 2.(2021·河北石家庄·七年级期末)下列式子中,正确的算式是( ) A .()200112001-=- B .()22336⨯-= C .13232-÷⨯=- D .11122⎛⎫÷-=- ⎪⎝⎭【答案】D【分析】根据有理数的混合运算法则计算即可得出答案. 【详解】A :()200111-=-,故A 错误;B :()22329=18⨯-=⨯,故B 错误;C :132322122=-÷⨯=-⨯⨯-,故C 错误;D :111(2)1222⎛⎫÷-=⨯-=- ⎪⎝⎭,故D 正确;故答案选择D.【点睛】本题考查的是有理数的混合运算,比较简单,需要熟练掌握有理数的混合运算法则. 3.(2022·河北·平泉市教育局教研室七年级期末)三位同学在计算11112462⎛⎫+-⨯ ⎪⎝⎭时,用了不同的方法:小小说:12的14,16,12分别是3,2和6,所以结果应该是3261+-=-;聪聪说:先计算括号里面的数,111146212+-=-,再乘以12得到1-;明明说:把12与14,16,12-分别相乘后再相加,得到结果是1-.对于三位同学的计算方式,下面描述正确的是( ) A .三位同学都用了运算律B .聪聪使用了加法结合律C .明明使用了分配律D .小小使用乘法交换律 【答案】C【分析】根据运算律的特点判断即可.【详解】根据题意,明明使用了分配律,是正确的,其余三位同学的描述都是错误的。
第二章 有理数及其运算(B卷培优卷 单元重点综合测试)(教师版)24-25学年七年级数学上册成都专用

第二章 有理数及其运算(B 卷·培优卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在2--、()2--、()2-+、()2+-、42-,负数有( )个.A .2B .3C .4D .52.长江干流上的乌东德、白鹤滩、溪洛渡、向家坝、三峡和葛洲坝6座梯级电站,共同构成目前世界最大的清洁能源走廊.建成一年来,6座电站累计发电量突破2700亿千瓦时,将数据“270000000000”用科学记数法表示为( )A .8270010´B .102.710´C .112.710´D .110.2710´【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时n 是负整数;由此进行求解即可得到答案.【详解】解:1127000000000 2.7010=´,故选:C3.数轴上表示 x 的点与表示 8- 的点的距离为( )A .8x +∣∣B .8x -∣∣C .8x +D .8x--4.下列说法中,正确结论的序号是( )①一个数的绝对值一定不是负数;②一个数的相反数一定是负数;③若a b =,则a b =或0a b +=;④若a b >,则a b >.A .①②B .②④C .③④D .①③5.若x 是一个有理数,且31x -<<,则13x x -++=( )A .22x +B .22x --C .4D .-2【答案】C【分析】根据31x -<<判断x 在数轴上的位置,从而判断1x -和3x +的正负性,通过绝对值的非负性的解出答案.【详解】解:31x -<<Q \在数轴上x 在1的左边,3-的右边10x \-<,x +3>01x \-为负数,3x +为正数6.已知|2|3x +=,249y =,=x y y x --,则x y +的值为( )A .8或6-B .12-或2C .6-或12-D .2或87.有理数a ,b 在数轴上的对应点的位置如图所示,则下面式子中正确的是( )A .1>-a B .a b <C .0a b +<D .0a b ->8.等边ABC V 在数轴上的位置如图所示,点A 、C 对应的数分别为0和1-.若ABC V 绕顶点沿顺时针方向在数轴上连续翻转,翻转一次后点B 所对应的数为1,则连续翻转2023次后点B 所对应的数是( )A .不对应任何数B .2021C .2022D .2023【答案】D【分析】根据ABC V 是等边三角形,找出它的运动规律并进行计算即可.【详解】解:由题意可得,每3次翻转为一个循环组依次循环∵202336741¸=¼¼,∴翻转2023次后点B 在数轴上,∴点B 对应的数是674312023´+=.故选:D .【点睛】本题考查了数轴,找到ABC V 的运动规律是解决此类问题的关键.第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.实数a 在数轴上的位置如图所示,则a ,a -,1a,2a 从小到大排列为:a-和6,点P表示的数为x,点P到B的距离是点P到A距离的3 10.在数轴上,点A、B表示的数分别是10倍,则点P表示的数为.11.已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于4的负数,则()()20212m a b cd m cd ++++的值为 .【答案】13【分析】先根据相反数性质、倒数定义及绝对值的性质得出a +b =0,cd =1,m =-4,再代入计算即可.【详解】根据题意知a +b =0,cd =1,m =-4,()()2021222021(4)(01)(4)1164113m a b cd m cd ++++=-++´-+=-+=故答案为:13【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则、相反数性质、倒数定义及绝对值的性质.12.一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是个单位长度.13.如图,已知点A 、点B 是直线上的两点,14AB =厘米,点C 在线段AB 上,且5BC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发在直线上运动,则经过 秒时线段PQ 的长为8厘米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.把下列各数填入相应集合的括号内: 6.5+,123-,0.5,0, 3.2-,13,9-,152,1-, 3.6-.(1)正数集合:{______…};(2)整数集合:{______…};(3)非负数集合:{______…};(4)分数集合:{_______…}.15.计算:(1)37-+;(2)512.584æö-¸´-ç÷èø;(3)()1731123124æö+-´-ç÷èø;(4)()20221135322---+¸´.16.已知有理数a 、b 、c 在数轴上位置如图所示,化简:|1|||||a c b a b c +---++.【答案】21b -【分析】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a 、b 、c 的正负和绝对值的大小,从而可以化简题目中的式子.【详解】解:根据数轴,得10,0,0a c b a b c +<->++<,|1|(1),||,||()a a c b c b a b c a b c \+=-+-=-++=-++,|1|||||a cb a bc \+---++(1)()()a cb a bc =-+--+++1a c b a b c=---++++21b =-.17.为切实做好杭州亚运会安全保卫工作,一天下午杭州市某街道张警官开车从警务所出发对所辖街道重点单位的门卫值勤岗进行一次巡查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.如果-|a|=|a|,那么a=_____.已知|a|+|b|+|c|=0,则a=_______,b=_____,c=_____.
6.若|a-2|+|b+3|=0,则3a+2b=__________.若|mn|+(m2)2=0,则mn=_______
7.观察下列算式:
①1×322341②2×432891③3×54215161
把这个规律用含字母的式子表示出来正确的是()
A.(n1)×(n+1)(n+1)21B.n×(n&)n21D.(n+1)×(n+2)(n+1)21
8.观察下列各式:
3×5=15,而15=42-1;5×7=35,而35=62-1;
C.若|a|<|b|,则a<bD.若a<b,则|a|<|b|
20.下列说法正确的是()
A.任何有理数的绝对值都是正数B.两个有理数,绝对值大的反而小
C.一个数的相反数一定是负数D.离原点越远的点,表示的数的绝对值越大
21.下列判断正确的是()
A.-a一定小于0B. 一定大于0C.若a+b=0,则 D. ,则a=b
(2)根据上述规律,写出第n个式子.
5.如图是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是
____________________.
6.下面是用棋子摆成的“小屋子”,按如图所示的方式进行摆放,那么摆第10个这样的“小屋子”需要_______枚棋子,摆第n个这样的“小屋子”需要__________枚棋子.
13.若 , ,且 ,则a+b的值是___________
14.最小的正整数是_____,最大的负整数是______,绝对值最小的有理数是_____,相反数等于它本身的数是________,绝对值等于它本身的数是_____________,倒数等于它本身的数是________,平方等于它本身的数是________.若 ,则mn=__
1.细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8个,那么第n次时细胞分裂后细胞的个数为____________个.
2.观察:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,则13+23+33+43+…+103=___________________.
7.一个两位数,个位上的数字是a,十位上的数字比个位上的数字小3,这个两位数是_____;当a=5时,这个两位数是__________.若|x+3|+(y-2)2=0,则x-2y=___
8.某品牌服装以a元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,此时的售价是_______元,这时仍获利________元.
3.研究下列等式,你会发现什么规律?
1×3+1=4=22,2×4+1=9=32,3×5+1=16=42,4×6+1=25=52,…
根据上述规律,写出第n个式子.
4.观察下列各式,完成下列问题.
已知1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,
1+3+5+7+9=25=52,…
(1)仿照上例,计算:1+3+5+7+…+99=____________.
11×13=143,而143=122-1;
请你按以上规律写出第n个算式______________________.
9.观察下列算式:
①1×3-22=3-4 ②2×4-32=8-9
③3×5-42=15-16 ④_____________________
(1)请你按以上规律写出第4个算式__________________;
A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<0
25.若 ,y2=9,则 的值为()
A.5B.-5C.5或1D.以上都不对
26.下列各数: ,-(-2),(-2)2,(-2)3,-(-22),-(-2)2,-22,其中负数有()
A.2个B.3个C.4个D.5个
27.计算题
计算: .计算: .
9.某市出租车收费标准为:起步价8元(包含2千米),2千米后每千米价格为1.5元,则乘坐出租车走x(x>2)千米应付______元.若|x-2y|+(y-1)2=0,则3x+4y=__
10.设有理数a,b,c在数轴上的对应点如图所示,化简 =
11.设有理数a,b在数轴上的位置如图所示,化简 .
12.若 , ,则 的值为____若 ,则ab=____
有理数混合运算培优训练题
1.若m<0,则 =_____.若 ,则
2.m,n互为相反数,则以下结论中错误的序号是_____①2m+2n=0②mn=-m2③ ④ 如果a>0,b<0, < ,则a,b,-a,-b这4个数从小到大的顺序是________
3.如果a>0,b<0,|a|<|b|,则a,b,-a,-b这4个数从小到大的顺序是_____________
22.下列说法正确的有()
①0乘任何数都得0;②一个数同1相乘,仍得原数;③-1乘任何有理数都等于这个数的相反数;④互为相反数的两个数相乘,积是1;⑤互为相反数的两个数的绝对值相等.
A.2个B.3个C.4个D.5个
23.下列各式一定成立的是()
A. B. C. D.
24.若a+b>0,ab<0且 < ,则()
C.如果两个数的绝对值相等,那么这两个数相等D.正数的绝对值是正数
18.下列说法正确的是()
A.绝对值等于它本身的数是正数B.符号不同的两个数互为相反数
C.一个数的相反数一定是负数D.离原点越远的点,表示的数的绝对值越大
19.下列结论正确的是( )
A.若|x|=|y|,则x=-yB.若x=-y,则|x|=|y|
15.下列判断正确的是( )
A.-a一定小于0B. 一定大于0C.若a+b=0,则 D.若 ,则a=b
16.下列说法正确的是()
A.1是最小的正数,最大的负数是-1B.正数和负数统称有理数
C.一个有理数不是整数就是分数D.小数3.14不是分数
17.下列说法正确的是()
A.所有的有理数都可以用数轴上的点来表示B.绝对值等于它相反数的数是负数