变速器设计详细过程

合集下载

汽车变速器设计流程

汽车变速器设计流程

汽车变速器设计流程英文回答:Designing a car transmission involves a comprehensive process that requires careful consideration of various factors. The goal is to create a transmission system that efficiently transfers power from the engine to the wheels, allowing the vehicle to accelerate, decelerate, and maintain different speeds. Here is a step-by-step overview of the design process:1. Requirements Analysis:The first step in designing a car transmission is to analyze the requirements and specifications. This involves understanding the intended use of the vehicle, such as whether it will be used for city driving, off-road adventures, or high-speed racing. Additionally, factors like engine power, torque, and fuel efficiency are considered. By clearly defining the requirements, thedesign team can proceed with the next steps.2. Conceptual Design:Once the requirements are established, the design team begins creating conceptual designs. This involves brainstorming and exploring different ideas for the transmission system. The team considers the type of transmission (manual, automatic, or semi-automatic), the number of gears, and the gear ratios. The goal is to come up with several viable options that meet the requirements.3. Detailed Design:After selecting the most promising conceptual design, the team moves on to the detailed design phase. This involves creating 3D models and performing simulations to evaluate the performance and durability of the transmission system. The team considers factors like gear engagement, shifting smoothness, and noise reduction. They also ensure that the transmission can handle the expected power and torque levels without overheating or wearing outprematurely.4. Prototype Development:Once the detailed design is complete, the team builds a prototype transmission system. This allows them to test and validate the design in real-world conditions. The prototype undergoes rigorous testing, including on-road and off-road trials, to ensure that it meets the performance and reliability requirements. Any issues or improvements identified during this phase are addressed before moving forward.5. Manufacturing and Production:With a validated prototype, the team can proceed with manufacturing and production. This involves setting up the production line, sourcing the necessary components, and ensuring quality control throughout the manufacturing process. The transmission system is then integrated into the vehicles, and thorough testing is conducted to ensure that each unit meets the desired specifications.6. Continuous Improvement:Even after the transmission system is in production,the design process continues. Feedback from customers,field tests, and advancements in technology are used to identify areas for improvement. The design team works on refining the transmission system to enhance performance, efficiency, and durability. Continuous improvement is essential to stay competitive in the automotive industry.中文回答:设计汽车变速器涉及一个全面的流程,需要仔细考虑各种因素。

变速器设计

变速器设计

变速器设计引言变速器是一种用于改变汽车或机械装置传递动力的装置。

它的主要功能是在不同工况下调整输出转速和输出扭矩,以提供适当的动力和效率。

在汽车工业、航空航天、工厂生产线等许多领域都广泛应用。

本文将介绍变速器的设计原理和常见的变速器类型。

变速器的设计原理变速器的设计原理基于传动比的变化。

传动比是输入轴与输出轴的转速之比,它决定了输出转速相对于输入转速的增益或减益。

传动比可以通过不同的齿轮组合来实现。

根据传动比的变化方式,变速器可分为手动变速器和自动变速器两种。

手动变速器通过手动操作换挡杆来改变齿轮组合,实现不同的传动比。

它通常采用常见的手动齿轮设计,其中包括主动齿轮、主动轴、同步器和尾轴等。

当换档时,同步器用于将输出轴与输入轴同步,以确保无顺挂、无冲击的换档操作。

自动变速器采用液力离合器或湿式多片离合器来实现换挡操作。

它通过传感器监测车辆速度、发动机转速等参数,并根据预设的程序自动选择适当的齿轮组合。

自动变速器提供了更高的驾驶舒适性和方便性,但相对于手动变速器来说更加复杂和昂贵。

变速器的类型手动变速器手动变速器是最常见的变速器类型之一。

它通常由多个齿轮组成,齿轮的数量和排列顺序决定了不同的传动比。

手动变速器有不同的档位,通常包括前进档、倒档和空档。

前进档用于正常行驶,倒档用于倒车,而空档则表示没有传动力传递。

手动变速器在使用过程中需要手动操作换档杆,通过将换挡杆移动到不同的档位来改变传动比。

在换挡时,需要使用离合器将发动机与变速器分离,以允许换挡操作的进行。

自动变速器自动变速器是一种能够自动选择适当的传动比的变速器。

它根据车辆的行驶状况和驾驶者的需求,自动进行换挡操作。

自动变速器采用液力离合器或湿式多片离合器来实现换档,并通过电子控制单元(ECU)监测和控制传动比的变化。

自动变速器根据结构和工作原理的不同,可以分为多种类型。

其中包括常规自动变速器、CVT(无级变速器)和双离合器变速器等。

每种类型都有其特点和适用范围,根据不同的需求和偏好可以选择合适的类型。

第三章 变速器设计

第三章 变速器设计

二、组成 1、传动机构 2、操纵机构
三、发展趋势
1、加强设计工作的系列化,通用化。如在4 档变 速器基础上,附加一个副箱体,使档数变成5档。 2、操纵机构从手动向半自动、自动、电子操纵方 向发展。
第二节
分类依据
变速传动机构布置方案
分 三 四 五 多 固 定 轴 式 类 档 档 档 档 两轴式 中间轴式 双中间轴式 多中间轴式 旋转轴式 备 少 注 用
2)变速器常用轴承形式
例:中间轴式变速器
形式 圆 柱 滚 子 轴 第二轴前支承 径向力 承 中间轴前或后 径向力 支承 第一轴后支承 径+轴 第一轴前支承 径 球轴承 第二轴后支承 径+轴 中间轴支承 径+轴
采用的部位
承载特点


第一轴内腔尺寸够大
外圈有挡圈
形式 圆锥滚子轴 承
采用的部位 中间轴支承 第一轴前端支承
2、初步计算A A= K A 3 Temx i1 g mm
参数 车型 轿 车 货 车 多档变速器
η g——96%
中心距系数 KA 8.9——9.3 8.6——9.6 9.5——11.0
A 的范围
mm
65——80 80——170
二、外形尺寸 1、横向尺寸 影响横向尺寸的因素有: 1)齿轮直径 2)倒档齿轮直径 3)壳体壁厚及其与齿轮之间的间隙
一、传动机构分类
档 数
轴的形式
用于前置前驱动 用于前置后驱动 用于重型汽车 用于重型汽车 液力机械变速器
二、两轴式与中间轴式变速器
形式 特点 结 构 方 面 轴数 第一轴与输出轴 输出轴末端 动力传递经过 直接档 结 噪 构 声 平 两轴式 2 行 1○ 2 主减速器齿轮○ 一对齿轮 没 简 有* 单 低 高 小(3.0—4.5) 中间轴式 3 同一直线上 万向节 两对齿轮※ 有 复 杂 高 低 大(7—8) 备 注

变速器设计详细过程

变速器设计详细过程

第三章变速器及驱动桥第一节变速器选型及基本参数的确定变速器用于转变发动机曲轴的转矩及转速,以适应汽车在起步、加速、行驶以及克服各种道路障碍等不同行驶条件下对驱动车轮牵引力及车速的不同要求的需要。

为保证变速器具有良好的工作性能,对变速器应提出如下设计要求:1)变速器的档位数和传动比,使之与发动机参数优化匹配,以保证汽车具有良好的动力性与经济性;2)设置空档以保证汽车在必要时能将发动机与传动系长时间分离;设置倒档使汽车可以倒退行驶;3)操纵简单、方便、迅速、省力;4)传动效率高,工作平稳、无噪声;5)体小、质轻、承载能力强,工作可靠;6)制造容易、成本低廉、维修方便、使用寿命长;7)贯彻零件标准化、部件通用化及总成系列化等设计要求,遵守有关标准规定;8)需要时应设置动力输出装置。

1.1 变速器选型有级变速器与无级的相比,其结构简单、造价低廉,因此在各种类型的汽车上均得到了广泛的应用。

其中两轴式和三轴式变速器得到了最广泛的应用。

三轴式变速器的其第一轴的常啮合齿轮与第二轴的各档齿轮分别与中间轴的相应齿轮相啮合,且第一、二轴同心。

将第一、二轴直接连接起来传递转矩则称为直接档。

此时,齿轮、轴承及中间轴均不承载,而第一、二轴也仅传递转矩.因此,直接档的传动效率高,磨损及噪声也最小,这是三轴式变速器的主要优点。

其他前进档需依次经过两对齿轮传递转矩。

因此,在齿轮中心距(影响变速器尺寸的重要参数)较小的情况下仍然可以获得大的一档传动比,这是三轴式变速器的另一优点。

其缺点是:除直接档外其他各档的传动效率有所降低。

两轴式变速器与三轴式变速器相比,其结构简单、紧凑且除最高档外其他各档的传动效率高、噪声低。

轿车多采用前置发动机前轮驱动的布置,因为这种布置使汽车的动力——传动系统紧凑、操纵性好且可使汽车质量减少6%~l0%。

两轴式变速器则方便于这种布置且使转动系的结构简单。

两轴式变速器的第二轴<即输出轴)与主减速器主动齿轮做成一体,当发动机纵置时,主减速器可用螺旋锥齿轮或双曲面齿轮;当发动机横置时则可用圆柱齿轮,从而简化了制造工艺、降低了成本。

汽车设计--3变速器设计

汽车设计--3变速器设计
3)通常跟据齿轮模数m的大小来选定齿宽。
直齿:b=Kcm, Kc为齿宽系数,取为4.5~8.0 斜齿:b= Kcmn,Kc取6.0~8.5
5、变位系数的选择原则
◎采用变位的原因:
1)避免齿轮产生根切 2)配凑中心距 3)通过变位影响齿轮的强度,使用平稳性,耐磨性、抗胶
合能力及齿轮的啮合噪声。 ◎变位齿轮的种类:高度变位和角度变位。 1)高度变位:齿轮副的一对啮合齿轮的变位系数的和为零。
1、变速器的传动比范围: 指变速器最低挡传动比与最高挡传动比的比值。 2、最高挡传动比的选取: 直接挡1.0,超速挡0.7~0.8。
3、最低挡传动比选取:
影响因素:
发动机的最大转矩、最低稳定转速;
驱动轮与路面间的附着力; 主减速比与驱动轮的滚动半径;
Ft max Ff Fi max
汽车的最低稳定车速。
1、中间轴式变速器
❖ 多用于FR,RR布置的 乘用车和商用车上
❖ 能设置直接挡,直接挡 效率高
❖ 一挡传动比能设计较大
❖ 一轴与输出轴转向相同 (挂前进档时)
❖ 零件多,尺寸、质量大
2、两轴式变速器
❖ 结构简单、紧凑、轮廓 尺寸小
❖ 中间挡位传动效率高、 噪音低(少了中间轴、 中间传动齿轮)
❖ 不能设置直接挡,高挡 位时噪音高(轴承齿轮 均承载),且效率略比 三轴式低
第三章 机械式变速器设计
本章主要学习 ❖ (1)变速器的基本设计要求; ❖ (2)各种形式变速器的结构布置特点(☆); ❖ (3)变速器主要参数的选择 (☆); ❖ (4)变速器的设计与计算(☆); ❖ (5)同步器设计的基本方法; ❖ (6)变速器操纵机构及基本结构元件; ❖ (7)机械式无级变速器简介。

车辆工程变速器设计方案

车辆工程变速器设计方案

车辆工程变速器设计方案汽车变速器是传动系统中的重要部件,起到了对发动机输出扭矩进行合理传递和调节的作用。

随着汽车技术的不断发展,变速器设计和制造方案也在不断进步和完善。

本文针对汽车工程领域的变速器设计方案进行了研究和探讨,旨在提出一种高效、可靠的变速器设计方案,以满足汽车行驶中的各种需求。

二、需求分析1. 可变速范围广:汽车行驶需求不同,需要有较大的可变速范围,适应不同路况和行驶状态;2. 高效能传递:变速器需要具备较高的传递效率,减少动力损失;3. 可靠耐用:变速器需要具备较高的可靠性和耐用性,能够满足长期使用的要求;4. 兼容性强:变速器需要能够与不同类型的发动机匹配,满足多样化的汽车需求。

三、设计原理1. 变速器类型选择:根据汽车使用需求,选择符合要求的变速器类型,包括手动变速器、自动变速器等;2. 齿轮设计:通过数值模拟和实验分析,设计合理的齿轮参数,以提高传动效率和可靠性;3. 阻尼器设计:考虑阻尼器对传动稳定性的影响,设计合理的阻尼器结构和参数;4. 控制系统设计:对自动变速器进行控制系统设计,使得变速器能够灵活响应车辆的运行状态,提高驾驶舒适度。

四、系统设计1. 变速器类型选择:根据市场需求和技术发展趋势,选择自动变速器作为设计方案的主体;2. 齿轮设计:通过CAD软件进行齿轮设计,优化传动比和齿轮参数,以提高传递效率和耐用性;3. 阻尼器设计:采用动态模拟和试验方法,进行阻尼器结构和参数的优化设计,以降低传动噪音和振动;4. 控制系统设计:采用先进的控制算法和传感器技术,实现变速器的智能控制和适应性调节,提高驾驶舒适性和燃油经济性。

五、设计实施1. 齿轮加工:采用先进的数控加工设备,对设计好的齿轮进行加工和制造,保证齿轮的精度和可靠性;2. 阻尼器制造:优选制造合作厂家,进行阻尼器的精密加工和装配,保证阻尼器的质量和稳定性;3. 控制系统调试:采用先进的仿真软件和测试设备,对控制系统进行模拟和实际测试,保证控制系统的可靠性和适应性;4. 系统集成:对齿轮、阻尼器和控制系统进行整合,进行系统运行测试和性能评估,确保整个变速器系统的稳定性和可靠性。

变速器设计(计算实例)

变速器设计(计算实例)

目录一、变速器传动机构布置方案的选择 (2)二、确定中心距 (2)三、确定齿轮的基本参数 (3)四、确定各挡齿轮齿数 (3)五、齿轮的变位与齿轮各参数的确定 (7)六、齿轮强度校核 (8)七、初选轴的直径 (14)八、轴的强度校核 (15)九、选择轴承 (18)十、参考文献 (18)设计参数:变速器型号:CAS5-20A 型各挡传动比:1 5.568i = 2 2.832i = 3 1.634i = 4 1.000i = 50.794i =5.011R i =传递的最大转矩:max 196e T N m =一、变速器传动机构布置方案的选择CAS5-20A 型变速器为中间轴式机械变速器,有5个前进挡和1个倒挡。

前进挡均带有滑块式同步器。

壳体采用前、后对开式结构。

具体传动示意图如下:二、确定中心距中间距A 为中间轴与第二轴的间距A= max 31A e g K T i η 其中A K 为中心距系数,对于货车A K =8.6~10.6。

g η为0.96。

试选A K =10.0,则:A= 39.0196 5.5680.96⨯⨯三、确定齿轮的基本参数 1、模数第一轴常啮合斜齿轮法向模数n mn m= 0.470.47 取n m =3.0一挡采用直齿轮,则:m=0.33=0.33 取m=3.5考虑到齿轮的加工方便,不少变速器采用几种模数。

即抵挡齿轮用大模数,高档齿轮采用小模数。

变速器所用模数大致范围:轻型货车为2.5~3.5 所以最终确定:第一挡和倒挡齿轮采用直齿,模数m=3.5; 其余各挡齿轮、常啮合齿轮模数n m =3.0;2、压力角因国家规定的标准压力角为20º,所以变速器齿轮普遍采用的压力角为20º,即α=20º。

3、螺旋角对于货车斜齿轮螺旋角的初选范围为β=18º~26º 初选螺旋角β=20º4、齿宽根据齿轮模数m (n m )的大小来选定齿宽: 直齿b=c k m ,c k 为齿宽系数,取为4.5~8.0 斜齿b=c n k m ,c k 取为6.0~8.5所以初选:1b =2b =8.03⨯=24mm 7b =8b =8.03⨯=24mm 3b =4b =8.03⨯=24mm 9b =10b =8.0 3.5⨯=28mm 5b =6b =8.03⨯=24mm 倒挡 b=8.0 3.5⨯=28mm四、确定各挡齿轮齿数◆ 1i =29110Z Z Z Z 直齿h Z = 2Amh Z =52.23对于中型货车,初选10Z =139Z =10h Z Z -=39.23 取整9Z =40◆ 修正中心距 A=2h Z m =13.5(4013)2⨯⨯+ =92.75mm 取整A=93mm◆ 常啮合齿轮副齿轮确定21Z Z =1019Z i Z ⨯=135.56840⨯ ………………1 A=12()2cos n m Z Z β+=123.0()2cos 20Z Z ⨯+=93 (2)联立1、2得: 1Z =21 2Z =38 此时,1i =29110Z Z Z Z =5.568 与设计传动比一致 修正螺旋角:cos β=12()2n m Z Z A+=0.9516则:'2β=19º12´48” ◆ 二挡齿轮副齿数确定78Z Z = 122Z i Z ⨯=212.83238⨯ ……………1 A=788()2cos n m Z Z β+=93 (2)28tan tan ββ=27128(1)Z Z Z Z Z ⨯++ (3)联立1、2、3得:8β=15.48º 取整后, 8Z =23 7Z =36 则 2i =2718Z Z Z Z =2.832 与设计传动比一致 修正螺旋角:8cos β= 78()2n m Z Z A+ 则 '8β=17.64º◆ 三挡齿轮副齿数确定56Z Z = 132Z i Z ⨯= 211.63438⨯ ……………1 A=566()2cos n m Z Z β+=93 (2)26tan tan ββ=25126(1)Z Z Z Z Z ⨯++ ……………3 联立1、2、3得:6β=19.85º 取整后, 6Z =31 5Z =28则 3i =2516Z Z Z Z =1.634 与设计传动比一致修正螺旋角:'6cos β=56()2n m Z Z A+则 '6β=17.46º◆ 四档为直接挡◆ 五挡齿轮副齿数确定34Z Z = 152Z i Z ⨯= 210.79438⨯ ……………1 A=344()2cos n m Z Z β+=93 (2)24tan tan ββ= 23124(1)Z Z Z Z Z ⨯++ (3)联立1、2、3得:4β=24.87º 取整后, 4Z =41 3Z =18 则 5i =2314Z Z Z Z =0.794 与设计传动比一致 修正螺旋角: '4cos β=34()2n m Z Z A+则 '4β=25.12º◆ 倒挡齿轮副齿数确定m=3.5 初选 11Z =21 则:A '=10111()2m Z Z +=13.5(1321)2⨯⨯+=59.5mmR i =2111311012Z Z Z Z Z Z ⨯⨯ =5.011则:1312Z Z =1.637 (1)为了保证不发生干涉:min A ''= 9110.522e e D D ++ =**91111(2)(2)0.522a a Z h m Z h m ++++=110.75 A ''=1312min 1()2m Z Z A ''+≥ 可得:1312Z Z +≥63.3mm ……………2 联立1、2得:12Z =24.003 13Z =39.295 取整 12Z =24 13Z =39 则: 'R i =362139191324++ =4.974与设计传动比相差不大最终各挡传动比为:1i =5.568 2i =2.832 3i =1.634 4i =1.000 5i =0.794 R i =4.974 中间轴与第二轴中心距: A=93mm中间轴与倒档轴中心距:A '=10111()2m Z Z +=59.5mm 取整后 A '=60mm倒档轴与第二轴中心距:A ''=13121()2m Z Z +=110.25mm 取整后 A ''=110mm五、齿轮的变位与齿轮各参数的确定中间轴一档小齿轮1Z =13,产生根切,应采用变位 最小变为系数:min χ=11717Z -=0.235 为保证中心距不变和计算方便,取一对相啮合齿轮的总变位系数为0变为系数χ越大,正变位齿轮的强度越大,但相对应的负变位齿轮强度越小,故在保证不根切和齿轮强度的情况下,适当选取变为系数。

变速器设计-步骤

变速器设计-步骤

标准系列减(增)速器设计步骤单机设计程序1 给定设计要求和数据2 选定类型与装配形式3 选定性能水平1)齿轮的材料2)齿坯的制造方法3)热处理要求与工艺4)润滑油与润滑方式5)冷却方式6)精度等级与精加工工艺7)机体与轴承等重要极简的材质、工艺4 按输入、输出转速(总速比),初定传动级数和各级传动比5 按照给定负载及工况初算齿轮中心距、模数及其他参数,或按照给定几何参数计算工作应力,6 初算输入、输出轴轴伸,齿轮与轴配合、轴承与轴配合直径、长度尺寸7 初选轴承8 绘制整机总装方案图,初定机体、轴、齿轮等主要零件结构、尺寸9 校核齿轮、轴、键等机械强度、安全系数、可靠度、计算轴承寿命10 修改整机装配图,选定附件11 润滑冷却设计计算12 整机设计定型13 设计施工图样14 拟定图面技术要求15 渗碳齿轮渗碳淬火有效硬化层深计算16 修形齿轮修形量计算17 紧固螺栓预紧力或预紧扭矩计算18 图样审查修改标准设计程序1确定产品适用范围,明确、归纳各类应用主机的工况条件。

设定系列产品设计计算的工况条件、工况系数,以及选用方法2明确应该贯彻的相关标准3选定类型和装配形式圆柱齿轮减(增)速器——两级——展开式4选定技术性能水平5排列系列产品主参数6搭配齿轮传动基本参数(中心距、传动比、模数、齿数、齿宽、螺旋角、变位系数等)7绘制系列产品的样机装配图8选定强度条件、强度计算方法9计算系列各规格在设定工况条件下的齿轮承载能力10按齿轮承载能力,计算确定轴承规格型号,计算轴、紧固件、连接件、机体的结构尺寸11选定润滑、冷却、密封、通气等配套附件12排列系列产品结构主要尺寸,设计系列产品施工图样13提出选用方法、选用系列及各项技术文件充分条件:1原动机的型号、规格、转数、功率、转矩、过载系数、转动惯量、启动转矩2工作机的型号,规格,用途,额定功率,转矩,变载荷的载荷图,启、制动转矩,短时过载转矩,转动惯量,启、制动和短时间过载的次数,工作制度,负荷持续率,额定转数,最大转数,旋转方向,转动惯量3传动比i与允许传动比误差4使用寿命、安全系数、可靠度(8H-10年)5传动类型与安装形式,尺寸、重量要求、安装、连接要求6环境条件:温度、散热冷却条件、润滑条件、湿度、酸碱度、灰常浓度等7操作、控制条件8批量9制造厂的设备条件10材料、毛坯、标准件来源、库存情况11交货期限12成本和价格要求必要条件:黑体①②③⑤⑦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章变速器及驱动桥第一节变速器选型及基本参数的确定变速器用于转变发动机曲轴的转矩及转速,以适应汽车在起步、加速、行驶以及克服各种道路障碍等不同行驶条件下对驱动车轮牵引力及车速的不同要求的需要。

为保证变速器具有良好的工作性能,对变速器应提出如下设计要求:1)变速器的档位数和传动比,使之与发动机参数优化匹配,以保证汽车具有良好的动力性与经济性;2)设置空档以保证汽车在必要时能将发动机与传动系长时间分离;设置倒档使汽车可以倒退行驶;3)操纵简单、方便、迅速、省力;4)传动效率高,工作平稳、无噪声;5)体小、质轻、承载能力强,工作可靠;6)制造容易、成本低廉、维修方便、使用寿命长;7)贯彻零件标准化、部件通用化及总成系列化等设计要求,遵守有关标准规定;8)需要时应设置动力输出装置。

1.1 变速器选型有级变速器与无级的相比,其结构简单、造价低廉,因此在各种类型的汽车上均得到了广泛的应用。

其中两轴式和三轴式变速器得到了最广泛的应用。

三轴式变速器的其第一轴的常啮合齿轮与第二轴的各档齿轮分别与中间轴的相应齿轮相啮合,且第一、二轴同心。

将第一、二轴直接连接起来传递转矩则称为直接档。

此时,齿轮、轴承及中间轴均不承载,而第一、二轴也仅传递转矩.因此,直接档的传动效率高,磨损及噪声也最小,这是三轴式变速器的主要优点。

其他前进档需依次经过两对齿轮传递转矩。

因此,在齿轮中心距(影响变速器尺寸的重要参数)较小的情况下仍然可以获得大的一档传动比,这是三轴式变速器的另一优点。

其缺点是:除直接档外其他各档的传动效率有所降低。

两轴式变速器与三轴式变速器相比,其结构简单、紧凑且除最高档外其他各档的传动效率高、噪声低。

轿车多采用前置发动机前轮驱动的布置,因为这种布置使汽车的动力——传动系统紧凑、操纵性好且可使汽车质量减少6%~l0%。

两轴式变速器则方便于这种布置且使转动系的结构简单。

两轴式变速器的第二轴<即输出轴)与主减速器主动齿轮做成一体,当发动机纵置时,主减速器可用螺旋锥齿轮或双曲面齿轮;当发动机横置时则可用圆柱齿轮,从而简化了制造工艺、降低了成本。

除倒档常用滑动齿轮(直齿圆柱齿轮)外,其他档位均采用常啮合齿轮(斜齿圆柱齿轮)传动;各档的同步器多装在第二轴上,这是因为一档的主动齿轮尺寸小,装同步器有困难;而高档的同步器也可以装在第一轴的后端。

两轴式变速器没有直接档,因此在高档工作时,齿轮和轴承均承载,因而噪声较大,也增加了磨损,这是它的缺点。

另外,低档传动比取值的上限(i g1=4.0~4.5)也受到较大限制,但这一缺点可通过减小各高档传动比同时增大主减速比来消除。

前置副变速器用于分割主变速器相邻档位之间的间隔,并获得两倍于主变速器档位数的档位。

组合后的多档变速器也只有两对齿轮同时进人啮合,因此传动效率不变。

利用已有的基本型变速器与前置副变速器组合的多档变速器,通用化程度高是其基本优点,通常用于需要提高车速时(例如对柴油机汽车)或用于需要不大地提高车轮的牵引力时(在主变速器可以承受的范围内)。

副变速器有两个档,即直接档和非直接档。

后者根据需要可为超速档,其传动比取1/s;亦可为降速档,取s。

其中s为组合式多档变速器各档传动比公比的平均值;q为主变速器各档传动比公比的平均值。

当前置副变速器采用具有较大传动比的降速档时,要求主变速器有相对较大的中心距,以便能承受增大了的低档输出转矩,这是它的主要缺点。

后置副变速器的组合方案用于需要显著地提高驱动车轮的牵引力时。

它有两种结构方案。

其中,固定轴线式后置副变速器相当干一个两档变速器,即由第一轴、中间轴、第二轴及两对常啮合齿轮组成。

第一、二轴连接后构成直接档;否则,经过两对常啮合齿轮传动则为降速档或称低档。

与行星齿轮式后置副变速器相比较,固定轴线式的结构较简单但质量较大。

行星齿轮式的结构较复杂但尺寸紧凑,质量小且能获得较大的低档传动比,也具有直接档和低档两个档。

后置副变速器的低档传动比取值应根据与主变速器组合时传动比的搭配方式确定。

组合后的传动比范围也与搭配方式有关,例如分段式搭配可使传动比范围扩大一倍使总传动比范围达12~13或更高,而插入式搭配则扩大不多。

多档变速器的传动比的搭配方式有三种:(1)插入式当主变速器传动比间隔较大时,副变速器的传动比可均匀地插入其间,共同组成1个连续的传动比序列,使两者交替换档,例如:主变速器的传动比为1~s2~s4~s6~s8个档;前置副变速器的传动比为1/s~1。

其中,s为多档变速器的传动比公比,则构成的10档变速器的传动比为1/s~1~s~s2~s3~s4~s5~s6~s7~s8。

如果前置副变速器具有降速档,传动比为1~s,则构成的10档变速器的传动比为1~s~s2~s3~s4~s5~s6~s7~s8~s9。

(2)分段式当主变速器的传动比公比较小时,具有大的低档传动比的后置副变速器的高、低档传动比与主变速器各档搭配成高、低传动比两段范围。

例如,设主变速器的传动比为1~s~s2~s3~s4,后置副变速器的传动比为1~s5,则总传动比序列为1~s~s2~s3~s4~s5~s6~s7~s8~s9。

这种方式换档简便。

(3)综合式是插入式与分段式的综合,使传动比范围进一步扩大。

例如主变速器的传动比为1~s2~s4~s6;前置副变速器的传动比为1/s~1,与主变速eS作插入式组合;后置副变速器的传动比为1~s8,作分段式组合,则构成16个档的总传动比序列为1/s~1~s~s2~s3~s4~s5~s6~s7~s8~s9~s10~s11~s12~s13~s14。

1.2 变速器零部件的结构分析与型式选择(1)齿轮型式斜齿圆柱齿轮虽然工作时有轴向力且加工稍复杂些,但仍以其运转平稳、噪声低、寿命长的突出优点而得到变速器的普遍采用。

直齿圆柱齿轮仅用于一些变速器的一档和倒档。

(2)轴的结构分析变速器轴在工作时承受转矩及弯矩,轴的明显变形将影响齿轮正常啮合,产生较大的噪声,降低使用寿命。

轴的结构形状除应保证其强度与刚度外,还应考虑齿轮、同步器及轴承等的安装、固定,它与加工工艺也有密切关系。

第一轴通常与齿轮做成一体,其长度决定于离合器总成的轴向尺寸。

第一轴的花健尺寸与离合器从动盘毂的内花键统一考虑,目前一般都采用齿侧定心的矩形花健,键齿之间为动配合。

第二轴制成阶梯式的以便于齿轮安装,从受力及合理利用材料来看,也是需要的。

各截面尺寸不应相差悬殊,轴上供磨削用的砂轮越程槽处的应力集中会引起轴断裂。

用弹性挡圈定位各档齿轮虽简单,但拆装不方便,且与旋转件端面有滑摩,同时弹性档圈也不能承受大的轴向力,故这种结构仅用于轻型及以下的汽车变速器上。

第二轴安装同步器齿座的花键采用渐开线花键且以大径定心更宜。

渐开线花键固定连接的精度要求比矩形花键低,但定位性能好,承载能力大,且键齿高较小使小径相应增大,可增强轴的刚度。

当一档、倒档采用滑动齿轮挂档时,第二轴的相应花键则采用矩形花键及动配合,这时不仅要求磨削定心的外径,一般也要磨削键齿侧,而矩形花键的齿侧磨削要比渐开线花键容易。

变速器中间轴分为旋转式及固定式两种。

旋转式中间轴支承在前后两个滚动轴承上。

其上的一档齿轮常与轴做成一体,而高档齿轮则用键或过盈配合与轴连接以便于更换。

如结构尺寸允许,应尽量采用旋转式中间轴。

固定式中间轴为仅起支承作用的光轴,与壳体呈轻压配合并用锁片等作轴向定位。

刚度主要由支承于其上的连体齿轮(宝塔齿轮)的结构保证。

仅用于当壳体上无足够位置设置滚动轴承和轴承盖时。

(3)轴承型式变速器多采用滚动轴承,即向心球轴承、向心短圆柱滚子轴承、滚针轴承以及圆锥滚子轴承。

通常是根据变速器的结构选定,再验算其寿命。

第一轴前轴承(安装在发动机飞轮内腔中)采用向心球轴承:后轴承为外圈带止动槽的向心球轴承,因为它不仅受径向负荷而且承受向外的轴向负荷。

为便于第一轴的拆装,后轴承的座孔直径应大于第一轴齿轮的齿顶圆直径。

第二轴前端多采用滚针轴承或短圆柱滚子轴承;后端采用带止动槽的单列向心球轴承,因为它也要承受向外的轴向力。

某些轿车往往在加长的第二轴后端设置辅助支承,并选择向心球轴承。

旋转式中间轴前端多采用向心短圆柱滚子轴承,此轴承不承受轴向力,因为在该处布置轴承盖困难;后轴承为带止动槽的向心球轴承。

中间轴的轴向力应力求相互抵销,未抵销部分由后轴承承受。

中间轴轴承的径向尺寸常受中心距尺寸限制,故有时采用无内圈的短圆柱滚子轴承。

固定式中间轴采用滚针轴承或圆柱滚子轴承支承着连体齿轮(塔轮,宝塔齿轮)。

变速器第二轴的常啮合齿轮与二轴之间多采用滚针轴承,也有用滑动轴套的。

前者与后者相比,具有定位精度高有利于齿轮啮合,传动效率高且飞溅润滑即能满足要求等一系列优点,但对配合处的尺寸精度、表面粗糙度及硬度都要求很严,且配合要适宜。

为适应汽车变速器向着增大其单位质量的传递功率、增强其承载能力、具有更高的可靠性、更长的寿命和更好的性能等方向发展,变速器采用圆锥滚子轴承的日益增多。

因为与其他轴承相比,圆锥滚子轴承的直径小、宽度大、接触线长,因而容量大,可以承受高负荷;在承受同样载荷的情况下其径向尺寸可以减小,从而缩小中心距,减小变速器的尺寸和质量;锥体、外圈及滚子间基本的几何关系使滚子能正确对中,确保轴承的可靠性及长寿命;接触线长加之锥角和配合选择适当,则可提高轴的刚度,使齿轮正确啮合、降低噪声,减少自动脱档的可能并提高其寿命;圆锥滚子轴承可通过预紧消除轴向间隙和轴向窜动。

由于上述优点,圆锥滚子轴承已在国外一些轿车、客车和载货汽车及重型汽车的变速器上得到应用。

变速器采用圆锥滚子轴承时,为了便于装配和轴承预紧,通常将壳体设计成沿变速器轴中心线所在平面垂直分开或水平分开。

1.3 基本参数的确定1.3.1 变速器的档位数和传动比不同类型汽车的变速器,其档位数也不尽相同。

轿车变速器传动比变化范围较小(约为3~4),过去常用3个或4个前进档,但近年来为了提高其动力性尤其是燃料经济性,多已采用5个前进档。

轻型货车变速器的传动比变化范围约为5~6,其他货车为7以上,其中总质量在3.5t 以下者多用四档变速器,为了降低油耗亦趋向于增加1个超速档;总质量为3.5~l0t 多用五档变速器;大于l0t 的多用6个前进档或更多的档位。

选择最低档传动比时,应根据汽车最大爬坡度、驱动车轮与路面的附着力、汽车的最低稳定车速以及主减速比和驱动车轮的滚动半径等来综合考虑、确定。

(1)根据汽车最大爬坡度确定汽车爬陡坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。

故有)sin cos (max max 01max ααη+≥f mg r i i T r tg e则由最大爬坡度要求的变速器1档传动比为te r g i Tf mgr i ηαα0max max max 1)sin cos (+≥ 式中m ——汽车总质量;g ——重力加速度;f ——道路阻力系数;max α——最大爬坡要求;r r ——驱动车轮的滚动半径;max e T ——发动机最大转矩;0i ——主减速比;t η——汽车传动系的传动效率。

相关文档
最新文档