随钻声波测井系统技术参数
美国斯伦贝谢随钻声波测井新技术

根 据 所 需 的 物 理 记 录, 可 将 声
波信号中识别出来 [1]。
波测井仪设计成一组发射器(声源),
很 多 物 质 都 有 各 自 具 体 的 声 波 用于产生特定形式的压力脉冲。最基
慢度(下表)。例如纵波通过钢材的 本 的 方 式, 也 是 各 种 声 波 测 井 仪 常
慢度是 187 微秒 / 米(57 微秒 / 英尺)。 用 的 类 型 是 单 极 子 声 源。 单 极 子 声
波快。
于快地层这种情况。
声源的测井仪记录的资料中提取。在
临界折射的纵波在井筒中产生的
如果地层的横波慢度大于井筒流 非常需要这些资料的井段通常也无法
头波以地层纵波速度传播 [3]。根据惠 体的纵波慢度(这种情况被称为慢地 获得。
更斯原理,井壁上每一点上的纵波都 层),纵波在到达井筒时仍然会发生折
单极子声源在测量慢地层横波资
偶极子声源也具有定向性,利用
ཀྵհ
࢙հ
ୁ༹հ
ጻհ ཀྵհ
ୁ༹հ
定向接收器阵列和两个互成 90°的声 源,工程师能够得到井筒周围的定向 横波资料。这种交叉偶极测井方法提 供了最大、最小应力方位,径向速度
ڇटጱำᇸ
ڇटጱำᇸ
分布和各向异性横波资料的方向。 上世纪 80 年代引入了将快地层中
使用的单极子声源纵波和横波数据与
Jeff Alford Matt Blyth Ed Tollefsen 美国得克萨斯州休斯敦
John Crowe 雪佛龙卡宾达海湾石油有限公司 安哥拉罗安达
Julio Loreto 得克萨斯州Sugar Land
Saeed Mohammed 沙特阿拉伯宰赫兰
随钻声波测井新技术
工程师根据声波测井仪记录的声波资料以更高的安全系数提 高钻井效率,优化完井方式。LWD 声波测井仪是在上世纪 90 年 代中期问世的,能够记录纵波资料,但不能记录所有地层的横波 资料。新型 LWD 声波测井仪能记录以前无法得到的横波资料,工 程师正在利用横波资料优化钻井作业,确定最佳钻进方向,识别 具有更好完井特征的岩层。
随钻核磁共振测井技术参数

INTEQ 的6 ¾” MagTrak™随钻核磁共振测井技术提供实时总孔隙度,不需要放射源和岩性参考。
通过石油工业标准定义的T 2分布,随钻核磁共振测井可以得到自由水和束缚水含量,流体饱和度以及孔隙特征。
MagTrak 随钻测井工具有着很高的垂直分辨率。
探测直径可达12.6”。
6 ¾” 的MagTrak 工具可以适用8 3/8” – 9 7/8” 大小的井眼。
预先设定操作模式,简易井上操作。
这种模式能够适应绝大多数地层和流体特性。
■ “孔渗核磁”模式:可以得到总孔隙度,毛管束缚水孔隙度,粘土束缚水孔隙度和预测的渗透率 ■ “孔渗核磁+轻烃”模式:可以得到总孔隙度,毛管束缚水孔隙度,粘土束缚水孔隙度,预测的渗透率和轻烃饱和度对于特殊的应用也可以自定义测量参数。
每一种模式的原始数据都在井下处理。
经计算的地层性质参数,如总孔隙度和束缚水孔隙度等可以实时传输到地面。
所有原始数据都被储存在内存中,工具出井后可下载,进行高级处理。
MagTrak 随钻测量工具由一个传感器短节和两个扶正器组成。
工具下面需要配置一个柔性短节以减少震动。
MagTrak 传感器短节有独立的发电装置,需要泥浆驱动发电。
服务优势:■ 核磁共振随钻测量数据- 总孔隙度和有效孔隙度(实时数据) - 自由水孔隙度和束缚水孔隙度(实时数据) - 预测的渗透率(实时数据) - 孔隙特征- 轻烃饱和度■ 优化的井下测量环境- 原始地层- 无污染的井眼■ 可适用于高井斜井■ 高的垂直分辨率■ 对定向测量没有磁干扰■ 低的震动敏感性技 术 参 数 表6 3/4" MagTrak6 3/4" MagTrak 井眼尺寸 8 3/8“ - 9 7/8“传感器距底端位置 9.97ft(3.04m)公称外径 6 3/4" (17.15cm)公称直径12.6“(320mm)两个低震动扶正器回波间隔可自定义,最小0.6ms 套筒长度9.6“(24.5cm)回波数可自定义,最大5000外径1/8“欠尺寸共振频率500kHz 总长/总重名义磁场梯度 2.0G/cm 传感器带下扶正器 24.2ft(7.4m)3 197lbs(1 450kg)内存384MB,相当于340小时上扶正器 5.7ft(1.73m)705lbs(320kg) 2.8"(70mm)电源泥浆涡轮发电*静态纵向分辨率接头纵向分辨率 2 ft(钻速50ft/hr 和1空隙单位) 4 ft(钻速100ft/hr 和1空隙单位) NC50下:INTEQ 标准扣NC50NC50下:INTEQ 标准扣NC501 300 - 2 500 lpm 1 000 - 1688 lpm 最大钻压562 022 lbf(2 500kN)最大扭矩(钻头处)23 500ft-lbf(32 kNm)最大失效扭矩(钻头处)47 500ft-lbf(65 kNm)最大失效拉力无旋转持续操作无旋转最大温度最大最小操作时300°F (150°C)-14°F(-10°C)极限温度347°F(175°C)-40°F(-40°C)最大静水压25 000 psi (1 725 bar)泥浆类型不含铁矿粉,不含海绵铁最小泥浆电阻率0.02ohm-m 最大轴向,径向,切向震动参阅《补充技术参数》881 251 lbf (3 920 kN)1 162 262 lbf (5 170 kN) 最大狗腿度值对应相应的钻具组合,它受到不同参数的影响,如钻具组合方式,井身结构,钻进模式(造斜、降斜或稳斜)。
随钻声波测井仪控制和数据处理系统设计

第33卷 第6期2009年12月测 井 技 术WELL LO GGIN G TECHNOLO GYVol.33 No.6Dec 2009基金项目:国家自然科学基金项目(10534040、40874097)、国家863项目(2006AA060103)资助作者简介:肖红兵,男,1968年生,高级工程师,博士研究生,主要研究方向为随钻测井技术。
文章编号:1004Ο1338(2009)06Ο0555Ο04随钻声波测井仪控制和数据处理系统设计肖红兵1,2,鞠晓东1,卢俊强1(1.中国石油大学资源与信息学院,北京102249;2.中国石化胜利油田钻井工艺研究院,山东东营257017)摘要:介绍一种随钻声波测井仪控制和数据处理系统硬件电路和软件设计方案。
随钻声波测井仪控制和数据处理系统以MCU 、DSP 和CPLD 芯片为核心,MCU 负责仪器工作模式选择及测量数据传输,DSP 和CPLD 协同控制声波发射接收时序,并进行快速数据处理,控制和数据处理系统与声波发射接收系统之间采用高速总线传输数据和命令。
根据仪器不同功能需要,采用地面工作模式、延时模式、测井模式等3种工作模式,结合数据传输需要,提供了不同的通讯接口。
整个设计符合测量、传输的实时性要求以及低功耗要求,适用于随钻声波测井仪。
关键词:随钻声波测井;控制和数据处理;工作模式;实时性中图分类号:P631.53 文献标识码:ADesign on Control and Data Processing System of Acoustic Logging While Drilling ToolXIAO Hong 2bing 1,2,J U Xiao 2dong 1,L U J un 2qiang 1(1.Facutty of Natural Resousce &Information Technology ,China University of Petroleum ,Beijing 102249,China ;2.Drilling Technology Research Institute ,SINOPEC ,Dongying ,Shandong 257017,China )Abstract :The circuit and software design on cont rol and data process system of acoustic L WD(Logging While Drilling )tool was int roduced.The system is based o n t he microcont roller ,digit 2al signal p rocess (DSP )and complex programmable logic device (CPLD ).The operation mode and data t ransmission of t he tool is co nt rolled by t he microcont roller ,while DSP and CPLD con 2t rol t he sequence of t he acoustic wave transmission and receive ,and p rocess data in real time.High speed t ransmission bus is applied in t he command and data t ransmission between t he system board and t he acoustic wave t ransmitter and receiver board.According to different f unctions of t he tool ,t hree operation modes of t he tool (surface mode ,delay mode and logging mode )are ap 2plied ,and multi communication interfaces are provided for data transmission.The design meet s t he demand of measurement ,real 2time data t ransmission and low power dissipation and can be ap 2plied in t he acoustic L WD tool.K ey w ords :acoustic L WD ,control and data p rocessing ,operation mode ,real 2time0 引 言与电缆声波测井仪器不同,在随钻声波测井中,受传输速率的限制,控制和数据处理均在井下快速完成。
随钻测井

内容摘要摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。
随钻测井(LWD)技术的萌芽只比电缆测井晚10年。
由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。
其业务收入和工作量快速增长。
勘探开发生产的需要仍是随钻测井继续发展的强劲动力。
作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。
关键词:随钻测井 LWD 研究进展第一章随钻测井技术现状迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。
有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。
1.1随钻测井数据传输技术多年来,数据传输是制约随钻测井技术发展的“瓶颈”。
泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。
泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。
电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。
哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。
此外,声波传输和光纤传输方法还处于研究和实验阶段。
1.2随钻电阻率测井与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。
侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。
GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。
最新随钻声波测井仪器的技术性能

最新随钻声波测井仪器的技术性能近年来,声波测井技术已成功应用于随钻测量(MWD)和随钻测井(LWD)中。
随钻声波测井技术为钻井施工和储层评价提供了全面的数据支持和测井解释。
目前,国外三大公司分别推出了最新的随钻声波仪器,它们分别是贝克休斯公司的APX随钻声波测井仪,哈里波顿Sperry Drilling Service公司研制的双模式随钻声波测井仪器(BAT)和斯伦贝谢公司研制的新一代随钻声波仪器sonicVISION。
下面我们对三种仪器的性能分别进行介绍和对比。
1.APX随钻声波测井仪APX随钻声波测井仪由贝克休斯公司INTEQ公司生产,其结构简图见图1。
该仪器声源以最佳频率向井眼周围地层发射声波,声波在沿井壁传播的过程中被接收器检测并接收。
接收器采用了先进的嵌入技术,将接收到的声波模拟信号转换为数字信号,以获取地层声波时差(△t),而后将原始声波波形数据和预处理的声波波形数据存储在高速存储器内。
仪器的主要技术性能●计算机模型(FEA):该模型是为声学仪器的优化配置而设计,同时具备有助于不同窗口模式的评价和解释。
●全向发射器:与典型的LWD仪器等单向的有线测井仪不同,APX发射器使用一组圆柱形压电晶体,对井眼和周围地层提供3600的覆盖范围,其声源能够在10~18,000Hz频率范围内调频,并可以单极子和偶极子发射。
●全向接收器阵列:6×4接收器阵列,间距228.6mm。
这种全向结构类似于XMAC电缆测井系统,接收器阵列与声源排成一条线,以实现径向多极子声波激发。
●接收器。
该仪器的声源具有优化发射频率功能,其接收器有几个比仪器本身信号低很多的波段,可以显著减少接收器及钻柱连接的干扰。
在关掉发射源的情况下,该仪器测试到的信号主要来自于频率低于5KHz的PDC钻头噪音。
●较大的动力范围。
该仪器具有较大的信号采集动力范围,能够显著提高信号穿越地层的能力,有助于信号的提取。
●四极子波技术。
首次采用四极子波发射技术,同时兼容单极子和偶极子的信号发射和接收。
SLB随钻测井技术及应用

随钻测井(LWD)技术及应用 WZ11-1 N宋菊 随钻测量技术 Apr-16-20091 Initials 4/18/2009主要内容随钻测井简介 VISION Scope 作业要点环境随钻测井影响2 Initials 4/18/2009随钻测井仪器振共磁核电缆测井仪器CMRproVISION sonicVISION StethoScope TeleScope随钻测井可以实现 的测井项目侧向电阻率 电磁波传播电阻率DSIPeriScope seismicVISIONgeoVISION Xceed/Vortex3 Initials 4/18/2009谱获俘、马格西、规常EcoScope试测力压层地 像成率阻电 率阻电向侧波声MDT岩性密度 光电指数 中子孔隙度PEx元素俘获,自然伽马 声波 地层压力 俘获截面 核磁 地层界面 图像AIT ECSHRLS随钻测井能够完成几乎全部测井项目FMI97%以上的随钻测井不再需要重复电缆测井 以上的随钻测井不再需要重复电缆测井传达独立的地层评价电缆测井 随钻测井97%以上的随钻测井不需要重复 相同项目的电缆测井4 Initials 4/18/2009随钻测井的价值决策决策/ 决策/ 产量储层增产地质导向增 值 方 向地层产能和渗透性储层产能 储层评价R Φ R Φ R Φ MR,孔隙度, 饱和度, 岩性, 孔隙度 饱和度 岩性 流体西格马实 时 数 据 构造随钻测井服务 Φ地 元 地层元素 地 元 地 元Rt Rxo孔 密度 隙 光电 度 指数ΦISO向 导 质 质 质 质 地 地 地 地流度 流 流 流e e e PermV地层信息Sc op e实时测井 EcoScopeGVR (RAB) ARC ADN马 伽马 伽马 伽马能谱pe co riS Pe e op Sc tho SteN ISIO ProVSonic VISIONTe le测量工具实时可视化感应 电阻 率侧向 电阻 率试 试 试 测试 力 力 力 压力 层 层 层 地层振 振 振 共振 核 核磁测 测 测 测 探 探 探 探 界 界 界 界 边 层 地 地 地 地西格马中子密度波 声波 声波 声波成像遥 测实时解释LWD测量的项目 测量的项目测量项目5 Initials 4/18/2009随钻测井的优势随钻的测井服务, 随钻的测井服务,并独立进行地层评价 更及时、 更及时、更真实地反映原状地层信息 提供增值服务:优化钻井、 提供增值服务:优化钻井、无源测井和地质导向 省去常规电缆测井, 省去常规电缆测井,提高钻井项目时效198819891990199219931994199619971998199920002001200220052007 2009补偿系列6 Initials 4/18/2009VISION系列SCOPE系列随钻测井的优势测点紧跟钻头,空井时间最短在地层改变之前 在井眼破坏前 在钻井液入侵前 时间决定解释方位性随钻测井方位性测量 井眼成像7 Initials 4/18/2009VISION 系列随钻测井技术arcVISION 感应电阻率– Multiple Depth Resistivity/GRgeoVISION 侧向电阻率– Laterolog & at-bit resistivity/GR/imagingadnVISION 方位中子密度– Density/Neutron/Caliper/ImagingproVISION 随钻核磁共振– Magnetic ResonancesonicVISION 随钻声波– Compressional dtseismicVISION 随钻地震– Seismic While Drilling8 Initials 4/18/2009SCOPE 系列随钻测井技术TeleScope 超高速实时传输– MORE data, delivered FASTER, while drilling – 8-1/2” to 36” hole sizeEcoScope 多功能随钻测井– Multi-function Logging While Drilling – 8-1/2” hole sizesStethoScope 随钻测压– Accurate pressure measurements while drilling – 8-1/2” to 12 1/4” hole sizePeriScope 15 随钻方位性地层边界测量– Directional Deep Measurements – 8-1/2” hole size,6”hole size9 Initials 4/18/2009Ga s O ilW a te r10 Initials 4/18/2009Azimuthal Density Neutron (ADN)Azimuthal Density NeutronADNPowerPulseARC or GVRPowerPak or PowerDrive12 InitialsadnVISIONStabilized or Slick Options13 Initials 4/18/2009平均密度 Vs. 方位性密度扶正器的作用 平均密度可用,但不是最佳 针对standoff(探测器与井壁 间距)的密度校正密度测量 一大进步 在井眼严重扩径或者井壁过 于粗糙情况下,密度校正精 度会降低 ☺引进方位性密度测量, 很好的保证了密度测量的准确性! 引进方位性密度测量, 很好的保证了密度测量的准确性!14 Initials 4/18/2009密度测量使用方向性测量的优势解决地层各向异性问题 (带扶正器工具) 增加测量的准确性(带或者不带扶正器)井眼扩径问题 侵入的问题能够获得密度成像资料两个磁力计保证成像以及方向性密度能够很好在方位上定位15 Initials 4/18/2009ADN8 随钻测井作业要点无扶正器的ADN8在12 ¼”井眼数据质量问题在低井斜(< 20 deg井斜),滑动与粘卡时, 无扶正器的 ADN8不能提供准确的地层密度测量使用有扶正器的SADN8 重测滑动井段或使用旋转导向(气层有侵入,重测显示油 层) 提供IDD处理 盲区-调整方位, 3-5度16 Initials 4/18/2009ADN8 粘卡-钻速不稳,岩屑沉积- 遇阻17 Initials 4/18/2009ADN and Wireline Log ComparisonADN accuracy agrees with wireline if hole condition is goodADN is better if hole enlarges after drilling18 Initials电阻率工具介绍和应用电阻率工具的类型感应电阻率工具 arcVISION - Array Resistivity CompensatedIMPulse – MWD with GR & 2 MHz Resistivity ARC 3/6/8/9 – GR & 2 MHz and 400 kHz侧向电阻率工具 geoVISION – Resistivity At the BitGVR 6 & 8 – Bit Resistivity, Azimuthal GR, Buttons Resistivity20 Initials21 Initials 4/18/2009ARRAY RESISTIVITY TOOL ARCarcVISION 感应电阻率工具Plateau GR sensor Phase Shift and Attenuation measurements Simultaneous acquisition 2-MHz and 400-kHz frequencies Borehole compensation Multiple depths of investigation22 Initials 4/18/2009ARC 2 MHz Resistivity Transforms23 Initials 4/18/2009电阻率ARCWizard处理方法 处理方法 电阻率Dielectric Invasion Anisotropy EccentricityWizard ProcessingBorehole Shoulder Tool Failure处理是基于仪器的测井响应特征加上一定的测井解释可能性约束来进行的 通过一维反演做出全井段的环境影响识别和校正 给出反演后的地层电阻率 从而给出可靠的地层解释24 Initials 4/18/2009LWD的特殊曲线响应:极化角效应25 Initials 4/18/2009Interpretation Summary26 Initials 4/18/2009Interpretation Summary27 Initials 4/18/2009ARC Phase Shift Resistivity28 Initials 4/18/2009ARC Phase & Attenuation Resistivity resistive invasion29 Initials 4/18/2009随钻测井LWD在直井或者小斜度井中 在直井或者小斜度井中 随钻测井快速解释时不需要考虑极化角效应; 快速解释一般不需要考虑边界效应; 井眼影响,泥浆侵入,各向异性等都可以通过反演来 分析; 需要特别注意井眼状况对中子密度仪器的影响;30 Initials 4/18/2009电阻率曲线为什么会分开?Invasion泥浆侵入 Anisotropy各向异性 Polarization horns边界极化效应 Geometry effects倾角的影响31 Initials 4/18/2009Curve Separation电阻率曲线的分离32 Initials 4/18/2009Polarization Horns 极化角33 Initials 4/18/200934 Initials 4/18/2009Multidepth Resistivity三种深度的纽扣电阻率35 Initials 4/18/2009geoVISION 侧向电阻率适用于高导电性泥浆环境 提供包括钻头,环形电极以及3 个方位聚焦纽扣电极的电阻率 高分辨率侧向测井减小了邻层的影响 钻头电阻率提供实时下套管和取心点的选择 三个方位纽扣电极提供三种深度的微电阻率随钻成像,可解决复 杂的解释问题 实时图像被传输到地面可识别构造倾角和裂缝,以更好地进行地 质导向 实时方向性伽马测量36 Initials 4/18/2009GVR钻头电阻率测量确定完钻、取芯等 钻头电阻率测量确定完钻、 钻头电阻率测量确定完钻测量原理:头接 端上选可仪器末端几英寸和钻头一起作 为发射电极,测量点为该电极 的中点,实现理论上的钻头电 阻率测量 应用: 油基泥浆也可用 实时准确选择下套管深度, 更好地避免钻井风险 确定取芯等实时地质决策STOP钻头电极37 Initials 4/18/2009点 量测率 阻电头钻 膛阀浮 器 感传方下 器正 扶的换 更可场现 马 伽性向方 极电环 焦聚括包 器 感传间中器 感传方上池电GVR Images Improve Drilling DecisionsShallow38 Initials 4/18/2009MediumDeep侧向电阻率成像工具GVR识别裂缝 识别裂缝 侧向电阻率成像工具电缆测井和随钻测井成像对比 FMI GVR纵向分辨率:电缆FMI优于GVR 井眼覆盖率:GVR优于电缆FMI适用于水基泥浆环境 三个方位纽扣电极提供三种深度的微电阻率随钻成像 ,可解决复杂的解释问题 实时图像被传输到地面可识别构造倾角和裂缝,以更 好地进行地质导向和其它地质决策39 Initials 4/18/2009GeoVision Resistivity 侧向电阻率Azimunthal resistivity electrode Ring resistivity electrode Azimunthal gamma ray Bit resistivity electrode5 individual resistivity measurements & Gamma Ray Bit resistivity - the bit used as a measure electrode Ring resistivity - a cylindrical electrode provides a focused lateral resistivity Button resistivity - azimuthally focused electrodes provide 3 depths of investigation Azimuthal gamma ray for steering40 Initials 4/18/2009Bit Resistivity钻头电阻率41 Initials 4/18/2009Resistivity At Bit Application钻头电阻率的应用42 Initials 4/18/2009Ring Measurement 环形电阻率43 Initials 4/18/2009SCOPE 系列随钻测井技术TeleScope 超高速实时传输– MORE data, delivered FASTER, while drilling – 8-1/2” to 36” hole sizeEcoScope 多功能随钻测井– Multi-function Logging While Drilling – 8-1/2” hole sizesStethoScope 随钻测压– Accurate pressure measurements while drilling – 8-1/2” to 12 1/4” hole sizePeriScope 15 随钻方位性地层边界测量– Directional Deep Measurements – 8-1/2” hole size,6”hole size45 Initials 4/18/2009TeleScope – 超高速实时传输当今石油工业中最快 速和稳定的工具 (> 100 bps) 多样的实时测量传输 ,更快的机械钻速proVISION sonicVISION StethoScope TeleScope为苛刻和复杂的钻井 环境设计– – –EcoScope seismicVISION geoVISION Xceed– –46 Initials 4/18/2009高温高压 灵活的钻具组合 自然伽马和连续的 井斜方位 三轴震动测量 井底钻压和粘滑指 数用于钻井优化Advanced Interpretation Using EcoScope MeasurementsEcoScope提供先进的测井解释 提供先进的测井解释 提供先进的测井Removal of Chemical Nuclear Sources• AmBe + Cs sources • Both must be run adnVISION48 Initials 4/18/2009• Cs source • Optional EcoScope• SourcelessEcoScopeEcoScope – 多功能随钻测井多功能随钻测井仪:安全的结合钻井和地层评价传 感器于一体。
随钻测井技术介绍

电磁波传播电阻率测井 仪器结构与测量信号
A 20lg V2 V1
1
2
Rad
R ps
单发双收三线圈系
随钻电阻率测井仪器
低端仪器 ➢ “短电位”或“环状电极” 电阻率 — 限于水基泥浆中应用 ➢ 单间距、单频传播电阻率
— 未补偿 –NL EWR, Teleco DPR — 补偿 – Schlumberger公司 CDR & 专利许可的仪器 — 从相位差和衰减测量得到最多2 种探测深度
❖ 通常意义的MWD仪器系统,主要限于对工程参数(井斜、方 位和工具面等)的测量,它只是一种测量仪器,无直接导向钻 进的功能。
经典随钻测井(LWD)概念
❖ 随钻测井(Logging While Drilling)是在随钻测量(MWD)基础 上发展起来的一种功能更齐全、结构更复杂的随钻测量系统,主要 是在常规MWD基础上增加电阻率、中子、密度和声波等测量短节, 用以获取测井信息;
电测井基本原理
[ (x)U (x)] (x)
2
E(
x)
k
2
E(
x)
i
JT
(
x)
k 2 i ( i ) :波数 : 电导率 : 介电常数 : 磁导率
地层电 性参数
电法测井测量方程
直流电测井 感应测井
Ra
K
U I
aR
VR K
aX
VX K
Geolink公司已经开发出低频(20kHz)随钻 感应测井仪器;
在测井行业,应用LWD说法似乎更多一些; 在钻井领域,应用MWD说法似乎更多一些。
“LWD”的来源
LWD 发展时间表
MWD/LWD发展简史 – 早期
• 1927: Schlumberger 兄弟在法国得到第一条电缆测井曲线 • 1929: Jokosky 申请第一个泥浆脉冲传送专利 • 1950: Arp 发明正向泥浆脉冲系统 • 1960:利用正向泥浆脉冲的机械测斜仪出现,并应用至今 • 1971: Mobil R&D 第一次成功实验泥浆警笛 • 1978: 定向MWD的商用传输系统 • 1980: Schlumberger / Anadrill 引入多探头MWD
随钻测井技术

有非常独特的作用。
东北石油大学
随钻测井技术
随钻测井的优点
与电缆测井相比,随钻测井具有准确性、实时性和适用性广等优势。具体表现为: a) LWD是在钻头破岩后不久、泥浆侵入较浅、井眼平滑与尚未明显垮塌的条件下测量的,测 井曲线受泥浆侵入影响比常规测井小得多,更能反映原状地层的电性、物性和孔隙流体性质。 其不同测量方式获得的时间推移测井资料,也易于识别油气层和分析储层渗透性; b) 人们可根据实时记录测量的近钻头的地质参数,判释易于造成井涌的高压层、造成井漏的裂 缝、破碎带(断层)以及地层岩性和油气水界面,结合井眼几何参数,确定钻头在地层中的空 间位置并做出迅速反应,采取适当的工程措施,引导钻头沿着设计的井眼轨迹或实际地质目 标层(油气藏中)钻进,提高钻井效率; c) 复杂条件下不能进行电缆测井时,利用LWD可采集井眼和地层物理信息。与钻杆传输测井 (PCL一WL)相比,LWD更为安全可靠,它适合在各种恶劣的井下环境中作业,在大斜度井、 水平井和小井眼中测量更是见其特长。
东北石油大学
随钻测井技术
随钻声波测井
现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如 贝克休斯INTEQ公司的APX既使用单极子也使用四极子声源,斯伦贝谢公司的 SonicVision使用单极子声源,哈里伯Sperry公司的BAT是偶极子仪器。这些仪 器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内, 起钻后回放使用。随钻声波测井数据可用于岩性识别、孔隙度计算、岩石力 学参数计算、井眼稳定性预测、泥浆比重优化、下套管位置选择等。
过泥浆编码脉冲实时传输到地面,传输率很低,目前最大传输率仅为巧15bps。Sperry-Sun
井下存储器可以记录8MB数据量,若为随钻全波测井,则可记录256MB,但这种数据须 等到起钻后才能获得。 c) 测井环境响应不同 LWD探测深度较饯,受井眼和侵入影响小,但由于钻杆本身重量特别大,大多是在偏心 条件下采集数据的,尤其是中子密度测井受仪器偏心影响较大。此外,在大斜度井或水平井 中,随钻电阻率测井不再象直井那样测量水平电阻率,其测量值介于水平电阻率和垂直电阻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INTEQ 先进的SoundTrak TM
LWD 声波测井服务可以精确测量所有地层中纵波和横波传输时间,SoundTrak 是唯一能与电缆测井匹敌的随钻测井系统,且考虑到大多数旋转导向钻井应用的特殊环境。
并行多重频率的声波可以在各种传播速度范围的地层和井眼尺寸下获得高质量的测量数据。
专利的Quadrupole(四极子)技术可以在极软地层中精确直接的测得横波速度,无须进行dipole(偶极子)LWD 工具的离散校正。
地层的声学特性可直接测得。
SoundTrak 得益于它的一个高输出全方位多极声波发送器;一个能消除工具偏心影响的六级、24阵列接收器;和一个用来隔开发射极和接收极的声波绝缘体,来削弱直接耦合影响;在井眼扩径的情况下也可获得可靠声速数据。
即便在很具挑战性的环境下,先进的井下处理系统和声波层叠技术也能够优化信噪比。
纵波的传输速度参数和质量信息会被实时传输,原始波形数据可存储在高容高速的内存中以备后续操作。
在单趟钻中就可获取所有数据。
服务应用服务应用::
纵波和横波传输时间的应用:
■ 钻井——预测孔隙压力从而避免钻井中的不利因素 ■ 地球物理——表面地震波校正和深度基准点可确定井位
和优化油藏模型 ■
岩石物理——孔隙度和油气确认 (AVO) 计算油藏储量 ■ 地质力学——岩石特性,出砂潜在性和井眼稳定性分析
钻井完井方案
服务优势服务优势::
■ 在世界范围200多口井出色的成功表现
■ 减少钻机时间,单趟钻即可获取多种模式的信息资料
■
运用纵波数据预测孔隙压力确保井下安全
■ 在超慢地层中(200usec/ft) 用低频单极子可以获得纵波传
播速度
■ 工具在泥面以下和大井眼尺寸中也能够直接获取纵波传
播时间差∆t
■ 通过井下WAVEVAN 实时处理计算传播时间差∆t c ■ 地层横波速度直接通过Quadrupole(四极子)模式测得 ■
较长的接受发射极间距使得在扩径井眼和超慢地层中也可以获取到可靠的声波数据
■ 补偿系统可以消除工具偏心影响
■ 自带的大容量内存可以长时间的存储大量信息
■
现场LQ C显示和实时的工具监测 ■ 先进的多任务处理
技技 术 参 数 表
SoundTrak
SoundTrak
工具尺寸(外径OD):9 1/2"(241mm)8 1/4"(210mm) 6 3/4"(171mm)适用井眼范围
12 1/4"-26"10 1/2"-17 1/2"8 3/8"-10 5/8"(311mm-660mm)(267mm-445mm)(213mm-270mm)工具长度32.8 ft(10m)
32.8 ft(10m)32.8 ft(10m)工具重量6,800 lbs (3,084 kg)5,200 lbs (2,359 kg)3,750 lbs (1,701 kg)常规井眼尺寸
17 1/2" (445 mm)12 1/4" (311 mm)8 1/2" (216 mm)肋板/扶正块或TSS 外径11 1/2" (292 mm)10" (254 mm)8 1/4" (210 mm)
当量刚性 ODXID 9.7" x 7.6" (246 mm x 193 mm)8.4" x 6.3" (213 mm x 160 mm)7.1" x 5.5" (180 mm x 140 mm)
止电短接上部接头7 5/8" API 正规.母扣 6 5/8" API 正规.母扣NC50 or 4 1/2"IF 内平.母扣
工具扣型和上扣扭矩
工具尺寸(外径OD):9 1/2"(241mm)8 1/4"(210mm) 6 3/4"(171mm)450 - 1,560 gpm 300 - 1,300 gpm 200 - 900 gpm (由MWD 叶轮片配置决定)(1,703 - 5,905 lpm)(1,136 - 4,921 lpm)(757 - 3,407 lpm)最大抗拉力(旋转)
1,348 klbs (7,040 kN)1,144 klbs (5,090 kN) 881 klbs (3,920 kN) 最大失效抗拉力(非旋转)1,978 klbs (8,800 kN) 1,430 klbs (6,360 kN) 1,102 klbs (4,900 kN) 最大折弯度 -旋转通过55 kNm (40.6 k ft-lbs) 55 kNm (40.6 k ft-lbs) 26 kNm (19.2 k ft-lbs) -滑动通过150 kNm (110.6 k ft-lbs)
150 kNm (110.6 k ft-lbs)
70 kNm (51.6 k ft-lbs)
最大工作温度最大压力压降
最大通过狗腿度 -滑动通过 -旋转通过遥测类型工作时间 -实时/内存内存
存储读取速率
最大轴向、横向和切向振动
工具尺寸(外径OD):9 1/2"(241mm)
8 1/4"(210mm) 6 3/4"(171mm)测点到工具底部的距离发送接收极间距发射极数量频率范围
纵波速度快慢范围 ∆tc 横波速度快慢范围 ∆ts 探测深度纵向分辨率 -∆t
-层界面识别精确度 ∆tc 精确度 ∆ts 测井速度
2%5%
根据工具循环时间而变化.循环时间100hr 时,最大机械钻速500ft/hr(152m/hr)的情况下1个样点/ft 或更好
层界面识别厚度会根据采样率不同而变化
深达3 ft
∆t 是6个接收极高度的平均值45" or 3.75 ft (1.14 m) 24" or 2 ft (0.61 m)
24 (6 X 4)
单极:4-18 KHz /多极:2-10 KHz 40 - 220 µsec/ft (131 - 722 µsec/meter) 60 - 550 µsec/ft (197 - 1,804 µsec/meter)
脉冲发射接受已经本身内部存储. 在地面做好相应设定. 可以支持500小时
1Gb/2.25Gb 每分钟35 Mb
10.7 ft (3.3 m)请参考技术文件TDS-20-60-0000-00
关于RPM ,含砂量和堵漏材料请参考WMD 技术表(如Ontrak ,NaviTrak)
9.3 ft (2.85 m)
注意:测量点取决于工具本身而且会根据现场钻具组合的变化而不同
最大允许通过狗腿度根据具体应用和其他一些参数如钻具组合、井眼轨迹和钻井方式(造斜、降斜或稳斜)的不同而变化。
为了更好更安全的满足规范,向公司技术专家(适用BHASYS Pro)寻求技术支持是必要的
最高到18ppg(2.16 sg)
泥浆脉冲以及可调节(5,10,15,20sec)告诉地面系统
302°F (150°C) 25,000 psi (1,725 bar)
也有30,000psi 的工具(根据需要)
取决于泥浆密度和排量
上母下公:INTEQ 专利扣型 (扭矩参考其他技术文档)。