第6章第4讲 数列的求和
数列的求和方法(ppt)

错位相减法:形如An=BnCn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等 比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把① 式中所有项同乘等比数列{Cn}的公比q,即得qSn,记为②式;然后①②两式错开一位 做差,从而得到{An}的前n项和。这种数列求和方式叫作错位相减。
数列的求和方法(ppt)
演讲人
目录
01
数列概念
02
等差数列思维导图
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘 公比错项相减(等差×等比)、公式法、迭加法。
倒序相加法:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于 同一个常数,则求该数列的前n项和即可用倒序相加法。例如等差数列的求和公 式,就可以用该方法进行证明。
等差数列思维导图
一般地来说如果一个数列从第2项起,每一项与它的前一项的差等于同一个常 数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字 母d表示,前n项和用Sn表示。
谢谢
裂项相消法:裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互 抵消,从而求得其和。
乘公比错项相减(等差×等比):这种方法是在推导等比数列的前 n 项和公式时所用的 方法,这种方法主要用于求数列(anxbn)的前n项和,其中(an),(bn)分别是 等差数列和等比数列。
公式法:对等差数列、等比数列,求前n项和Sn可直接用等差、等 比数列的前n项和公式进行求解。运用公式求解的注意事项:首先 要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
数列求和PPT课件

1 2n-1
-
1 2n+1
)]
=
3n 2n+1
.
11.已知 {an} 是 首 项 为 a1, 公 比 为 q 的 等 比 数 列. (1)求和: a1C20-a2C12+a3C22, a1C03-a2C13+a3C23-a4C33 ; (2)由(1)的结果归纳概 括出关于正整数 n 的一个结论, 并加以证明; (3)设q≠1, Sn是{an} 的前 n 项和, 求 S1Cn0-S2C1n+S3C2n-S4C3n+ … +(-1)nSn+1Cnn.
n+1 项
∵lgx+lgy=a, ∴lg(xy)=a.
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
注: 本题亦可用对数的运算性质求解:
∵Sn=lg[xn+(n-1)+…+3+2+1y1+2+3+…+(n-1)+n],
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
7.求证: Cn0+3Cn1+5Cn2+…+(2n+1)Cnn=(n+1)2n.
-nn2+,1 2
,
n 为偶数时, n 为奇数时.
将数列的每一项拆(裂开)成两项之差, 使得正负项能相互
抵消, 剩下首尾若干项.
例
求和
Sn=
1×1 2+
1 2×3
+…+
1 n(n+1)
.
n n+1
《 数列求和》优秀教案

第4讲数列求和考纲要求:1熟练掌握等差、等比数列的前n项和公式2掌握非等差、等比数列求和的几种常见方法考点1公式法与分组求和法1公式法直接利用等差数列、等比数列的前n项和公式求和1等差数列的前n项和公式:S n=错误!=2等比数列的前n项和公式:S n=错误!2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.考点2倒序相加法与并项求和法1.倒序相加法如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.2.并项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=-1n fn类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=1002-992+982-972+…+22-12=100+99+98+97+…+2+1=5050考点3裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.考点4错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.经典习题:1 [课本改编]数列{1+2n-1}的前n项和为A 1+2nB 2+2nC n+2n-1D n+2+2n2 [课本改编]设函数f是一次函数,若f0=1,且f3是f1,f8的等比中项,则f2+f4+…+f2n 等于A n2n+3B n3n+4C 2n2n+3D 3nn+43 [2021·保定模拟]在10到2021之间,形如2n n∈N*的各数之和为A 1008B 2021C 2021D 20214 [2021·河南郑州市质量预测]在正项等比数列{a n}中,a1=1,前n项和为S n,且-a3,a2,a4成等差数列,则S7的值为A 125B 126C 127D 1285 [2021·金版创新]设直线n+n+1=错误!n∈N*与两坐标轴围成的三角形面积为S n,则S1+S2+…+S2021的值为A 错误!B 错误!C 错误!D 错误!。
理科数学高考大一轮总复习课件:第6章 第4讲 数列求和

高中新课标总复习
解析:S50=1-2+3-4+…+49-50 =(-1)×25 =-25.
理数
11 第十一页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
5. 数列 0.5,0.55,0.555,0.5555,…的前 n 项和为________.
12 第十二页,编辑于星期日:十八点 四十八分。
理数
2. 设数列 1,(1+2),…,(1+2+…+2n-1),…的前 n
项和为 Sn,则 Sn 等于( D )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2
6 第六页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
解析:依题意可知数列的每一项是由等比数列的和构成 的,设为 Tn,则 Tn=22n--11=2n-1,所以数列是由等比数列 和等差数列构成的,则 Sn=222-n-11-n=2n+1-n-2.
24 第二十四页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
(2)由(1)知 bn=3n+2n-1(n=1,2,…). 数列{3n}的前 n 项和为32n(n+1),数列{2n-1}的前 n 项和 为11--22n=2n-1. 所以,数列{bn}的前 n 项和为32n(n+1)+2n-1.
25 第二十五页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
二 裂项相消法求和 【例 2】(2014·广东茂名一模)已知等差数列{an}的前 n 项
和为 Sn. (1)请写出数列{an}的前 n 项和 Sn 的公式,并推导其公式; (2)若 an=n,数列{an}的前 n 项和为 Sn,求S11+S12+…+S1n
第六章 第4讲 等差数列、等比数列与数列求和

抓住2个考点
突破4个考向
揭秘3年高考
解
(1)设{an}的公比为 q,则 b1=1+a,b2=2+aq,b3
=3+aq2,由 b1,b2,b3 成等比数列得(2+aq)2=(1+a)(3 +aq2), 即 aq2-4aq+3a-1=0.* 由 a>0 得, Δ=4a2+4a>0, 故方程*有两个不同的实根. 再由{an}唯一, 知方程*必有一根为 0, 将 q=0 代入方程* 1 得 a= . 3
抓住2个考点
突破4个考向
揭秘3年高考
(2)倒序相加法:如果一个数列{an}的前n项中首末两端等“ 距离”的两项的和相等或等于同一个常数,那么求这个数 列的前n项和即可用倒序相加法,如等差数列的前n项和即 是用此法推导的. (3)错位相减法:如果一个数列的各项是由一个等差数列 和一个等比数列的对应项之积构成的,那么这个数列的前 n项和即可用此法来求,如等比数列的前n项和就是用此法
所以Tn=b1+b2+…+bn=(21+22+…+2n)+n
抓住2个考点
突破4个考向
揭秘3年高考
21-2n + = +n=2n 1+n-2. 1-2
设An=Tn-6n=2n+1-5n-2,则An+1-An=2n+1-5, 所以当n=1时,有An+1<An;当n≥2时,有An+1>An. 故最小项为A2=23-10-2=-4. 即数列{Tn-6n}中最小项的值为-4.
抓住2个考点
突破4个考向
揭秘3年高考
(2)假设存在两个等比数列{an},{bn}使 b1-a1,b2-a2, b3-a3,b4-a4 成公差不为 0 的等差数列. 设{an}的公比为 q1,{bn}的公比为 q2,则 b2-a2=b1q2-
2 3 3 a1q1,b3-a3=b1q2 - a q , b - a = b q - a q 2 1 1 4 4 1 2 1 1.
新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

第四讲 数列求和A 组基础巩固一、单选题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n n +12.∴1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=2⎝ ⎛⎭⎪⎫1-1101=200101.故选D.3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( D )A .13B .10C .9D .6[解析] ∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6.4.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( B )A .(3n-1)2B .12(9n-1) C .9n -1D .14(3n-1) [解析] 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则当n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,a 21+…+a 2n =41-9n1-9=12(9n-1).故选B.5.(2021·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n(2n -1),则S 2 023=( C )A .2 021B .-2 021C .-2 023D .2 023[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n·(2n -1),a 2 023=(-1)2 023(2×2 023-1)=-4 045,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 023=(a 1+a 2)+(a 3+a 4)+…+(a 2 021+a 2 022)+a 2 023=2×1 011-4 045=-2 023.故选C.6.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .n -124 C .n n -14D .n n +14[解析] 依题意可得新数列为n 2,n 4,n 6,…,1n ×n2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎢⎡11×2+12×3+…+⎦⎥⎤1n -1n=n 24⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 24×n -1n =n n -14.故选C. 二、多选题7.(2022·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2n n -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则( ABD )A .a 2=-8B .a n =-2n·n C .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×n n -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n+n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法正确的是( ACD ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57[解析] 对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选A 、C 、D.三、填空题 9.数列{a n }中,a n =1nn +1,若{a n }的前n 项和为2 0222 023,则项数n 为 2 022 . [解析] a n =1nn +1=1n -1n +1,S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1=2 0222 023,所以n =2 022. 10.122-1+132-1+142-1+…+1n +12-1= 34-12⎝ ⎛⎭⎪⎫1n +1+1n +2 .[解析] ∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +12-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4= 24 ,T 30= 650 .[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018= 4 709 .[解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.四、解答题13.(2021·宁夏银川金凤模拟)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =a nn.(1)证明数列{b n }是等差数列,并求其通项公式; (2)若c n =2b n -n ,求数列{c n }的前n 项和. [解析] (1)∵na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2, ∵b n =a nn ,∴b n +1-b n =2,b 1=a 11=2,∴数列{b n }是等差数列,首项与公差都为2. ∴b n =2+2(n -1)=2n . (2)c n =2b n -n =22n-n =4n-n , ∴数列{c n }的前n 项和为41-4n1-4-n n +12=4n +1-43-n n +12.14.(2021·太原二模)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =a n +a n +1(n∈N *).(1)求数列{b n }的通项公式;(2)若c n =log 2a n (n ∈N *),求数列{b n ·c n }的前n 项和T n . [解析] (1)当n =1时,a 1=S 1=2, 当n ≥2时,a n =S n -S n -1=2n, 又a 1=2满足上式,∴a n =2n (n ∈N *),∴b n =a n +a n +1=3×2n. (2)由(1)得a n =2n ,b n =3×2n, ∴c n =log 2a n =n ,∴b n ·c n =3n ×2n,∴T n =3×(1×2+2×22+3×23+…+n ×2n),① ①×2,得2T n =3×(1×22+2×23+3×24+…+n ×2n +1),②①-②,得-T n =3×(2+22+…+2n -n ×2n +1)=3×[(1-n )×2n +1-2],∴T n =3(n -1)×2n +1+6.B 组能力提升1.(多选题)(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( AC )A .a 5=-16B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n+1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选AC.2.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( C )A .1 026B .1 025C .1 024D .1 023[解析] ∵2n+12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,恒成立 ∴整数m 的最小值为1 024.3.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( D )A .1 009B .1 010C .2 019D .2 020[解析] 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.4.记S n 为等差数列{a n }的前n 项和,已知,S 9=-a 5,若a 1>0,使得S n ≥a n 的n 的取值范围 [1,10]n ∈N .[解析] 由S 9=-a 5得a 5=0即d =-a 14故a n =-n -5a 14,S n =-n n -9a 18由S n ≥a n 可得-n n -9a 18≥-n -5a 14由于a 1>0,故S n ≥a n 等价于-n n -98≥-n -54即:n 2-11n +10≤0 解得1≤n ≤10所以n 的取值范围是[1,10]n ∈N .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 当n 为奇数,c n =2S n =1n -1n +2,当为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1).。
【中小学资料】2018版高考数学一轮复习 第六章 数列 第4讲 数列求和 理

第4讲 数列求和一、选择题1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B2.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-15解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 A3.在数列{a n }中,a n =1nn +,若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1nn +=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2 013. 答案 C4.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=+2=30×61=1 830.答案 D5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .85解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =+2n +2=n(n +2),则b n =n +2,T 10=+2=75,故选B .答案 B6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( ).A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B.答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.等比数列{a n }的前n 项和S n =2n-1,则a 21+a 22+…+a 2n =________. 解析 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =-4n1-4=13(4n-1). 答案 13(4n-1)9.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n,故b n =log 3a n =n , 所以1b n b n +1=1nn +=1n -1n +1. 则S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案nn +110.设f (x )=4x4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 解析 当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+x 1+4x 24x 1+x 2+x 1+4x 2+4=1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5. 答案 5 三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =qn -1.依题意有⎩⎪⎨⎪⎧S 2b 2=+d q =64,S 3b 3=+3d q 2=960,解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎪⎨⎪⎧d =-65,q =403.(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2), 所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +3n +n +.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n . 解 (1)由已知得⎩⎪⎨⎪⎧a n +1=12S n,a n=12S n -1n,得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n .∴1b n b n +1=1n+n =1n -11+n . ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =n n +1.13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n的特点是数列{n }与{3n}之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n.∴S n =3+2×32+3×33+…+n ·3n, ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+ (3)),即2S n =n ·3n +1-31-3n1-3,∴S n =2n -13n +14+34. 探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n . (1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2,12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n n +2n -2≥λ.设f (n )=n n +2n -2,计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为f (n +1)-f (n )=n +-n2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。
(浙江版)2018年高考数学一轮复习 专题6.4 数列求和(讲)

第04节 数列求和【考纲解读】【知识清单】一.数列求和1. 等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 2.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法). 3. 数列前n 项和①重要公式:(1)1nk k ==∑123n ++++=2)1(+n n (2)1(21)nk k =-=∑()13521n ++++-=2n(3)31nk k ==∑2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n(4)21nk k ==∑)12)(1(613212222++=++++n n n n②等差数列中,m n m n S S S mnd +=++;③等比数列中,n mm n n m m n S S q S S q S +=+=+.对点练习:1.【2017课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C2. 已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值( ) A .29 B .31 C .33 D .35 【答案】B【解析】由题意得479+=4a a ,因此363911+=()6482q q q q ⇒=⇒=舍去负值,因此55116(1)231.112S -==-选B.【考点深度剖析】数列求和是高考重点考查的内容之一,命题形式多种多样,以解答题为主,难度中等或稍难,数列求和问题为先导,在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.考查等差数列的求和多于等比数列的求和,往往在此基础上考查“裂项相消法”、“错位相减法”.【重点难点突破】考点1 数列求和【1-1】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根,则数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和 . 【答案】1422n n n S ++=-【1-2】【2017届浙江嘉兴市高三上基础测试】已知数列{}n a 的前n 项和为n S ,若11a =,且12n n S ta =-,其中*n N ∈.(1)求实数t 的值和数列{}n a 的通项公式; (2)若数列{}n b 满足32log n n b a =,求数列11{}n n b b +的前n 项和n T . 【答案】(1)23=t ,13-=n n a ;(2)12121121+=⎪⎭⎫ ⎝⎛+-n n n . 【解析】试题分析:(1)由n n a S =可得32t =,2n ≥时由1n n n a S S -=-得数列{}n a 为首项为1,公比为3的等比数列,可得通项公式;(2)化简21n b n =-,则11111()22121n n b b n n +=--+,用裂项相消求和,可得前项和.试题解析: (1)当1=n 时,21111-==ta S a ,得23=t ,从而 2123-=n n a S ,则 2≥n 时,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-=--2123212311n n n n n a a S S a 得 13-=n n a a又01≠a 得31=-n n a a,故数列{}n a 为等比数列,公比为3,首项为1.∴13-=n n a(2)由(1)得 1223-=n n a 得 12-=n b n ∴()()⎪⎭⎫⎝⎛+--=+-=-121121*********n n n n b b n n 得 ⎪⎭⎫⎝⎛+--++-+-=121121513131121n n T n12121121+=⎪⎭⎫ ⎝⎛+-=n nn【领悟技法】1.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2.倒序相加法:类似于等差数列的前n 项和的公式的推导方法,如果一个数列{}n a 的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并整理即得.4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++; (21k=,特别地当1k ==(3)()()221111212122121n n a n n n n ⎛⎫==+- ⎪-+-+⎝⎭(4)()()()()()1111122112n a n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭(5))()11(11q p qp p q pq <--= 5.分组转化求和法:有一类数列{}n n a b +,它既不是等差数列,也不是等比数列,但是数列{},{}n n a b 是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.6.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求解.例如,22222210099989721n S =-+-++-()()()100999897215050=++++++=.7. 在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和.应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.8. [易错提示] 利用裂项相消法解决数列求和问题,容易出现的错误有两个方面: (1)裂项过程中易忽视常数,如)211(21)2(1+-=+n n n n 容易误裂为112n n -+,漏掉前面的系数12; (2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误. 应用错位相减法求和时需注意:①给数列和S n 的等式两边所乘的常数应不为零,否则需讨论; ②在转化为等比数列的和后,求其和时需看准项数,不一定为n . 【触类旁通】【变式一】【2017课标II ,理15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲数列的求和基础知识整合1.倒序相加法如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.2.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.5.并项求和法一个数列的前n项和,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.常见的拆项公式(1)1n(n+1)=1n-1n+1;(2)1(2n-1)(2n+1)=12⎝⎛⎭⎪⎫12n-1-12n+1;(3)1n+n+1=n+1-n.1.(2019·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D.2.(2019·安徽六校联考)已知等差数列{a n }的前n 项和为S n ,若a 2+a 8+a 11=30,则S 13的值是( )A .130B .65C .70D .75答案 A解析 因为数列{a n }是等差数列,且a 2+a 8+a 11=30,所以3a 7=a 2+a 8+a 11=30,则a 7=10,S 13=(a 1+a 13)×132=13a 7=13×10=130.故选A.3.数列1,12,2,14,4,18,…的前2n 项和S 2n =________. 答案 2n -12n解析 S 2n =(1+2+4+…+2n -1)+⎝ ⎛⎭⎪⎫12+14+18+…+12n =2n -1+1-12n =2n -12n .4.S n =122-1+142-1+…+1(2n )2-1=________.答案n2n +1解析 通项a n =1(2n )2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴S n=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.5.(2019·宁夏固原市模拟)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.答案 11解析 利用“特殊值”法,确定公比.设公比为q ,因为对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则令式中n =1,得a 3+a 2-2a 1=0,所以a 1(q 2+q -2)=0.显然a 1≠0,所以由q 2+q -2=0,解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.6.已知a n =13n ,设b n =na n,记{b n }的前n 项和为S n ,则S n =________.答案 (2n -1)·3n +1+34解析 b n =n ·3n ,于是S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1,②①-②,得-2S n =3+32+33+…+3n -n ·3n +1, 即-2S n =3-3n +11-3-n ·3n +1,S n =n 2·3n +1-14·3n +1+34=(2n -1)·3n +1+34.核心考向突破考向一 分组转化法求和 例1 (2020·广东佛山教学质量检测)已知数列{a n }中,a 1=1,a n +a n +1=pn +1,其中p 为常数.(1)若a 1,a 2,a 4成等比数列,求p 的值; (2)若p =1,求数列{a n }的前n 项和S n . 解 (1)由a n +a n +1=pn +1,得a 1+a 2=p +1,a 2+a 3=2p +1,a 3+a 4=3p +1,所以a 2=p ,a 3=p +1,a 4=2p .又因为a 1,a 2,a 4成等比数列,所以a 22=a 1a 4,即p 2=2p ,又因为p ≠0,故p =2.(2)当p =1时,a n -1+a n =n (n >1,n ∈N ), 当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=2+4+…+n =(2+n )n22=n 2+2n 4;当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=1+3+5+…+n =(1+n )n +122=n 2+2n +14,综上,S n =⎩⎪⎨⎪⎧n 2+2n 4,n 为偶数,n 2+2n +14,n 为奇数.1.分组转化求和通法若一个数列能分解转化为几个能求和的新数列的和或差,可借助求和公式求得原数列的和.求解时应通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.2.分组转化求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)若a n =⎩⎨⎧b n ,n 为奇数,c n ,n 为偶数,且数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.[即时训练] 1.(2019·衡阳模拟)在等比数列{a n }中,公比q ≠1,等差数列{b n }满足b 1=a 1=3,b 4=a 2,b 13=a 3.(1)求数列{a n }与{b n }的通项公式;(2)记c n =(-1)n b n +a n ,求数列{c n }的前2n 项和S 2n . 解 (1)由题意,得b 1=a 1=3,b 4=a 2=3q ,b 13=a 3=3q 2. 又{b n }为等差数列,设公差为d ,∴⎩⎨⎧b 4=b 1+3d =3q ,b 13=b 1+12d =3q 2,化简得q 2-4q +3=0, ∴q =1(舍去)或q =3,∴a n =3n ,∵d =b 4-b 14-1=2,∴b n =3+2(n -1)=2n +1.(2)由题意得c n =(-1)n (2n +1)+3n .∴S 2n =-3+3+5+32-7+33+…-(4n -1)+32n -1+(4n +1)+32n =(3+32+…+32n )+[-3+5-7+9-…-(4n -1)+(4n +1)] =3(1-32n )1-3+{(5-3)+(9-7)+…+[(4n +1)-(4n -1)]}=32n +1-32+2n .精准设计考向,多角度探究突破 考向二 裂项相消法求和 角度1 形如a n =1n +k +n型例2 (2019·正定模拟)已知等差数列{a n }的前n 项和为S n ,公差为d ,若d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d <S 9.(1)求数列{a n }的通项公式;(2)若b n =1a n +1+a n(n ∈N *),求数列{b n }的前n 项和T n .解 (1)因为d ,S 9为函数f (x )=(x -2)(x -99)的两个零点且d <S 9,所以d =2,S 9=99,又因为S n =na 1+n (n -1)2d ,所以9a 1+9×82×2=99,解得a 1=3,所以{a n }是首项为3,公差为2的等差数列.所以a n =a 1+(n -1)d =2n +1. (2)因为b n =1a n +1+a n =12n +3+2n +1=12(2n +3-2n +1),所以T n =12(5-3)+12(7-5)+…+12(2n +1-2n -1)+12(2n +3-2n +1)=2n +3-32.角度2 形如a n =1n (n +k )型例3 (2019·沈阳质检)已知数列{a n }中,a 1=4,a n >0,前n 项和为S n ,若a n =S n +S n -1(n ∈N *,n ≥2).(1)求数列{a n }的通项公式;(2)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:120≤T n <320.解 (1)由已知,得数列{a n }中,a 1=4,a n >0,前n 项和为S n , 若a n =S n +S n -1(n ∈N *,n ≥2),由a n =S n -S n -1=( S n -S n -1)( S n +S n -1), 可得S n -S n -1=1,即有S n =S 1+n -1=2+n -1=n +1, 即S n =(n +1)2,当n ≥2时,a n =S n +S n -1=n +1+n =2n +1,则a n =⎩⎨⎧4,n =1,2n +1,n ≥2.(2)证明:当n ≥2时,可得数列1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则前n 项和为T n =14×5+12×⎝ ⎛⎭⎪⎫15-17+17-19+…+12n +1-12n +3=120+12×⎝ ⎛⎭⎪⎫15-12n +3=320-14n +6,由320-14n +6在n ∈N *上单调递增,可得最小值为320-110=120,且320-14n +6<320,则120≤T n <320. 角度3 形如a n =ka n (a n -1)(a n +1-1)(a >0,a ≠1)型例4 (2019·江西九江二模)已知数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .(1)求数列{a n }的通项公式;(2)若b n =a n +1S n ·S n +1,求数列{b n }的前n 项和T n .解 (1)由已知,得数列{a n }的首项a 1>0,前n 项和为S n ,且满足a 1a n =S 1+S n .当n =1时,解得a 1=2. 当n ≥2时,2a n =2+S n ,① 2a n -1=2+S n -1,②①-②得,a n =2a n -1,整理得a na n -1=2(常数),所以a n =2·2n -1=2n .(2)由于S n =2(1-2n )1-2=2·(2n -1),b n =a n +1S n ·S n +1=2n +14(2n -1)(2n +1-1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1, 所以T n =12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1.利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d⎝⎛⎭⎪⎫1a n -1a n +2.[即时训练] 2.已知正项数列{a n }的前n 项和S n 满足2S n =a 2n +a n -2.(1)求数列{a n }的通项公式;(2)若b n =2n (n -1)na n (n ∈N *),求数列{b n }的前n 项和T n .解 (1)当n =1时,a 1=2, 当n ≥2时,2a n =2(S n -S n -1)=(a 2n +a n -2)-(a 2n -1+a n -1-2),整理,得(a n +a n -1)(a n -a n -1-1)=0, ∵a n >0,∴a n -a n -1-1=0,即a n -a n -1=1, ∴{a n }是以a 1=2为首项,d =1为公差的等差数列, ∴a n =2+(n -1)×1=n +1.(2)由(1)得a n =n +1, ∴b n =2n (n -1)n (n +1)=2n +1n +1-2nn,∴T n =⎝ ⎛⎭⎪⎫222-2+⎝ ⎛⎭⎪⎫233-222+…+⎝ ⎛⎭⎪⎫2n +1n +1-2n n =2n +1n +1-2.考向三 错位相减法求和例5 (2019·贵阳模拟)已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意的r ,t ∈N *,都有S r S t=⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否为等差数列,并证明你的结论;(2)若数列{b n }满足a nb n=2n -1(n ∈N *),设T n 是数列{b n }的前n 项和,证明:T n <6.解 (1){a n }是等差数列.证明如下: 因为对任意的r ,t ∈N *,都有S r S t=⎝ ⎛⎭⎪⎫r t 2,所以对任意的n ∈N *,有S n S 1=n 2,即S n =n 2.从而当n ≥2时,a n =S n -S n -1=2n -1,且n =1时此式也成立. 所以a n +1-a n =2(n ∈N *),即{a n }是以1为首项,2为公差的等差数列. (2)证明:由a n b n =2n -1,得b n =2n -12n -1.T n =1·⎝ ⎛⎭⎪⎫120+3·⎝ ⎛⎭⎪⎫121+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1, 12T n =1·⎝ ⎛⎭⎪⎫121+3·⎝ ⎛⎭⎪⎫122+…+(2n -3)·⎝ ⎛⎭⎪⎫12n -1+(2n -1)·⎝ ⎛⎭⎪⎫12n . 两式相减,得12T n =1+2·⎝ ⎛⎭⎪⎫121+2·⎝ ⎛⎭⎪⎫122+…+2·⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n=1+2·12-⎝ ⎛⎭⎪⎫12n1-12-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+4⎝ ⎛⎭⎪⎫12-12n -(2n -1)·⎝ ⎛⎭⎪⎫12n =3-(2n +3)⎝ ⎛⎭⎪⎫12n ,T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1.因为n ∈N *,所以T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1<6.(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.[即时训练] 3.(2019·湖南益阳4月模拟)已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1·a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n ·b n }的前n 项和T n .解 (1)由a 2n +1-2a n +1a n -3a 2n =0及a n >0,得⎝ ⎛⎭⎪⎫a n +1a n 2-2×a n +1a n -3=0,解得a n +1a n =3, a n +1a n=-1(舍去),所以{a n }是等比数列,且公比q =3,又a 1=2,所以a n =2·3n-1.(2)因为S n =2(1-3n )1-3=3n -1,b n =log 3(1+S n )=n ,a n b n =2n ·3n -1,所以T n =2×30+4×31+6×32+…+(2n -2)×3n -2+2n ×3n -1,① 所以3T n =2×31+4×32+6×33+…+(2n -2)×3n -1+2n ×3n ,②由①-②得,-2T n =2+2×31+2×32+2×33+…+2×3n -1-2n ×3n =2(1-3n )1-3-2n ×3n =(1-2n )×3n -1.所以T n =3n ⎝ ⎛⎭⎪⎫n -12+12.学科素养培优(十一) 数列中的探索性问题(2019·天津新华中学一模)已知数列{a n }中,a 1=1,a 2=3,其前n 项和为S n ,且{S n }为等比数列.(1)求数列{a n }的通项公式; (2)若b n =9a n(a n +3)(a n +1+3),记数列{b n }的前n 项和为T n .设λ是整数,问是否存在正整数n ,使等式T n +3λ5a n +1=78成立?若存在,求出n 和相应的λ值;若不存在,请说明理由.解 (1)由题意,得S 1=a 1=1,S 2=a 1+a 2=4,由{S n }为等比数列,所以S n =4n -1,当n ≥2时,a n =S n -S n -1=4n -1-4n -2=3×4n -2,故a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.(2)当n ≥2时,b n =9a n(a n +3)(a n +1+3)=9×3×4n -2(3×4n -2+3)(3×4n -1+3)=3×4n -2(4n -2+1)(4n -1+1)=14n -2+1-14n -1+1. 而b 1=9a 1(a 1+3)(a 2+3)=38,当n =1时,T 1=b 1=38, 则当n =1时,等式T n +3λ5a n +1=78即为38+λ5=78,解得λ=52,它不是整数,不符合题意.当n ≥2时,T n =b 1+b 2+…+b n =38+⎝ ⎛⎭⎪⎫142-2+1-142-1+1+…+⎝ ⎛⎭⎪⎫14n -2+1-14n -1+1=78-14n -1+1.则等式T n +3λ5a n +1=78即为78-14n -1+1+λ5×4n -1=78,解得λ=5-54n -1+1. 由λ是整数,得4n -1+1是5的因数.而当且仅当n =2时,54n -1+1是整数,由此λ=4.综上所述,当且仅当λ=4时,存在正整数n =2, 使等式T n +3λ5a n +1=78成立.答题启示探索性问题的类型及解法(1)条件探索性问题:一般采用分析法,从结论或部分条件入手,执果索因,导出所需条件,注意这类问题往往要求的是问题的充分条件,不一定是充要条件.(2)存在性探索问题:一般假定存在,在这个前提下推理,若由此推出矛盾,则否定假设,否则给出肯定结论.(3)结论探索性问题,由给定的已知条件进行猜想透彻分析,发现规律,获取结论.对点训练(2019·贵阳模拟)已知{a n }是公差不为0的等差数列,{b n }是等比数列,且a 1=b 1=1,a 2=b 2,a 5=b 3.(1)求数列{a n },{b n }的通项公式;(2)记S n =a 1b 1+a 2b 2+…+a nb n,是否存在m ∈N *,使得S m ≥3成立,若存在,求出m ;若不存在,请说明理由.解 (1)设数列{a n }的公差为d (d ≠0),数列{b n }的公比为q ,则由题意知⎩⎨⎧1+d =1·q ,1+4d =1·q 2,∴d =0或d =2, ∵d ≠0,∴d =2,q =3,∴a n =2n -1,b n =3n -1.(2)由(1)可知,S n =a 1b 1+a 2b 2+…+a n b n =11+331+532+…+2n -33n -2+2n -13n -1,13S n =131+332+533+…+2n -33n -1+2n -13n ,两式相减得,23S n =1+231+232+…+23n -1-2n -13n =1+23×1-⎝ ⎛⎭⎪⎫13n -11-13-2n -13n =2-2n +23n <2,∴S n <3.故不存在m ∈N *,使得S m ≥3成立.课时作业1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n=( )A .25B .576C .624D .625 答案 C解析 a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C.2.数列{(-1)n (2n -1)}的前2020项和S 2020等于( ) A .-2018 B .2020 C .-2017 D .2017 答案 B解析 S 2020=-1+3-5+7+…-(2×2019-1)+(2×2020-1)==2020.故选B.3.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于()A.7 B.8C.9 D.10答案 C解析当k≥2时,a k=S k-S k-1=k2-9k-(k-1)2+9(k-1)=2k-10,k=1时也适合.由7<a k<10,得7<2k-10<10,所以172<k<10,所以k=9.故选C.4.(2019·铜川模拟)已知等比数列{a n}的前n项和为S n,S3=a2+10a1,a5=9,则a1=()A.13B.-13C.19D.-19答案 C解析由题知公比q≠1,则S3=a1(1-q 3)1-q=a1q+10a1,得q2=9,又a5=a1q4=9,则a1=19,故选C.5.已知数列{a n}的通项公式为a n=n cos nπ2,其前n项和为S n,则S2019=()A.0 B.-1010C.504 D.1008答案 B解析由a n=n cos nπ2,得a1=0,a2=-2,a3=0,a4=4,a5=0,a6=-6,a7=0,a8=8,…,由此可知a1+a2+a3+a4=a5+a6+a7+a8=…=2.因为2019=4×504+3,所以S2019=2×504+a2017+a2018+a2019=1008+0-2018+0=-1010.故选B.6.在数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则a21+a22+a23+…+a2n等于()A .(3n -1)2 B.12(9n -1) C .9n-1D.14(3n-1)答案 B解析 因为a 1+a 2+…+a n =3n -1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,故选B.7.若数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项和为( ) A.13 B.512 C.12 D.712答案 B 解析 b n =1a n=1(n +1)(n +2)=1n +1-1n +2,S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512. 8.数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1020,那么n 的最小值是( )A .7B .8C .9D .10答案 D解析 a n =1+2+22+…+2n -1=2n -1.∴S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2,∴S 9=1013<1020,S 10=2036>1020,∴S n >1020,n 的最小值是10.9.(2019·长郡中学模拟)已知数列{a n }是公差不为0的等差数列,且满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10=( )A .-10B .-5C .0D .5答案 C解析 设等差数列的公差为d (d ≠0),因为a 24+a 25=a 26+a 27,所以(a 4-a 6)(a 4+a 6)=(a 7-a 5)(a 7+a 5),所以-2d ·a 5=2d ·a 6,于是a 5+a 6=0,所以S 10=10(a 1+a 10)2=5(a 5+a 6)=0.故选C.10.(2019·揭阳模拟)已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15 C.111 D.211答案 C解析 ∵2a 1+22a 2+…+2n a n =n (n ∈N *),∴2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2,n ∈N *),∴2n a n =1(n ≥2,n ∈N *),当n =1时也满足,故a n =12n ,故1log 2a n log 2a n +1=1log 22-n log 22-(n +1)=1n (n +1)=1n -1n +1,S n=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,故选C. 11.(2019·福建宁德联考)数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+…+1a 20等于( )A.4021 B.2021 C.1910 D.2019答案 A解析 因为数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,所以令m =1,得a n +1-a n =1+n ,所以a n =(a n -a n -1)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1+1a 2+…+1a 20=2×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫120-121=2×⎝ ⎛⎭⎪⎫1-121=4021.故选A. 12.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2019的值为( )A .1009B .1010C .2018D .2019答案 B解析 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2019=a 1+(a 2+a 3)+…+(a 2018+a 2019)=1010.故选B.13.已知数列{a n }满足a n =1+2+3+…+n n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为________.答案2nn +2解析 a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝ ⎛⎭⎪⎫1n +1-1n +2, 所求的前n 项和为4⎝ ⎛⎭⎪⎫12-13+13-14+…+1n +1-1n +2=4⎝ ⎛⎭⎪⎫12-1n +2=2nn +2. 14.(2019·海口模拟)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.答案 32解析 设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q=634,解得q =2,a 1=14,则a 8=a 1q 7=14×27=32.15.(2019·保定模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.答案 43⎝ ⎛⎭⎪⎫1-14n +2解析 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. 16.(2020·西安模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }的每一项都有b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4=________,T 30=________.答案 24 650解析 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.17.(2019·吉林二模)已知各项均为整数的等差数列{a n },其前n 项和为S n ,a 1=-1,a 2,a 3,S 4+1成等比数列.(1)求{a n }的通项公式;(2)求数列{(-1)n ·a n }的前2n 项和T 2n .解 (1)各项均为整数的等差数列{a n },设公差为d ,则d 为整数, 由a 1=-1,a 2,a 3,S 4+1成等比数列, 得a 23=a 2(1+S 4),即(-1+2d )2=(-1+d )(-3+6d ), 解得d =2⎝ ⎛⎭⎪⎫d =12舍去,所以a n =2n -3. (2)由(1),得T 2n =-a 1+a 2-a 3+a 4+…-a 2n -1+a 2n =(1+1)+(-3+5)+…+(5-4n +4n -3) =2+2+…+2=2n .18.(2019·山东莱阳模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,∀n ∈N *,有2S n =a 2n +a n .(1)求数列{a n }的通项公式; (2)令b n =1a na n +1+a n +1a n,设{b n }的前n 项和为T n ,求证:T n <1.解 (1)当n =1时,2a 1=a 21+a 1,得a 1=1或0(舍去).当n ≥2时,因为2S n =a 2n +a n ,①所以2S n -1=a 2n -1+a n -1,②由①②两式相减得a n -a n -1=1(n ≥2),所以数列{a n }是以1为首项,1为公差的等差数列,所以a n =n ,n ∈N *. (2)证明:由(1)得,b n =1a n a n +1+a n +1a n =1n n +1+(n +1)n=1n (n +1)(n +1+n )=n +1-nn (n +1)(n +1+n )(n +1-n )=n +1-n n (n +1)=1n -1n +1, 所以T n =b 1+b 2+b 3+…+b n =⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.19.(2019·广东二模)已知数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =a n +1a n,求数列{b n }的前n 项和S n .解 (1)数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1, ① 则当n ≥2时,a 1·a 2·a 3·…·a n -1=n , ②由①②,得a n =n +1n , 当n =1时,a 1=2,满足上式. 所以a n =n +1n . (2)由于a n =n +1n ,所以b n =a n +1a n =n +1n +n n +1=1+1n +1-1n +1=2+1n -1n +1,则S n =2+⎝ ⎛⎭⎪⎫1-12+2+⎝ ⎛⎭⎪⎫12-13+…+2+⎝ ⎛⎭⎪⎫1n -1n +1=2n +⎝ ⎛⎭⎪⎫1-1n +1=2n +1-1n +1. 20.(2019·天津部分区联考)已知数列{a n }的前n 项和为S n ,且a n +1=a n +2(n ∈N *),a 3+a 4=12.数列{b n }为等比数列,且b 1=a 2,b 2=S 3.(1)求{a n }和{b n }的通项公式;(2)设c n =(-1)n a n ·b n ,求数列{c n }的前n 项和T n .解 (1)由已知,得a n +1-a n =2,∴数列{a n }是以2为公差的等差数列.∵a 3+a 4=12,∴2a 1+10=12,∴a 1=1,∴a n =2n -1. 设等比数列{b n }的公比为q ,∵b 1=a 2=3,b 2=S 3,∴b 2=3q =S 3=9, ∴q =3,∴b n =3n . (2)由题意,得c n =(-1)n a n ·b n =(-1)n (2n -1)·3n =(2n -1)·(-3)n ,∴T n =1×(-3)+3×(-3)2+5×(-3)3+…+(2n -1)×(-3)n ,∴-3T n =1×(-3)2+3×(-3)3+…+(2n -3)×(-3)n +(2n -1)×(-3)n +1. 上述两式相减,得4T n =-3+2×[(-3)2+(-3)3+…+(-3)n ]-(2n -1)×(-3)n +1=-3+2×(-3)2[1-(-3)n -1]1+3-(2n -1)×(-3)n +1=32-4n -12×(-3)n +1, ∴T n =38-4n -18×(-3)n +1.。