脂 类 代 谢

合集下载

脂代谢的概念

脂代谢的概念

脂代谢的概念脂代谢是人体内脂类物质的合成、分解及利用的过程。

脂类物质是人体最重要的能量来源之一,同时也是脂溶性维生素和结构组分的重要来源。

脂代谢不仅关系到人体的能量平衡和生物合成,还与健康和疾病密切相关。

脂代谢主要包括脂类物质的合成、分解和利用三个方面。

脂类物质的合成是指人体通过摄取食物中的脂质,再经过消化吸收、运输和合成作用,将其转化为人体需要的脂类物质,如甘油三酯、磷脂和胆固醇等。

脂类物质的分解是指人体通过脂分解酶将脂类物质分解为甘油和脂肪酸,进一步供能使用。

脂类物质的利用则是指人体通过氧化代谢将脂类分解产生的甘油和脂肪酸在细胞内进行能量产生,满足机体的能量需求。

脂代谢是一个复杂的过程,涉及多个器官和多个生物化学反应。

首先,在消化系统中,脂类物质在胃和小肠中经过乳化、酶解和吸收作用,变为游离脂类物质,然后通过淋巴系统进入血液循环,再被肝脏转运和代谢。

在肝脏中,脂类物质被合成、分解和运输到其他组织和器官,满足全身的需求。

在脂类物质的合成过程中,脂肪酸和甘油经过一系列的反应,通过酮体合成、胆固醇合成和磷脂合成等途径,最终合成出人体需要的各种脂类物质。

在脂类物质的分解过程中,脂分解酶将脂肪酸从甘油上剥离出来,然后通过β氧化和三羧酸循环进行氧化代谢。

脂类物质的利用主要发生在肌肉组织和脂肪组织中,通过脂肪酸在线粒体内的氧化代谢产生三磷酸腺苷(ATP),进一步供给全身各器官和组织使用。

脂代谢的紊乱可能导致一系列的代谢性疾病。

例如,脂代谢异常可导致高脂血症,即血液中的胆固醇和甘油三酯浓度升高,进而增加动脉粥样硬化、冠心病和脑血管疾病的风险。

脂代谢异常还可能导致肥胖和代谢综合征的发生,增加糖尿病、非酒精性脂肪肝、高尿酸血症和胰岛素抵抗的风险。

此外,脂代谢紊乱还可能对大脑功能产生影响,导致认知功能下降和神经发育异常。

为了维持脂代谢的平衡,人们可以通过调整饮食结构和生活方式来改善脂代谢的紊乱。

首先,合理控制膳食中脂类物质的摄入量,尤其是饱和脂肪酸和反式脂肪酸的摄入,减少脂肪摄入对血脂升高的影响。

动物生物化学 第七章 脂类代谢

动物生物化学 第七章  脂类代谢

CH2OH甘油激酶 CH2OPO23- 磷酸甘油脱氢酶 CH2OPO23-
CHOH
CHOH
CO
CH2OHATP ADP CH2OH NAD+ NADH+ H+ CH2OH
2.脂肪酸的分解代谢
(1)脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化 分解时,碳链的断裂发生在脂肪酸的位,即脂肪酸碳链的断裂方式是每次切 除2个碳原子。脂肪酸的-氧化是含偶数 碳原子或奇数碳原子饱和脂肪酸的主要 分解方式。
• 胰脂肪酶是一种非专一性水解酶,对脂肪酸碳 链的长短及饱和度专一性不严格。但该酶具有 较好的位置选择性,即易于水解甘油酯的1位 及3位的酯键,主要产物为甘油单酯和脂肪酸。 甘油单酯则被另一种甘油单酯脂肪酶水解,得 到甘油的脂肪酸。
1.脂肪的动员
1.甘油的代谢
• 甘油经血液输送到肝脏后,在ATP存在下,由甘油激 酶催化,转变成-磷酸甘油。这是一个不可逆反应过 程。-磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。磷酸二羟丙酮是糖酵解途径 的一个中间产物,它可以沿着糖酵解途径的逆过程合 成葡萄糖及糖原;也可以沿着糖酵解正常途径形成丙 酮酸,再进入三羧酸循环被完全氧化。
• (2)许多类脂及其衍生物具有重要生理作用。脂类代 谢的中间产物是合成激素、胆酸和维生素等的基本原 料,对维持机体的正常活动有重要影响作用。
• (3)人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿 症等都与脂类代谢紊乱有关。
7.1 脂肪的分解代谢
• 脂肪在脂肪酶催化下水解成甘油和脂肪酸,它 们在生物体内将沿着不同途径进行代谢。
• 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 131 – 2 = 129 个ATP。

第七章 脂类代谢

第七章 脂类代谢

DG MG
+ HOOC-R1
+ HOOC-R2
甘油 + HOOC-R3
脂解激素:促进脂肪动员的激素
肾上腺素、去甲肾上腺素、胰高血糖素、生长素
抗脂解激素:抑制脂肪动员的激素
胰岛素、前列腺素、雌二醇
脂肪动员过程
ATP 脂解激素-受体
+
G蛋白
+
AC cAMP +
HSL (无活性) PKA
HSL (有活性)
β-氧化
β-氧化:指脂肪酸β-碳原子发生氧化, 产生乙酰辅酶A的反应。 原核生物:在细胞质中进行 发生部位 真核生物:线粒体基质中进行
1、偶数碳饱和脂肪酸的β-氧化 1)脂肪酸的活化 部位:细胞质中 反应式:
RCOOH + CoA—SH 脂肪酸
脂酰CoA合成酶
ATP
反应不可逆
RCO~SCoA 2+ 脂酰CoA Mg AMP+PPi H2O
O CH2O-C-R1 O CH2O-C-R2 O CH2O-P-O-X OH
脂肪(甘油三酯)
CH2O-C-R3
甘油磷脂
环戊烷

胆固醇

o
R2 C


O

X=-CH2-CH2-NH3+磷脂酰乙醇胺
CH2 O C R1 X=甘油 X=肌酸
(脑磷脂)(PE) 磷脂酰甘油(PG) 磷脂酰肌酸(PI)
o
CH CH2
2、不饱和脂肪酸的氧化 发生部位:线粒体中 活化步骤和转运机制与饱和脂肪酸相 同。双键部位需要异构酶和还原酶催 化,其他与β-氧化相同。
不饱和脂肪酸的分解
烯脂酰CoA异构酶是必需的:

生物化学脂类与脂代谢

生物化学脂类与脂代谢
不可逆; ③ 需要FAD,NAD+,CoA为辅助因子; ④ 每循环一次,生成一分子FADH2,一分子
NADH,一分子乙酰CoA和一分子降低两 个碳原子旳脂酰CoA。
(4) 彻底氧化:
生成旳乙酰CoA进入三羧酸循环彻底氧化分 解并释放出大量能量,并生成ATP。
=
O RCH2CH2C~SCoA
AMP
参见P270
2. α-氧化旳可能反应历程
= -

RCH2COOH
O2,NADPH+H+ 单加氧酶
R-CH-COOH OH (L-α-羟脂肪酸)
Fe2+,抗坏血酸
NAD+ 脱

酶 NADH+H+
RCOOH+CO2 ATP,NAD+, 抗坏血酸 R-C-COOH
(少一种C原子)
脱羧酶
O (α-酮脂酸)
生物化学脂类与脂代 谢
本章内容
脂类 甘油三酯旳分解代谢 脂肪旳生物合成 磷脂旳代谢 胆固醇旳代谢
第一节 脂类
一、定义:
脂类(lipid)亦译为脂质或类脂,是一类低溶 于水而高溶于非极性溶剂旳生物有机分子。其化学 本质是脂肪酸和醇所形成旳酯类及其衍生物。
脂肪酸多为4碳以上旳长链一元羧酸 醇成份涉及甘油、鞘氨醇、高级一元醇和固醇。
(主要存在于心、肾、脑和骨骼肌细胞旳线粒体 中)
2.乙酰乙酸硫激酶
(主要存在于心、肾、脑细胞线粒体中)。
酮体利用旳基本过程
(1) -羟丁酸在-羟丁酸脱氢酶旳催化下脱氢,生 成乙酰乙酸。
OH CH3CHCH2COOH
D(-)-β -羟丁酸
β-羟丁酸脱氢酶
1分子乙酰CoA经彻底氧化分解可生成10分子 ATP。

脂类代谢的名词解释

脂类代谢的名词解释

脂类代谢的名词解释脂类代谢是指生物体对脂类分子的合成、分解和转运过程。

作为生物体内重要的能量储备和生命物质的组成部分,脂类在机体中扮演着关键的角色。

脂类代谢的研究不仅对于揭示一系列疾病的病理机制具有重要意义,而且对于寻找新的治疗和预防策略也具有重要指导意义。

脂类是一类化学物质,通常是由长链的羧酸和甘油形成,进而与其他分子结合形成脂肪酸或甘油脂。

脂类的合成过程受到许多调节因子的控制,其中包括饮食、体内激素水平、基因表达等。

在脂类代谢中,脂类合成被认为是一种能量储备的形式,同时也作为生命活动所必需的重要物质。

脂类代谢中的一个重要过程是脂类分解,也被称为脂解。

脂解是指将脂类分子分解为脂肪酸和甘油的过程。

在细胞内,脂解通常通过酶的作用来实现。

通过脂解,存储在细胞内的脂类可以释放出来,以供能量消耗和生物合成需求。

除了脂解,脂类代谢中的另一个重要过程是脂类的转运。

脂类分子通常不能直接溶解在水中,因此需要特殊的载体来进行有效的转运。

在生物体内,脂类的转运主要由载脂蛋白类分子完成。

载脂蛋白类分子能够与脂类分子结合,形成脂蛋白颗粒,从而使脂类能够在体内通过血液或细胞膜进行运输。

脂类代谢的紊乱可能导致一系列疾病的发生。

例如,脂类合成过程的异常增加可能导致肥胖和代谢综合征等疾病的发生。

而脂解过程的异常减少则可能导致脂肪积累和脂肪肝等病症。

脂类转运的紊乱也与一些心血管疾病和代谢病有关。

因此,对于脂类代谢的深入理解对于预防和治疗这些疾病具有重要的意义。

近年来,随着对脂类代谢的深入研究,一些新的治疗策略也逐渐浮出水面。

例如,针对脂类合成过程的药物和营养干预措施能够帮助调节体内脂类的合成过程,从而减轻肥胖和相关代谢疾病的风险。

此外,针对脂类分解和转运过程的药物研发也有望找到新的治疗策略。

总之,脂类代谢是生物体内一系列关键生化过程的总称,包括脂类的合成、分解和转运。

脂类代谢的紊乱与多种疾病的发生和发展有关。

通过深入研究脂类代谢,我们可以更加全面地认识到这些代谢过程对于人体健康的重要性。

脂类代谢

脂类代谢

2. 甘油三酯是机体的主要能量储存形式 男性:21%,女性:26%
二、甘油三酯的分解代谢
(一) 脂肪的动员 定义 储存在脂肪细胞中的脂肪,被肪 脂酶逐步水解为FFA及甘油,并释放 入血以供其他组织氧化利用的过程。 关键酶 激素敏感性甘油三酯脂肪酶
(hormone-sensitive triglyceride lipase , HSL)
2.不饱和脂酸的碳链含有一个或一个以上双键
单不饱和脂酸(monounsaturated fatty acid) 多不饱和脂酸(polyunsaturated fatty acid)
不饱和脂酸的分类 单不饱和脂酸 多不饱和脂酸 含2个或2个以上双键的不饱和脂酸
第 二 节 脂类的消化与吸收
Digestion and Absorption of Lipid
甘油一酯途径
脂酰CoA合成酶
CoA + RCOOH ATP AMP RCOCoA PPi
CH2OH O CHO-C-R1 CH2OH
= =
脂酰CoA 转移酶
O CH2O-C-R2 O CHO-C-R1
= = = =
脂酰CoA 转移酶
R2COCoA CoA
CH2OH
R3COCoA CoA
O CH2O-C-R2 O CHO-C-R1 O CH2O-C-R3
D(-)-β羟脂酰CoA 表构酶
β氧化
L(+)-β羟脂酰CoA
O
18 12 9
H3C
3次β氧化
c
1
SCoA
亚油酰CoA (⊿9顺,⊿12顺)
O 7 H3C
⊿3顺,⊿2反-烯脂酰 CoA异构酶
6 5 4 3
SCoA 2 十二碳二烯脂酰CoA (⊿3顺,⊿6顺)

生物化学脂类代谢

生物化学脂类代谢

生物化学脂类代谢在我们的生命活动中,脂类代谢是一个至关重要的过程。

脂类不仅是细胞结构的重要组成部分,还在能量储存、信号传递以及许多生理功能中发挥着关键作用。

脂类,简单来说,包括脂肪、磷脂、固醇等。

脂肪,也就是我们常说的甘油三酯,是体内主要的储能物质。

当我们摄入的能量超过身体即时所需时,多余的部分就会被转化为脂肪储存起来,以备不时之需。

脂类的消化和吸收是脂类代谢的第一步。

在我们的消化道中,胆汁起着重要的作用。

胆汁能够乳化脂肪,使其变成微小的颗粒,增加与消化酶的接触面积,从而便于脂肪的消化。

脂肪酶将甘油三酯分解为甘油和脂肪酸,这些小分子物质可以被小肠上皮细胞吸收。

吸收进来的脂肪酸和甘油会重新合成甘油三酯,并与载脂蛋白等结合形成乳糜微粒。

乳糜微粒通过淋巴系统进入血液循环,最终被运输到脂肪组织、肌肉等部位储存或利用。

当身体需要能量时,储存的脂肪会被动员起来。

在激素敏感性脂肪酶的作用下,甘油三酯被水解为甘油和脂肪酸。

脂肪酸进入血液,与血浆清蛋白结合形成脂肪酸清蛋白复合物,被运输到各个组织器官,如肝脏、肌肉等,通过β氧化途径进行分解代谢,产生大量的能量。

β氧化是脂肪酸分解的主要途径。

脂肪酸首先被活化成脂酰 CoA,然后进入线粒体。

在一系列酶的作用下,经过脱氢、加水、再脱氢和硫解等步骤,每次生成一个乙酰 CoA 和比原来少两个碳原子的脂酰CoA。

乙酰 CoA 可以进入三羧酸循环进一步氧化分解,产生能量。

除了脂肪酸,磷脂也是脂类的重要组成部分。

磷脂在细胞膜的构成中起着关键作用,它能够保证细胞膜的流动性和稳定性。

磷脂的代谢与脂肪酸的代谢密切相关,一些酶参与了磷脂的合成和分解过程。

固醇类物质,如胆固醇,在体内既可以从食物中摄取,也可以自身合成。

胆固醇是合成胆汁酸、类固醇激素等重要生理活性物质的前体。

然而,过高的胆固醇水平会增加心血管疾病的风险,因此体内胆固醇的平衡调节非常重要。

肝脏在脂类代谢中扮演着“核心角色”。

它不仅能够合成和分解脂肪,还参与磷脂、胆固醇等的代谢。

生物化学8-脂代谢

生物化学8-脂代谢

甘油
ATP
22个ATP分子
ATP NADH
丙酮酸 乙酰CoA
3 NADH + FADH2 + GTP 柠檬酸循环和线粒体呼吸链 CO2 + H2O
脂肪酸的分解代谢
含 碳 的 脂 肪 酸 ( 软 脂 酸 ) 16
主要方式: β- 氧化途径
脂肪酸在氧化分解时,碳链的断裂发 生在脂肪酸羧基端的β-位(每次切除2个 碳原子)。反应在线粒体基质中进行。
亚油酸和亚麻酸是人体必需脂肪酸
合成
(花生、芝麻、棉籽油中富含)
多不饱和脂肪酸 如:花生四烯酸 EPA(二十碳五烯酸,鱼油主要成分) DHA(二十二碳六烯酸,脑黄金)
不饱和脂肪酸的氧化
1. 氧化反应发生在线粒体基质中;
2. 活化和跨越线粒体内膜都与饱和脂肪酸相同;
3. 进行β-氧化,到达双键位置; 4. 分子内双键需要2个酶:异构酶和还原酶。 5. 进行β-氧化。
脂肪酸β-氧化过程与柠檬酸循环中的部分反应过程 类似, 试写出这两个途径中的类似的反应过程。
脂肪酸β-氧化 柠檬酸循环
脂酰CoA脱氢生成α-β 烯脂酰CoA
琥珀酸生成延胡索酸
α-β 烯脂酰CoA水化生成L-β 羟脂酰CoA
L-β 羟脂酰CoA再脱氢生成β-酮脂酰CoA
延胡索酸生成苹果酸
苹果酸生成草酰乙酸
酮体生成的意义
1. 酮体具水溶性,能透过血脑屏障及毛细血管壁, 是输出脂肪能源的一种形式。 2. 长期饥饿时,酮体供给脑组织50—70%的能量。 3. 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮 体代替葡萄糖供能,节省葡萄糖以供脑和红细胞 所需,并可防止肌肉蛋白的过多消耗。
脂肪酸氧化、糖异生、酮体代谢的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类脂 (lipoid)
胆固醇酯 (cholesterol ester, CE) 磷脂 (phospholipid, PL)
糖脂 (glycolipid)
鞘脂 (sphingolipid)
目录
u 脂肪酸 (fatty acids) • 简称脂酸,包括饱和脂酸(saturated fatty acid) 和不饱和脂酸(unsaturated fatty acid)。 • 后者中多不饱和脂酸,机体自身不能合成,必 须由食物提供,是动物不可缺少的营养素,故 称为营养必需脂酸(essential fatty acid),包括 亚油酸、亚麻酸和花生四烯酸。它们是前列腺 素、血栓烷及白三烯等生理活性物质的前体。
第5章
脂类代谢
Metabolism of Lipid
目录
脂类概述
n 定义: 脂肪和类脂总称为脂类(lipids
n 分类: 脂肪 三脂酰甘油 (triacylglycerol, TAG),也 (fat) 称为甘油三酯 (triglyceride, TG)
胆固醇 (cholesterol, CHOL)
目录
哺乳动物不饱和脂酸按ω(或n)编码体系分类
族 ω-7(n-7) ω-9(n-9) ω-6(n-6) ω-3(n-3)
母体脂酸 软油酸(16:1,ω-7)
油酸(18:1,ω-9) 亚油酸(18:2,ω-6,9) α-亚麻酸(18:3,ω-3,6,9)
目录
二、脂酸主要根据其碳链长度和 饱和度分类
目录
惯名
饱和脂酸 月桂酸 (lauric acid) 豆寇酸 (myristic acid) 软脂酸 (palmitic acid) 硬脂酸 (stearic acid) 花生酸 (arachidic acid)
表5-1 常见的脂酸
系统名
碳原子数 和双键数

分子式
n-十二烷酸 n-十四烷酸 n-十六烷酸 n-十八烷酸 n-二十烷酸
维生素、胆汁酸等 3. 构成血浆脂蛋白
目录
第一节
不饱和脂酸的分类及命名
The Classification and Naming of Unsaturated Fatty Acids
目录
一、脂酸的系统命名遵循有机酸 命名的原则
n 系统命名法 标示脂酸的碳原子数即碳链长度和双键的位置。 Ø △编码体系 从脂酸的羧基碳起计算碳原子的顺序。 Ø ω或n编码体系 从脂酸的甲基碳起计算其碳原子顺序。
目录
n 脂类物质的基本构成:
甘油三酯
甘 油
FA
FA
FA
甘油磷脂
甘 油
(phosphoglyceride)
FA FA Pi X
胆固醇酯
胆固醇 FA
X=胆碱、水、乙 醇胺、丝氨酸、 甘油、肌醇、 磷脂酰甘油等。
目录
甘油
H2C OH HO CH
H2C OH
甘油三脂
O O H2C O C (CH2)m CH3
12:0
- CH3(CH2)10COOH
14:0
- CH3(CH2)12COOH
16:0
- CH3(CH2)14COOH
18:0
- CH3(CH2)16COOH
20:0
- CH3(CH2)18COOH
目录
不饱和脂酸
棕榈(软)油酸 (palmitoleic acid)
9-十六碳一烯酸
16:1 w-7 CH3(CH2)5CH═CH(CH2)7COOH
(一)脂酸根据其碳链长度分为短链、中链 和长链脂酸
• 碳链长度≤10的脂酸称为短链脂酸 • 将碳链长度≥20的脂酸称为长链脂酸
目录
(二)脂酸根据其碳链是否存在双键分为 饱和脂酸和不饱和脂酸
1.饱和脂酸的碳链不含双键 饱和脂酸以乙酸(CH3-COOH)为基本结构,
不同的饱和脂酸的差别在于这两基团间亚甲基 (-CH2-)的数目不同。
5,8,11,14-二十碳四 烯酸
20:4 w-6 CH3(CH2)4(CH═CHCH2)4(CH2)2COOH
w -9
油酸
9-18:1
w -6
亚油酸
9,12-18:2
w -3
亚麻酸
9,12,15-18:3
同簇的不饱和脂酸可由其母体代谢产生,如花
生四烯酸可由w-6簇母体亚油酸产生。但w-3、w-6 和w-9簇多不饱和脂酸在体内彼此不能相互转化。 动物只能合成ω-9及ω-7系的多不饱和脂酸,不能 合成ω-6及ω-3系多不饱和脂酸。
Pi X
鞘糖脂



FA

目录
脂类的分类、含量、分布及生理功能
分类 甘油三酯
含量 95﹪
5﹪ 糖酯、胆固 醇及其酯、
磷脂
分布 脂肪组织、 血浆
生物膜、神 经、血浆
生理功能
1. 储脂供能 2. 提供必需脂酸 3. 促脂溶性维生素吸收 4. 热垫作用 5. 保护垫作用 6. 构成血浆脂蛋白
1. 维持生物膜的结构和功能 2. 胆固醇可转变成类固醇激素、
油酸(oleic acid)
9-十八碳一烯酸
18:1 w-9 CH3(CH2)7CH═CH(CH2)7COOH
异油酸 (Vaccenic acid) 亚油酸 (linoleic acid)
反式11-十八碳一烯 酸 9,12-十八碳二烯酸
18:1 w-7 CH3(CH2)5CH═CH(CH2)9COOH 18:2 w-6 CH3(CH2)4(CH═CHCH2)2(CH2)6COOH
2.不饱和脂酸的碳链含有一个或一个以上双键 Ø 单不饱和脂酸(monounsaturated fatty acid) Ø 多不饱和脂酸(polyunsaturated fatty acid)
目录
不饱和脂酸的双键位置不同分属于 w-3、w-6、w-7和w-9簇
ห้องสมุดไป่ตู้

母体不饱和脂酸
结 构
w-7
软油酸
9-16:1
a-亚麻酸 (a-linolenic acid) g-亚麻酸 (g-linolenic acid) 花生四烯酸 (arachidonic acid)
9,12,15-十八碳三烯 酸
18:3 w-3 CH3CH2(CH═CHCH2)3(CH2)6COOH
6,9,12-十八碳三烯酸 18:3 w-6 CH3(CH2)4(CH═CHCH2)3(CH2)3COOH
H3C (CH2)n C O CH
O
H2C O C (CH2)k CH3
甘油磷脂
O O H2C O C (CH2)m CH3
H3C (CH2)n C O CH
O
H2C O P O X OH
X=胆碱、水、乙醇 胺、 丝氨酸、甘 油、肌醇、磷脂 酰甘油等。
目录
鞘脂
鞘 氨 醇 FA
鞘磷脂
鞘 氨 醇 FA
相关文档
最新文档