催化剂载体活性氧化铝的设计

合集下载

一文读懂活性氧化铝的应用跟制备

一文读懂活性氧化铝的应用跟制备

一文读懂活性氧化铝的应用跟制备一文读懂活性氧化铝的应用跟制备•【摘要】γ-Al 2 O 3 作为一种活性氧化铝,具备多孔性、高分散度、高比表面积、良好的吸附性、热稳定性和表面酸性,并且通过控制制备条件可制得不同比表面积和孔容的γ-Al 2 O 3 产品。

γ-Al 2 O 3 作为一种活性氧化铝,具备多孔性、高分散度、高比表面积、良好的吸附性、热稳定性和表面酸性,并且通过控制制备条件可制得不同比表面积和孔容的γ-Al 2 O 3 产品。

由于具有不完善的晶体结构,且孔结构具有可调节性,作催化剂载体具有耐高温、抗氧化的特点,是催化剂载体领域应用最为广泛的品种,其在石油化工、生物化工以及膜处理等工业中的应用越来越广泛。

活性氧化铝球01 活性氧化铝的应用①活性氧化铝在催化剂载体方面的应用在功能简单的催化反应中,γ-Al2 O3 并不直接参与催化过程,其作用是稀释,支撑和分散贵金属。

王奎等以γ-Al2 O3 为载体,采用溶胶-凝胶法制备了负载型的复合光催化剂。

韩雪等将AlCl3 蒸气负载到多孔的γ-Al2 O3 载体上,将制备的催化剂用于异丁烯的催化聚合反应,载体为大孔和介孔双峰结构的γ-Al2 O3 负载型催化剂具有很好的催化活性和较高的稳定性。

②活性氧化铝在催化剂方面的应用γ-Al2 O3 具有明显的吸附剂特征,并能活化许多键,因此可直接作为活性催化剂加入反应体系中。

李强等采用N2 吸附法、IR和XRD 等手段研究了活性氧化铝用于催化裂化(FCC)催化剂中的性能,结果表明,在FCC催化剂制备及应用条件下,活性氧化铝保持比较稳定的比表面积、孔容和酸性等性能。

③活性氧化铝在水质净化领域的应用活性氧化铝在水质净化领域的发展非常迅速,对水质的处理主要集中在以下几个方面:氟化物的去除,磷化物的去除,有毒金属离子的去除等。

汪洪洋等以活性氧化铝吸附技术处置超标含As污水(水中As质量浓度在0.100~0.250mg/L之间)时,处理效果显著,去除率集中于70%~80%之间,该技术使用后的活性氧化铝处理后可循环使用,与其他方法相比减少了As在水体中的沉积和转移,避免了二次污染,大大降低了处置成本。

活性氧化铝的制备

活性氧化铝的制备

活性氧化铝的制备一、实验目标1.了解活性氧化铝的性质及用途。

2.理解活性氧化铝的制备原理以及掌握其制备方法。

二、产品特性与用途氧化铝,俗称矾土。

化学式Al2O3。

白色粉末,密度3.9~4.0g/cm3,熔点2050℃,沸点2980℃。

不溶于水,能缓慢溶于浓硫酸。

可用于炼制金属铝,也是制坩埚、瓷器、耐火材料和人造宝石的原料。

用作吸附剂、催化剂及催化剂载体的氧化铝称为“活性氧化铝”,具有多孔性、高分散度和大的比表面积等特性,广泛用于石油化工、精细化工、生物以及制药等领域。

三、实验原理活性氧化铝一般由氢氧化铝加热脱水制得。

氢氧化铝也称水合氧化铝,其化学组成为Al2O3·nH2O,通常按所含结晶水数目不同,可分为三水氧化铝和一水氧化铝。

氢氧化铝加热脱水后,可以得到γ-Al2O3,即通常所讲的活性氧化铝。

本实验采用AlCl3和NH4OH为原料,发生沉淀反应生成以γ-AlOOH为主的氧化铝水合物,再经过滤、干燥、焙烧,得活性氧化铝,其化学反应方程式为:AlCl3+3NH4OH AlOOH ↓+3NH4Cl +H2O2AlOOHAl2O3+H2O四、主要仪器与药品1.主要仪器马弗炉、电热恒温干燥箱、水浴锅、电动搅拌器、布氏漏斗、水泵。

2.主要药品三氯化铝,AR ;氨水,AR ;碳酸氢铵,AR 。

五、实验内容与操作步骤1.γ-AlOOH 的制备将四口烧瓶固定在水浴锅中,并安装好电动搅拌器。

用两个分液漏斗作为加料器,分别固定在铁架台上。

在烧瓶的两个边口上,塞上带有玻璃短管的橡皮塞,再用乳胶管将两个分液漏斗的出口分别与烧瓶的这两个边口相连。

在烧瓶的另一边口插上温度计。

称取6.5克AlCl3放至烧杯中,用150mL 蒸馏水溶解,倒入其中一个分液漏斗中。

配制5.2%的NH4OH 溶液150mL ,倒入另一个分液漏斗中。

称取0.5克碳酸氢铵并用100mL 蒸馏水溶解,倒入烧瓶中,作为稳定pH 值的缓冲溶液。

接通电源加热到85℃,开动搅拌器,缓慢滴加氨水及AlCl3溶液,两者滴加速度均控制约3mL/min ,约50分钟滴加完毕。

活性氧化铝的制备及改性分析解析

活性氧化铝的制备及改性分析解析

影响吸附性能的因素
原水PH:当PH值大于5时,PH值越低,活性氧化铝吸附容量越高
原水初始氟浓度:初始氟浓度越高,吸附容量越大 原水碱度:原水中重碳酸根浓度高,吸附容量将降低 硫酸根离子:形成硫酸铝,作为一种改性剂,可以提高其对氟的吸 附性能 砷的影响:活性氧化铝对水中的砷有吸附作用,砷在活性氧化铝上 的积聚造成对氟离子吸附容量的下降,且使再生时洗脱砷离子比较 困难
2.2.2 拟薄水铝石制备活性氧化铝
2.2.2 拟薄水铝石制备活性氧化铝
第三节
活性氧化铝的改性
3.1 沉淀条件的影响


沉淀是制成一定活性和物性的关键,控制 生产拟薄水铝石的晶粒大小可制得需要的活性 氧化铝。 实验以三氯化铝和氢氧化铵为原料,采用 并流法制备拟薄水铝石考察了温度、PH 对氧 化铝孔容、比表面积、表观密度的影响。
3.5.2 助挤剂的影响
• 工业上常用3种助挤剂:田菁粉、多元羧酸及二者复合助挤剂。草酸 、酒石酸、柠檬酸等多元酸助挤成型的载体,孔径分布较集中,孔径大 于10 nm的孔明显减少,强度相应提高,不过载体磨损率和挤出速度的 改善不明显。现在多采用复合助挤剂。采用乙酸与田菁粉复合使用效果 比较理想,其用量影响见表6。
3.3 拟薄水铝石凝胶的醇洗
• 采用低相对分子质量的醇类洗涤新生成的拟薄水铝石沉淀物,也有 增大孔径的作用。表4是低相对分子质量醇类洗涤对氧化铝孔结构的 影响。 •
3.4 水热处理法改进孔结构
• 水热处理是在一定温度和水蒸气作用下,老化拟薄水 铝石凝胶,以提高氧化铝孔容、增大孔径。以偏铝酸钠和 硫酸在pH=9时成胶制得拟薄水铝石,再加氢氧化钠调节 pH=9,装入高压釜中,在150℃下处理16 h,制得大孔 A1203载体,同未处理的A1203 比较,平均孔径从6nm增 大至30nm。

活性氧化铝的制备实验

活性氧化铝的制备实验

活性氧化铝的制备实验一、实验目的1. 了解活性氧化铝的性质及用途2. 理解活性氧化铝的制备原理以及掌握其制备方法二、产品特性与用途氧化铝,俗称矾土。

化学式Al2O3。

白色粉末,密度3.9-4.0g/cm3,熔点2050℃,沸点2980℃。

不溶于水,能缓慢溶于浓硫酸。

可用于炼制金属铝,也是制坩埚、瓷器、耐火材料和人造宝石的原料。

用作吸附剂、催化剂以及催化剂载体的氧化铝称为“活性氧化铝”,具有多孔性、高分散度和大的比表面积等特性,广泛用于石油化工、精细化工、生物以及制药等领域。

三、实验原理活性氧化铝一般由氢氧化铝加热脱水制得。

氢氧化铝也称为水合氧化铝,其化学组成为Al2O3•nH2O,通常按所含结晶水数目不同,可分为三水氧化铝和一水氧化铝。

氢氧化铝加热脱水后,可以得到γ- Al2O3,即通常所讲的活性氧化铝。

由于所使用的原料不同,氢氧化铝有多种制备方法。

本实验采用AlCl3和NH4OH为原料,发生沉淀反应生成γ-AlOOH为主的氧化铝水合物,再经过滤、干燥、焙烧,得活性氧化铝,其化学反应方程式为:AlCl3+3NH4OH →AlOOH↓+3 NH4Cl+H2O2AlOOH →Al2O3+ H2O(焙烧)值得注意的是,在上述反应过程中,不同的加料速度、温度及pH值,会产生不同性质的产物。

所以要获得γ- Al2O3,必须严格控制反应条件。

四、主要仪器与试剂马弗炉、电热恒温干燥箱、水浴锅、电动搅拌器、布氏漏斗、水泵。

三氯化铝,氨水,碳酸氢铵五、实验内容与操作步骤1. AlOOH的制备将四口烧瓶固定在水浴锅中,并安装好电动搅拌器。

用两个分液漏斗作为加料器,分别固定在铁架台上。

在烧瓶的两个边口上,塞上带有玻璃短管的橡皮塞,再用乳胶管将两个分液漏斗的出口分别与烧瓶的这两个边口相连。

在烧瓶的另一边口插上温度计。

称取6.5g AlCl3放至烧杯中,用150mL蒸馏水溶解,倒入烧杯中,作为稳定pH值的缓冲溶液。

接通电源加热到85℃,开动搅拌器,缓慢滴加氨水及AlCl3溶液,两者滴加速度均控制约3mL/min,约50min滴加完毕。

活性氧化铝的制备与改性研究进展

活性氧化铝的制备与改性研究进展

活性氧化铝的制备与改性研究进展摘要:活性氧化铝(Al2O3)作为一种具有良好吸附、催化和表面活性的材料,在环境保护、催化反应和材料科学等领域具有广泛的应用前景。

近年来,随着科学技术的不断发展,活性氧化铝的制备方法和改性研究得到了广泛关注。

本文旨在对近年来活性氧化铝的制备与改性研究的进展进行概述,以期为相关领域的研究提供参考和借鉴。

关键词:活性氧化铝;制备;改性引言:活性氧化铝作为一种具有良好吸附、催化和表面活性的材料,在环境保护、催化反应和材料科学等领域具有广泛的应用前景。

通过改性方法对活性氧化铝进行表面改性,可以改善其吸附、催化和光学性能等方面的性能。

研究活性氧化铝的制备与改性方法对于推动环境保护、催化反应和材料科学等领域的发展具有重要的理论和实际意义。

一、活性氧化铝的概念及应用活性氧化铝是一种具有高比表面积、多孔结构、高吸附性能和高热稳定性的氧化铝材料。

它是通过在高温下将铝和水反应制得,然后经过一系列处理过程制备而成。

活性氧化铝的主要特点是表面含有大量的酸性和碱性活性中心,这使得它在多个领域具有广泛的应用。

活性氧化铝的应用主要包括吸附剂、催化剂和催化剂载体、干燥剂、催化剂再生、传感器。

由于其高比表面积和多孔结构,活性氧化铝具有很强的吸附能力。

在石油化工、空气净化、水处理等领域,活性氧化铝被用作吸附剂来去除水分、有机物、重金属离子等污染物。

活性氧化铝中的酸性和碱性活性中心使其成为高效的催化剂。

在石油化工、化学合成等领域,活性氧化铝被用作催化剂,用于催化多种反应,如加氢、脱氢、氧化等。

此外,活性氧化铝还可以作为催化剂载体,提高催化剂的分散性和热稳定性。

活性氧化铝被广泛用作干燥剂,用于去除空气中的水分和油分。

在家用除湿剂、空气压缩机吸附剂、电子产品干燥剂等领域有广泛应用。

另外,活性氧化铝具有再生能力,可以在一定条件下将吸附的污染物脱附,实现催化剂的再生利用。

活性氧化铝在气体传感器领域也有应用,如氧传感器、二氧化碳传感器等。

载体用活性氧化铝的制备研究

载体用活性氧化铝的制备研究

氧化铝产品种类众 多,广泛应用于催化剂、催化剂载体 、吸附剂等 “ .随着石油化工 ,碳源原料重 炭化 以及催化工程技术 的发展 , 究大 孔容和高 强度 的氧化铝来用于大分子催化反应 已经成为研 究、 研 开 发该类催化剂 的主要方面 .现有制备大 孔容氧化铝 载体 的方法 口,需经制胶 、成 型、老 化、水洗 、干 燥 、煅烧 、水热扩孔 、再煅烧等过程 ,流程长、设备腐蚀严重 、产品收率低 ,因此如何简化工 艺,实现 操作连续化 ,提高产 品收率及 品质是研 究的重 点 .本 实验 研究 的活性 氧化铝载体 在工 艺上有根本 的改 进 ,流程缩短近半 ,腐蚀小 、收率高 、技术指标先进 ,达到 或超过 当今 国外 同类 产品的水平 .
文章编号 :10 .3 3(0 7 1 0 00 0 72 7 20 )0 . 6 -4 0
载体用 活性氧 化铝 的制备研 究
李 佳 ,高中良 ,陈永生 ,孟媛婷
(. 1 河北工业 大学 化 工学 院 ,天津 303 ;2 0 10 .天津化工 研究设 计院 ,天津 303 ) 0 11
中 图分 类 号 T 2 . Q4 66 5 文 献 标 识码 A
A t d nP e aaino t ae u iaCare S u yo rp rt f o Aci tdAl m n rir v
L I , GAO h n - a g , C E Yo g s e g , M E Z o gl n i H N n -h n 2 NG u n r g Y a -n i
维普资讯
第3卷 第 1 6 期
V l6 b _ No 1 3 .





学7
Fbur 0 7 e ray 2 0

催化剂载体用活性氧化铝球的制备工艺与性能研究

催化剂载体用活性氧化铝球的制备工艺与性能研究

将试 验 原料 加入 荸荠 式 包 衣机 (成 球 机 ),喷人
质稳定 ;③可满足各种催化剂的成型要求 ;④可保持 一 定浓 度 的稀硝 酸 ,使 原 料转 动成 球 ,采 用 边加 入原
催 化 剂 的活性 。
料 边 喷人稀 硝 酸 的加 料 方 式 ,待 其成 球 达 到所 需 直
由于活性 氧化 铝 (主 晶相 为 —A1 0,)具 有 丰 径 后停 止加 料 ,继续转 动 一定 时 间并喷水 养 护 、修 饰
随着 固相 催化 剂 的发 展 ,催 化剂 的 固相 化方 法 也 越来 越 多 。总 的来 说 ,催 化 剂 的 固相 化 就是 利 用 一 定 的方法 将 均相 催 化 剂 结 合 在 固体 载体 上 ,形 成 一 种新 型 的催 化 剂 。这 种 经 过 固相化 的催 化 剂 ,催 化效率更高,且大大增长 了催化剂 的使用 寿命。在 均相催 化 剂 的 固相 化过 程 中 ,对 载体 也是 有要 求 的 ,
tures on the compressive strength and surface properties of activated alum ina balls are analyzed.The key process conditions for preparing large pore volum e,high specific surface area and high strength activated
Study on Preparation Process and Properties of Activated
Alum ina Balls for Catalyst Supports
GENG Hongjuan,WANG Yan ,HAN Juan ,WU Zexin ,ZHU Jie,RUAN Chenlei,LI Changlin (Henan Chemical Industry Research Institute Co.Ltd,Zhengzhou 450052,China)

用作催化剂载体的纳米氧化铝的制备及改性

用作催化剂载体的纳米氧化铝的制备及改性

用作催化剂载体的纳米氧化铝的制备及改性
李 芳, 许珂敬, 白咏梅
( 山东理工大学 材料科学与工程学院 , 山东 淄博 255049) 摘 要: 以 TiO 2 和 BaO 为改性剂, 采用均相沉淀法制备出了高比表面积的纳米氧化铝. 研究
结果表明: 添 加质量比为 5% 的 T iO2 或 BaO 可以减小颗粒尺寸 , 增大比表面积 . 但过量的 TiO 2 或 BaO 会恶化 A- A l2 O3 的性能 . 关键词: 纳米氧化铝; 均相沉淀法; 掺杂 ; 比表面积 中图分类号 : TQ426. 65 文献标识码: A
4 4 2 2 4 3
第3期

芳 , 等 : 用作催化剂载体的纳米氧化铝的制备及改性
25
所得 Al2 O3 较为疏松, 不会出现硬团聚, 且在煅烧温 度 1050 e 下保温 1h 可得纳米级的 A - Al2 O3 . 图 3 为 在该工艺条件下制备的 A- Al2 O3 试样 Al 的 SEM 照片, 测得颗粒粒径为65. 5~ 82. 7nm; 由 NOVA 3000 氮吸附仪测得比表面积为 85. 25m / g. 从 SEM 照片 看, A - Al2 O3 的粒度分布较均匀, 没有明显的团聚. 从全元素分析结果看没有其它杂质物质.
为母液 , 以 1. 7mol/ L 碳酸氢铵( NH 4 H CO 3 ) 为沉 淀剂 , 以聚乙二醇 ( PEG22000) 为分散剂 ( 添加质 量分数为 3% , 以硫酸铝铵和碳酸氢铵质量之和 为基准) , 采用均相沉淀 法制备纳米 A 2Al2 O 3 , 试 样标号 Al. 试样 Al 的制备流程如图 1 所示. 1. 2 改性 A- Al2 O 3 的制备 以 TiO 2 或 BaO 为改性剂 , 按适宜比例的添
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

存档日期:存档编号:
辽宁石油化工大学
专业课程设计
课程名称:_____________
任课教师:_____________
完成日期:____年___月___日
专业:_____________
学号:_____________
姓名:_____________
成绩:_____________
催化剂载体——活性氧化铝的设计
活性氧化铝(Al2O3)是一种具有优异性能的无机物质,不仅能做脱水吸附剂、色谱吸附剂,更重要的是做催化剂载体,并广泛用于石油化工领域。

它涉及到重整、加氢、脱氢、脱水、脱卤、歧化、异构化等各种反应。

所以能如此广泛地被采用,主要原因是它结构上有多种形态及物化性质上千差万别。

学习有关Al2O3的制备方法,对掌握催化剂制备有重要意义。

实验目的
通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。

了解制备氧化铝水合物的技术和原理。

掌握活性氧化铝的成型方法。

实验原理
催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。

最基本的是比表面积、孔结构、晶体结构等。

例如,重整催化剂是将贵重金属铂、铼载在γ—Al2O3或η—Al2O3上。

氧化铝的结构对反应活性影响极大,载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。

这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。

α—Al2O3在反应中是惰性物质,只能作载体使用。

制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。

自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化活性。

为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al2O3的基础。

氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。

结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。

可总括为下述表达形式:
无定形水合氧化铝,尤其假一水铝石,在制备中能通过控制溶液PH值或温度,向一水氧化铝转变。

经老化后大部分变成α—Al2O3·H2O,而这种形态是生成γ—Al2O3的唯一路线。

上述α—Al2O3·H2O凝胶是针状聚集体,难以洗涤过滤。

β—Al2O3·3H2O是球形颗粒,紧密排列,易于洗涤过滤。

氧化铝水合物是非稳定态,加热会脱水,随着脱水气氛和脱水温度的不同可生成各种晶形的氧化铝。

当受热到1200℃时,各种晶形的氧化铝都将变成α—Al2O3(亦称刚玉)。

α—Al2O3具有最小的表面积和孔容积。

水合物受热后晶型变化情况如下:
表1 氧化铝水合物加热变化
可见不论获得何种晶型的氧化铝都要首先制成氢氧化铝。

氢氧化铝也是制陶瓷和无机阻燃剂及阻燃添加剂的重要原料。

制备水合氧化铝的方法很多,其中有以铝盐、偏铝酸钠、烷基铝、金属铝、拜耳氢氧化铝等为原料,并控制温度、pH值、反应时间、反应浓度等操作,得到均一的相态和不同的物性。

通常有以下几种方法:
以铝盐为原料
用AlCl3·6H2O,Al2(SO4)3·18H2O,Al(NO3)3Cl3·9H2O,KAl (SO4)4·24H2O等的水溶液与沉淀剂—氨水、NaOH、Na2CO3等溶液作用生成氧化铝水合物。

球状活性氧化铝以三氯化铝为原料有较好的成型性能。

实验多使用该法制备水合氧化铝。

以偏铝酸钠为原料
偏铝酸钠可在酸性溶液作用下分解沉淀析出氢氧化铝。

此原料在工业生产上较经济,是常用的生产活性氧化铝的路线,但常因混有不易脱除的Na+ ,故常用通入CO2的方法制各种晶型的Al(OH)3。


制备过程中有Al3+ 和OH—存在是必要的,其他离子可经水洗被除掉。

另外还有许多方法,它们都是为制取特殊要求的催化剂或载体而采用的。

制备催化剂或载体时,都要求除去S、P、As、Cl等有害杂质,否则催化活性较差。

本实验采用铝盐与氨水沉淀法。

将沉淀物在pH=8~9范围内老化一定时间,使之变成α—水铝石,再洗涤至无氯离子。

将滤饼用酸胶溶成流动性能较好的溶胶,用滴加法滴入油氨柱内,在油中受表面张力作用收缩成球,再进入氨水中,经中和和老化后形成较硬的凝胶球状物(直径在1~3mm之间),经水洗油氨后进行干燥。

也可将酸化的溶胶喷雾到干燥机内,生成40~80μm的微球氢氧化铝。

上述过程可用框图表示。

沉淀是制成一定活性和物性的关键,对滤饼洗涤难易有直接影响。

其操作条件决定了颗粒大小、粒子排列和结晶完整程度。

加料顺序、浓度和速度也有影响,沉淀中pH值不同,得到的水化物则不同。

例如:
当Al3+ 倾倒于碱液中时,pH值由大于10向小于7转变。

产物有各种形态水化物,不易得到均一形体。

如果反向投料,若pH不超过10,只有两种形体,经老化也会趋于一种形体。

为此,并流接触并维持稳定pH值,可得到均一的形体。

老化是使沉淀形成不再发生可逆结晶变化的过程;同时使一次粒子再结晶、纯化和生长;另外也使胶粒之间进一步粘结,胶体粒子得以增大。

这一过程随温度升高而加快,常常在较高温度下进行。

洗涤是为了除去杂质。

若杂质以相反离子形式吸附在胶粒周围而不易进入水中时,则需用水再搅拌情况下把滤饼打散成浆状物再过滤,多次反复操作才能洗净。

若有SO42—存在则难以完全洗净。

当pH近于7时,Al(OH)3会随水流失,一般应维持pH>7。

酸化胶溶是为成型需要设置的。

这个过程是在胶溶剂存在下,使凝胶这种暂时凝集起来的分散相重新变成溶胶。

当向Al(OH)3中加入少量HNO3时发生如下反应:
生成的Al3+ 在水中电离并吸附在Al(OH)3表面上,NO3—为反离子,从而形成胶团的双电层,仅有少量HNO3就足以使凝胶态的滤饼全部发生胶溶,以致变成流动性很好的溶胶体。

当Cl—或Na+或其他离子存在时,溶胶的流动性和稳定性变差。

应尽可能避免杂质存在,否则会影响催化剂的活性。

利用溶胶在适当pH和适当介质中能溶胶化的原理,可把溶胶以小滴形式滴入油层,这是由于表面张力而形成球滴,球滴下降中遇碱性介质形成凝胶化小球,以制备Al2O3小球催化剂。

实验步骤
溶液配制
取285ml蒸馏水放入50ml烧杯内,在粗天平上称量15克无水三氯化铝(要求快速称量,否则因吸湿而不准确),分次投入水中,搅拌后澄清。

如果有不溶物或颗粒杂质,可用漏斗过滤,最终配成5% AlCl3溶液。

取浓氨水(25%)50ml,用水稀释一倍待用。

水合氧化铝的制备
将三氯化铝溶液放入三口瓶内,并装上搅拌器,升温至40℃,在搅拌下快速倒入氨水(按理论量80%),观察搅拌桨叶的转动情况。

若溶液变粘稠,再加少许氨水,沉淀的胶体变稀,用玻璃棒沾取沉淀胶体滴入pH试纸上,测定pH在8~9之间则合格,停止加氨水,继续搅拌30分钟,随时测pH值,如有下降再补加氨水。

30分钟后把温度升至70℃,停止搅拌,将其静止老化1小时。

将老化的凝胶倒入抽滤漏斗内过滤。

第一次过滤速度较快,随着洗涤次数的增加,过滤速度逐渐减慢。

取出过滤抽干的滤饼,此操作称为打浆。

全部变成浆状物后,再次过滤,通常至少洗涤5次,最后用硝酸银溶液滴定滤液,若不产生白色沉淀即为无氯离子。

取少量凝胶在显微镜下观察。

将洗好的滤饼放在500ml烧杯内,称重,待酸化使用。

成型操作
取500ml量筒,内放300ml的12.5%氨水和50ml变压器油,再加少量“平平加”表面剂。

由此构成简易油氨柱。

加入12M的硝酸溶液,用量为滤饼的2~3%(重量剂)。

用玻璃棒强烈搅动,滤饼逐渐变成乳状的Al(OH)3溶胶(流动很好),之后再用力搅动一定时间,将块状凝胶全部打碎。

用50ml 针筒取浆液,装上针头。

针尖向下,往油氨柱滴加溶液。

溶胶在油层中收缩成球穿过油层后进入氨水中变成球状凝胶体。

在氨水中老化30分钟。

吸出油层和氨水,倒出凝胶球状物,用蒸馏水洗油和氨水。

洗涤时可加少量洗净剂或“平平加”等。

干燥及灼烧
洗净后的球状氢氧化铝凝胶,在室温下风干24小时,然后放于烘干箱中105℃下干燥6小时,再置于高温炉中500℃下灼烧4小时,最后生成γ—Al2O3(当操作条件不当会混有η—Al2O3)。

数据处理
计算Al(OH)3和Al2O3的实际收率并解释与理论收率相差较大的原因。

测定最后成型的外观形状和尺寸。

画出制备流程。

相关文档
最新文档