一元一次方程与实际应用(内含详细答案).
完整版)一元一次方程应用题及答案

完整版)一元一次方程应用题及答案1.某商店开业,为了吸引顾客,所有商品均以八折优惠出售。
已知某种皮鞋进价为60元一双,商家以40%的利润率出售。
问这种皮鞋的标价和优惠价分别是多少元?2.某商品在加价20%后的价格为120元,求它的进价是多少?3.一家商店将某种服装的标价提高40%,并以八折优惠卖出。
结果每件服装仍可获得15元的利润。
问这种服装每件的进价是多少?4.一家商店将一种自行车的标价提高45%,并以八折优惠卖出。
结果每辆自行车仍可获得50元的利润。
问这种自行车每辆的进价是多少元?5.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售。
但要保持利润率不低于5%,则至多可以打几折?6.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价是多少?7.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际销售时,两件服装均按9折出售。
这样商店共获利157元。
求甲乙两件服装的成本各是多少元?8.某同学在A、B两家超市发现他看中的随身听和书包的单价和为452元,且随身听的单价比书包的单价的4倍少8元。
某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元。
但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱?知识点2:方案选择问题1.某蔬菜公司有一种绿色蔬菜,直接销售每吨利润为1000元,经粗加工后销售每吨利润可达4500元,经精加工后销售每吨利润涨至7500元。
当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行粗加工,每天可加工6吨。
但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕。
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
一元一次方程应用题集(含答案)

一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
初一一元一次方程应用题及答案

初一一元一次方程应用题及答案1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。
问:甲乙两队原计划各修多少千米?2、XXX买了4支自动铅笔和2支钢笔,共付14元;XXX 买了同样的1支自动铅笔和2支钢笔,共付11元。
求自动笔的单价,和钢笔的单价。
3、据统计2009年某地区建筑商出售商品房后的利润率为25%。
1)2009年该地区一套总售价为60万元的商品房,成本是多少?2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。
4、某物流公司,要将300吨物资运往某地,现有A、B 两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?5、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?6、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。
有多少间宿舍,多少名女生?7、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
一元一次方程与实际应用(内含详细答案)

1、公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每推销一件产品增加推销费5元;方案二:不付底薪,每推销一件产品增加推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?(3)你能否对将被试用的小王的推销量和所得工资提一合理性的建议?2、A,B两地间的距离为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:(1)两车同时出发,相向而行,出发后多长时间相遇?(2)两车相向而行,慢车先开28分钟,那么快车开出多长时间后两车相遇?3、某公司要把一批物品运往外地,现有两种运输方式可供选择:方式一:使用快递公司运输,装卸费400元,另外每千米再加收4元;方式二:使用火车运输,装卸费820元,另外每千米再加收2元.(1)若两种运输的总费用相等,则运输路程是多少?(2)若运输路程是800千米,这家公司应选用哪一种运输方式?4、请根据图中提供的信息,回答下列问题:(1)-个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由,5、甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?6、在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?7、)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
§_3.4实际问题与一元一次方程(练习答案)

§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。
【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。
解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。
练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。
其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。
2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。
① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。
3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。
一元一次方程应用题及答案

1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟。
4、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?5、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
6、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。
7、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?8、有两个工程队,甲工程队有32人,乙工程队有28人,如果要使甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?9、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?10、一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.11、已知三个连续偶数的和是2004,求这三个偶数各是多少?12、某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的2倍?13、三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄.14、今年哥俩的岁数加起来是55岁。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每推销一件产品增加推销费5元;方案二:不付底薪,每推销一件产品增加推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品时,两种方案所得工资一样多?(3)你能否对将被试用的小王的推销量和所得工资提一合理性的建议?2、A,B两地间的距离为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:(1)两车同时出发,相向而行,出发后多长时间相遇?(2)两车相向而行,慢车先开28分钟,那么快车开出多长时间后两车相遇?3、某公司要把一批物品运往外地,现有两种运输方式可供选择:方式一:使用快递公司运输,装卸费400元,另外每千米再加收4元;方式二:使用火车运输,装卸费820元,另外每千米再加收2元.(1)若两种运输的总费用相等,则运输路程是多少?(2)若运输路程是800千米,这家公司应选用哪一种运输方式?4、请根据图中提供的信息,回答下列问题:(1)-个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由,5、甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?6、在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?7、)比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
8、某超市用6800元购进A、B两种计算器共120只,这两种计算器的进价、标价如表.(1)这两种计算器各购进多少只?(2)若A型计算器按标价的9折出售,B型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元?9、某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆、乙仓库调往B县农用车辆.(用含x 的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当总运费是900元时,从甲仓库调往A县农用车多少辆?10、某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?11、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?12、晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?13、某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏4元,而按标价的八折出售将赚28元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?14、学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.15、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?16、从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?17、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价100元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示);(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示).(3)若x=30,通过计算说明此时按哪种方案购买较为合算?18、某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5.(1)若该客户按方案①购买,需付款元:(用含x的代数式表示)若该客户按方案②购买,需付款元;(用含x的代数式表示)(2)若x=10,通过计算说明此时按哪种方案购买较为合算?19、有一个底面半径为5cm的圆柱形储油器,油中浸有铁球,若从中捞出重为546π克的铁球,问液面将下降多少厘米?(1cm3的铁重7.8克)20、某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?21、某公司在甲、乙两仓库分别存有某种机器12台和6台,现需调往A县10台,调往B县8台.已知从甲仓库调运一台机器到A县的运费为40元,从甲仓库调运一台机器到B县的运费为80元;从乙仓库调运一台机器到A县的运费为30元,从乙仓库调运一台机器到B县的运费为50元.设从甲仓库调往A县的机器为x台,用含有x的代数式表示(并化简):(1)从甲仓库调往B县的机器为台;(2)从乙仓库调往A县的机器为台;(3)从乙仓库调往B县的机器为台;(4)调运这些机器的总运费是:(元)(直接写答案,不必说明理由).(5)请结合加(减)法的运算性质以及题目中的条件思考:当x为多少时,总运费最少?22、某班组织去方特参加秋季社会实践活动,其中第一小组有x人,第二小组的人数比第一小组人数的少30人,如果从第二小组调出10人到第一小组,那么:(1)两个小组共有多少人?(2)调动后,第一小组的人数比第二小组多多少人?23、我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?24、)某车间有28名工人,生产某种型号的螺栓和螺母。
已知平均每人每天生产螺栓12个或螺母18个,一个螺栓配两个螺母,怎样分配人力,才能使每天生产的螺栓和螺母正好配套?25、.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?26、我市某玩具厂生产的一种玩具每个成本为24元,其销售方案有如下两种:方案一:给本厂设在蓝天商厦的销售专柜销售,每个售价为32元,但每月需上缴蓝天商厦有关费用2400元;方案二:不设销售专柜,直接发给本市各商厦销售,出厂价为每个28元.设该厂每月的销售量为x个.如果每月只能按一种方案销售,且每种方案都能按月销售完当月产品,那么应如何选择销售方案,可使该工厂当月所获利润最大?二、选择题27、小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()A. B. C. D.28、甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是A.96+x=(72一x) B.(96+x)=72一x C.(96-x)=72-x D.×96+x=72一x29、某工程要在x天内完成,现由甲先做3天,乙再参加合做,正好如期完成.若甲独做需12天完成,乙独做需8天完成,则下列方程正确的是()A.+=1 B.+=1 C.+=1 D.+=130、“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A. x·(1+30%)×80%=2 080 B. x·30%·80%=2 080C. 2 080×30%×80%=x D. x·30%=2 080×80%31、松雷中学甲班人数比乙班人数的多6人,如果从乙班调4人到甲班, 则两班人数正好一样多,求这两班的人数,若设乙班的人数为x人,依题意, 所列方程正确的是( )A.x-x=6B.x-4=x+6C.D.32、如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.14433、如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验.已知支点到直尺左右两端的距离分别为a,b,通过实验可得如下结论:左端棋子数×a=右端棋子数×b,直尺就能平衡.现在已知a=10厘米并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡()A.8枚 B.4枚 C.2枚 D.1枚34、小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44三、填空题35、我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡、兔各几何? 此题的答案是鸡有23只,兔有12只.若现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡、兔各几何? 则此时的答案是鸡有只,兔有只.36、如图,宽为50cm的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为cm2.37、某种出租车的收费标准为:起步价为9元,即行驶不超过2 km.需付9元车费;超过2 km后,按每千米2.5元收费 (不足1 km按1 km计).若小亮乘坐这种出租车从甲地到乙地共支付车费39元,设苗苗从甲地到乙地经过的路程为x km,则x的值是.38、某校七年级(1)班有a个男生,女生人数比男生人数的倍的少5人,则该七年级1班共有人(用含有a的代数式表示)39、一架飞机在两个城市之间飞行,顺风飞行需2.5h,逆风飞行需3h,若风速是24km/h,求两城市间的距离.若飞机在无风飞行时的速度为x(km/h),根据题意,所列正确方程是.40、用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是参考答案一、简答题1、【考点】一元一次方程的应用.【分析】(1)根据题意可得方案一工资=200+5×推销件数;方案二工资=10×推销件数,分别代入数据进行计算即可;(2)设推销x件产品时,两种方案所得工资一样多,由题意得等量关系:方案一的工资=方案二的工资,根据等量关系列出方程即可;(3)根据(1)(2)中的数据计算,分析即可.【解答】解:(1)方案一:200+50×5=450(元),方案二:50×10=500(元),∵450<500,∴方案二所得工资合算;(2)设推销x件产品时,两种方案所得工资一样多,由题意得:200+5x=10x,解得:x=40,答:推销40件产品时,两种方案所得工资一样多;(3)根据(1)(2)可得小王推销产品数少于40件时,方案一合算,正好是40件时,两种方案工资一样;推销产品多于40件时,方案二合算.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.2、【考点】一元一次方程的应用.【分析】(1)设出发后x小时两车相遇,则慢车行驶的路程为60x千米,快车行驶的路程为80x千米,由慢车行驶的路程+快车行驶的路程=448km建立方程求出其解即可;(2)设快车开出y小时后两车相遇,则快车行驶的路程为80y千米,慢车行驶的路程为60(y+)千米.由慢车行驶的路程+快车行驶的路程=448km建立方程求出其解即可.【解答】解:(1)设出发后x小时两车相遇,则慢车行驶的路程为60x千米,快车行驶的路程为80x千米,由题意,得60x+80x=448,解得:x=3.2.答:出发后3.2小时两车相遇;(2)设快车开出y小时后两车相遇,则快车行驶的路程为80y千米,慢车行驶的路程为60(y+)千米.由题意,得80y+60(y+)=448,解得:y=3.答:快车开出3小时后两车相遇.【点评】本题考查了列一元一次方程解相遇问题的运用,一元一次方程的解法的运用,根据慢车行驶的路程+快车行驶的路程=全程建立方程是关键.3、【考点】一元一次方程的应用.【分析】(1)设运输路程是x千米,根据两种运输的总费用相等列出方程,求解即可;(2)把路程为800千米代入,分别计算两种运输的总费用,比较其大小即可.【解答】解:(1)设运输路程是x千米,根据题意得400+4x=820+2x,解得x=210.答:若两种运输的总费用相等,则运输路程是210千米;(2)若运输路程是800千米,选择方式一运输的总费用是:400+4×800=3600(元),选择方式二运输的总费用是:820+2×800=2420(元),2420<3600,所以若运输路程是800千米,这家公司应选用方式二的运输方式.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4、解:(1)设一个水瓶是x元,则一个水杯是(48-x)元,由题意得3x+4(48-x)=152解得x=4048-x=8答:一个水瓶40元,一个水杯8元.(2)在甲商场购买:5×40×0.8+20×8×0.8=288(元);在乙商场购买:5×40+8×(20-5×2)=280(元),因为288>280,所以在乙商场购买更合算.5、解:设经过x小时,甲、乙两人相距32.5千米 (7)分17.5x+15x = 65-32.5或 17.5x+15x = 65+32.5 (11)分解方程(1)得x=1,解方程(2)得x=3 (13)分答:经过1小时或3小时,甲、乙两人相距32.5千米. (14)分6、解:设一共去了x个家长,则去了(15-x)个学生, (1)分根据题意得50x+50×0.6(15-x)=650, (3)分解得x=10,···························································································· 4分15-10=5, (5)分答:一共去了10个家长、5个学生. (6)分7、解:设蜗牛神的速度是每小时x米,蚂蚁王的速度是每小时4x米,由题意得(5分)解得(2分)经检验是原方程的解(1分)∴(1分)答:蜗牛神的速度是每小时6米,蚂蚁王的速度是每小时24米(1分)。