基于MATLAB的定速风电机组仿真
电力电子matlab风力发电仿真Wind Farm实验报告

电力电子技术仿真实验报告学校:四川大学学院:电气信息学院专业:电气工程及其自动化年级:2011级班级:电力109班实验内容:9MW DFIG风电场MATLAB仿真实验小组成员:杜泽旭:1143031345罗恒:1143031346何强:1143031347蒋红亮:1143031153陈中俊:1143031272一、仿真平台本次实验的仿真平台是MATLAB软件。
MATLAB软件是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
本次实验所用的MATLAB软件版本为MATLAB7.11.0(R2010b)。
二、仿真模型在本次试验中我们所用是MATLAB中的自带的示例中的Sim Power system 中的由风力涡轮机驱动使用双馈异步式风力发电机发电的9MW风力发电系统,这是一个已经搭建好的模块我们只需用在以上基础做一定的参数设定就可以得到我们所想要的仿真模型。
操作步骤如下所示:仿真模型原理图三、实验要求1)系统自带的仿真模块中,说明系统运行工况和风机运行情况(电压、电流、转速等);2)修改仿真模型,将系统电压改为风机输出670V,升压至35kV,经30km线路输送后并入110kV电网。
要求110kV电网的短路容量为3000MV A。
然后说明系统运行工况和风机运行情况(电压、电流、转速等),并与1)对比;3)修改风速至12m/s,运行仿真并观察结果。
四、实验内容1、系统总体结构图2、系统模型图系统模型图3、模拟电网参数120kV模拟电网参数如下图所示,可知该模块模拟电网在0.03s时发生电压降落,在0.13s时电网恢复电压。
MATLAB在风力发电技术中的应用仿真(共33张)

图9-2 基于普通(pǔtōng)感应发电机的定速风电机组
第4页,共33页。
0.5 0.4 0.3
C p 0.2
0.1
0o
10o
2.5o
5o
0.0
-0.1 0
25o
2
4
6
15o
8 10 12 14 16
图9-3 关系(guān xì)曲线
第5页,共33页。
wi n d tu rb i n e 1
Vdc
Vdc (V)
wr
Speed (pu)
pitch pitch angle (deg)
图9-12
wi n d tu rb i n e 2
Trip
Wi n d T urbi ne Pro te cti o n
Trip Time
0
[T ri p_WT ]
0
Phasors pow ergui
第25页,共33页。
信号 1~3 4~6 7~8 9~11
表9-2 双馈变速风电机组输出(shūchū)信号
信号名称 Iabc(cmplx) (pu) Vabc(cmplx)(pu) Vdq_stator(pu) Iabc_stator (cmplx)(pu)
信号定义
以发电机额定电压为基准 值的流入风电机组端口电流 相量
A
A
B
B
C
C
Line1
A B C Three-Phase Fault
<wr (pu)> <P (pu)> <Q (pu)>
|u| <Vabc (cmplx) (pu)>
y From Workspace
电力电子matlab风力发电仿真Wind Farm实验报告

电力电子技术仿真实验报告学校:四川大学学院:电气信息学院专业:电气工程及其自动化年级:2011级班级:电力109班实验内容:9MW DFIG风电场MATLAB仿真实验小组成员:杜泽旭:1143031345罗恒:1143031346何强:1143031347蒋红亮:1143031153陈中俊:1143031272一、仿真平台本次实验的仿真平台是MATLAB软件。
MATLAB软件是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
本次实验所用的MATLAB软件版本为MATLAB7.11.0(R2010b)。
二、仿真模型在本次试验中我们所用是MATLAB中的自带的示例中的Sim Power system 中的由风力涡轮机驱动使用双馈异步式风力发电机发电的9MW风力发电系统,这是一个已经搭建好的模块我们只需用在以上基础做一定的参数设定就可以得到我们所想要的仿真模型。
操作步骤如下所示:仿真模型原理图三、实验要求1)系统自带的仿真模块中,说明系统运行工况和风机运行情况(电压、电流、转速等);2)修改仿真模型,将系统电压改为风机输出670V,升压至35kV,经30km线路输送后并入110kV电网。
要求110kV电网的短路容量为3000MV A。
然后说明系统运行工况和风机运行情况(电压、电流、转速等),并与1)对比;3)修改风速至12m/s,运行仿真并观察结果。
四、实验内容1、系统总体结构图2、系统模型图系统模型图3、模拟电网参数120kV模拟电网参数如下图所示,可知该模块模拟电网在0.03s时发生电压降落,在0.13s时电网恢复电压。
应用Matlab对风电系统的动稳仿真

通用低压电器篇童 菲(1986!),女,助理工程师,研究方向为电子信息与数据处理。
应用M atlab 对风电系统的动稳仿真童 菲1, 晁 勤2, 曹 慧2(1.西安理工大学自动化学院,陕西西安 710048;2.新疆大学电气工程学院,新疆乌鲁木齐 830008)摘 要:针对新疆布尔津风电网络,进行了动态稳定性仿真。
利用M atlab 建立了含励磁和调频系统的同步发电机及随风速变化的异步发电机系统的仿真模块,仿真风电网的5种情况,分析了同步发电机功角特性曲线和定子电压波动曲线。
仿真分析结果表明,风电容量占系统总容量比例不能超过15%,否则,风电系统稳定性将被破坏。
关键词:风电系统;动态仿真;稳定性中图分类号:TM 743 文献标识码:A 文章编号:1001 5531(2007)19 0006 03Si m ulation of Dyna m ic Stability for W i nd Po w er Syste m by M atlabTONG F ei 1, C HAO Qin 2, CAO H ui2(1.Schoo l o fAuto m a ti o n ,X i ∀an Un i v ersity of Techno l o gy ,X i ∀an 710048,Ch i n a ;2.Schoo l o f E lectrical Eng i n eering ,X i n jiang U niversity ,U r um ch i 830008,Ch i n a)Abstract :A i m i ng at the w i nd po w er net w ork o f X i njiang Bue rji n ,the dynam i c stab ility si m ulati on w as done .The si m ulati on m odule o f synchronous generator w hich conta i ns exc itati on and frequency regulati on syste m and asyn chronous generator sy stem w hich changes w ith the speed variati on of w i nd w as constituted by M a tlab .F ive cases o f w i nd powe r net w ork w ere si m ulated .T he pow er ang l e curve o f synchronous generato r and dynam ic curve of sta tor voltage w ere analysed .The result o f si m u l a ti on and ana l ys i s s how s that the proporti on o f w i nd pow er capacity i n the to tal system can t 'exceed 15%,o therw ise ,the stab ility o f w i nd powe r system w ill be destroyed .K ey words :w i nd power syste m;dyna m ic si m u l ation ;stab ility晁 勤(1959!),女,教授,博士,研究方向为并网型风力发电系统。
基于matlab的风力发电机组的建模与仿真

实验一:风力发电机组的建模与仿真姓名:学号:一、实验目标:1.能够对风力发电机组的系统结构有深入的了解。
2.能熟练的利用MATLAB软件进行模块的搭建以及仿真。
3.对仿真结果进行研究并找出最优控制策略。
二、实验类容:对风速模型、风力机模型、传动模型和发电机模型建模,并研究各自控制方法及控制策略;如对风力发电基本系统,包括风速、风轮、传动系统、各种发电机的数学模型进行全面分析,探索风力发电系统各个部风最通用的模型、包括了可供电网分析的各系统的简单数学模型,对各个数学模型,应用MATLAB 软件进行了仿真。
三、实验原理:风力发电系统的模型主要包括风速模型、传动系统模型、发电机模型和变桨距模型,下文将从以上几方面进行研究。
1、风速的设计自然风是风力发电系统能量的来源,其在流动过程中,速度和方向是不断变化的,具有很强的随机性和突变性。
本文不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速 V b、阵风风速V g、渐变风速V r和噪声风速V n。
即模拟风速的模型为:V= V b+ V +V r+V n(1-1)g(1).基本风V b =8m/sStep Scope基本风仿真模块( 2)阵风风速0t t 1gVg v cos t1 g t t1 g T g(1-2)0t t1g T g式中:Gmax1 cos 2tt1g(1-3)vcos()2T g T gt 为时间,单位 s ; T 为阵风的周期,单位s ;v cos , V g 为阵风风速,单位 m /s ; t 1g为阵风开始时间,单位s ; G max 为阵风的最大值,单位m/s 。
ANDStepLogicalOperatorStep1Scope1f(u)ClockProductFcn3Constant本例中,阵风开始时间为 3 秒,阵风终止时间为 9 秒,阵风周期为 6 秒,阵风最大值为 6m/s 。
基于matlab风力发电系统的建模与仿真设计

基于matlab风力发电系统的建模与仿真设计一、介绍在当今世界上,可再生能源已经成为人们关注的焦点之一。
其中,风力发电作为一种清洁能源方式,被广泛应用并受到了越来越多的关注。
针对风力发电系统的建模与仿真设计,基于Matlab评台的应用是一种常见的方法。
本文将深入探讨基于Matlab的风力发电系统建模与仿真设计,旨在帮助读者全面理解这一主题。
二、风力发电系统的基本原理风力发电系统是将风能转化为电能的设备。
其基本原理是通过风力驱动风轮转动,通过风轮与发电机之间的转动装置,将机械能转化为电能。
风力发电系统包括风力发电机组、变流器、电网连接等部分。
在设计和优化风力发电系统时,建模与仿真是非常重要的工具。
三、Matlab在风力发电系统建模中的应用Matlab是一种功能强大的数学建模软件,广泛应用于工程、科学和数学领域。
在风力发电系统的建模与仿真设计中,Matlab可以用于模拟风速、风向、风机性能、电网连接等多个方面。
通过Matlab工具箱,可以实现对风力发电系统各个环节的建模和仿真分析。
四、基于Matlab的风力发电系统建模与仿真设计在实际建模中,需要进行风速、风向、风机特性、变流器控制策略等多方面的建模工作。
通过Matlab,可以建立风力机的数学模型,进行风能的模拟,并结合电网连接及功率控制策略进行仿真设计。
通过建模和仿真,可以分析系统在不同工况下的性能表现,指导系统设计和运行。
五、对风力发电系统建模与仿真设计的个人观点和理解在我看来,基于Matlab的风力发电系统建模与仿真设计是一种高效且可靠的方法。
通过Matlab评台,可以更好地对风力发电系统进行综合性的分析和设计。
Matlab提供了丰富的工具箱,能够支持复杂系统的建模和仿真工作。
我认为Matlab在风力发电系统建模与仿真设计上具有很高的应用价值。
六、总结通过本文的阐述,我们全面深入地探讨了基于Matlab的风力发电系统建模与仿真设计。
从风力发电系统的基本原理开始,介绍了Matlab 在该领域的应用,并着重强调了建模与仿真的重要性。
基于Matlab的小型风力发电系统仿真分析

基于Matlab的小型风力发电系统仿真分析设计研发 Research & Design基于Matlab的小型风力发电系统仿真分析在分析目前小型风力发电系统缺陷的基础上,建立了包括不可控桥式整流器和 Buck 变换器的系统 Matlab 仿真模型,计算得到了包括斩波器的特性、发电机在不同风速下的功率输出以及发电机输出功率和转速的对比仿真结果。
■ 孟繁超宋晓美 / 华北电力大学机械工程系风力发电是技术较成熟、产业发展较快、成本相对较低的可再生能源利用方式。
具有很大1系统结构1.1工作原理本文设计的1kW独立运行小型风电系统的结构采用直-交-直的框架结构,如图1所示,主要组成部分包括风力机、三相交流永磁同步发电机(PMSG)、三相二极管整流器、DC/DC变换器、蓄电池、逆变器以及控制系统,系统各个部分互相关联、协调运行,构成一个智能的交流发电机系统。
风力机驱动永磁同步发电机发电,所发出的电经整流后给蓄电池充电,而逆变器将蓄电池或斩波器输出的直流电变换成交流电供交流负载使用。
Buck变换器用来改变风力发电机的负载特性,调节发电机输出功率和控制蓄电池充放电。
耗能负载用来保护风力发电机组。
1.2系统结构特点(1)Buck变换器的优点DC/DC变换器采用Buck变换器,相比于其他种类的变换器具有以下优点:1)电路简单,方便调整,可靠性大大提高。
2)对功率管及其续流二极管的耐压要求降低,只要求大于或等于最高输入电源电压即可。
3)储能电感在功率管导通时储存能量,断开时由储的发展潜力。
但风力发电受环境的影响很大,大风、小风、甚至无风,会使发电机输出特性发生很大的变化,其产生的电能很难满足负载恒定电压的要求。
传统的小型风力发电系统采用的直接发电一充电情况,没有对风电转换进行控制,使风力机没有工作在最佳叶尖速比,风能利用效率低。
大多数风机在采用最大功率点跟踪方法时,都需要知道风机最大功率曲线和风速,或者通过调整风机转速达到最大功率点跟踪的目的。
基于MATLAB的风力发电系统仿真研究

基于MATLAB的风力发电系统仿真研究电气工程及其自动化07101班学生姓名:赵爽指导教师:薛继汉教授冯月春助教摘要:本文介绍了风力发电机组的结构组成及原理,并建立了风力发电系统风速的数学模型、传动系统模型、发电机的数学模型, 并用MATLAB软件对风速模型进行了仿真, 结果证明了这些模型的正确性和有效性,说明了风力发电系统的仿真在对风力发电系统分析中的重要作用。
关键词:风力发电;MATLAB仿真; 动态模型; 风力发电机组绪论近几年来,风力发电机组单机容量和风电场建设规模都日益扩大,成为电网电源中的重要组成部分。
风力的随机性和间歇性以及机组运行时的对无功的需求都会影响电力系统稳定运行。
所以,在风电场建设前,需要论证分析风电场接入电网的可行性和确定允许接入的容量水平。
作为分析的基础,需要建立正确的风电机组和风电场的数学模型。
另外,针对新型风力发电机组,也需要根据其特性建立适当的数学模型,并应用于电力系统中,分析它的运行结果。
因此,关于风力发电的课题研究是非常有必要的,对我国的能源结构调整将起到重要的推动作用。
1风力发电机结构组成原理风力发电机组通常亦被称为风能转换系统。
典型的并网型风力发电机组主要包括起支撑作用的塔架、风能的吸收和转换装置—风轮机(叶片、轮毂及其控制器)、起连接作用的传动机构—传动轴、齿轮箱、能量转换装置—发电机及其它风机运行控制系统—偏航系统和制动系统等。
风力发电过程是:自然风吹转叶轮,带动轮毂转动,将风能转变为机械能,然后通过传动机构将机械能送至发电机转子,带动着转子旋转发电,实现由机械能向电能的转换,最后风电场将电能通过区域变电站注入电网。
其能量转换过程是:风能→机械能→电能。
2 风力发电系统对并网运行的影响风力发电机并网过程对电网的冲击影响异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程。
异步发电机并网时的冲击电流的大小,与并网时网络电压的大小、发电机的暂态电抗以及并网时的滑差有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ttrriipp
A
m
B
C
m_wt2
9
P h a s o rs powe rgui
仿真结果分析
3.1各种风速下的 运行情况 (1)渐变风 在0秒是设定风 速为 8m/s,在 t =2s 时刻,渐变 风开始出现。其 上升时间为3s, 达到峰值11s时, 风速保持时间为 2s,渐变风风上 升速度为 1m/s。 在渐变风扰动下 的运行情况。风 速波形如图 所示。
1、风速仿真
风速是风力发电机机的原始动力,它的模型相对比较 独立,可以认为与风力机没有关系。由于风速具有 随机性和间歇性的特点,在电力系统稳定状态的情 况下,为了能够较精确地模拟风速这些特点。在本 次毕业设计中,采用国内外经常使用的风力四分量 模型:基本风、阵风、渐变风和随机风。其它的任 何情况下的风速都可以由这四个风速分量的线性叠 加而得到。
a
19
仿真结果分析
三相断线故障 在MATLAB运行到 3s 时,风电场与电网之间连接的馈电线路中的 发生三相的断线故障。从MATLAB的仿真结果可以看出来,该风 力发电机组在联络线发生断线故障后,有功功率的输出迅速减为0。
有功功率变化曲线
无功功率变化曲线
出口电压变化曲线
a
20
总结
本次设计使用MATLAB/Simulink仿真软件实现了恒 速恒频风力发电机组以及与并网的仿真模型,分别 从不同风速和电网故障两类情况出发,对含恒速恒 频风力发电的简单的电力系统进行了仿真分析。通 过仿真分析得到了所建立的风电力发电系统仿真模 型的可行性和正确性。
a
2
恒速发电机的运行原理
• 风作用在风轮机的 叶片上,风轮机利 用叶片将风能转化 为机轴上的机械能, 传动装置将机轴上 的较低的旋转速度 的运动转变为转速 较高的转速,并与 发电机转子相连接, 最后由发电机将机 械能转化为电能, 并通过定子输送到 电力系统中。
a
3
恒速恒频风力发电系统并网运行仿真
9m/s不变,当仿真运行到2s时,风电场与电网连接 处附近发生三相短路故障,经过4s左右时间,开关 动作,故障被切除。
a
15
仿真结果分析
有功功率变化曲线
a
16
仿真结果分析
无功功率变化曲线
a
17
仿真结果分析
出口电压变化曲线
a
18
仿真结果分析
从运行结果可以看出,故障切除回复正常运行后,风电场 的有功功率和电压的恢复较快,在低电压期间,风电场吸 收的无功功率大幅度增加。
的持续时间为1s,最大风速为为21 m/s。
阵风变化曲线
有功功率变化曲线
无功功率变化曲线
端口电压变化曲线
a
13
仿真结果分析
(3)组合风 假设基本风风速为 9m/s;渐变风、阵风的条件分别与(1)
(2)相同,随机风平均值为0,仿真运行到10s。
a
14
仿真结果分析
风电场出口短路故障运行情况 在MATLAB仿真运行的过程中,风速基本维持
基于MATLAB的定速风电机 组仿真
答辩人 : xxx 指导教师:xxx
2014年6月12日
a
1
研究内容
本文主要研究了恒速恒频风力发电系统,对恒速恒频风力发电系统做了简 要的介绍,并在恒速恒频风力发电并网方面做了一些研究,主要为恒速恒频风 力发电机在不同风速时,对输出有功、无功并网电压的影响,以及当电网故障 时,对恒速恒频风力发电机的输出特性。本文也用MATLAB/Simulink软件对上述 的各种状况进行了仿真,对分析了其结果
a
10
仿真结果分析
• 在渐变风风速 下,风力发电 机输出的有功 功率的变化曲 线如图
• 风力电机随着 风的速度变化 输出的无功功 率的变化曲线 如图
a
11
仿真结果分析
风电场机端电压的变化情况如图
a
12
仿真结果分析
• (2)阵风 • 最初时刻假设风的速度为 9m/s,在 t=4.5s 时,阵风扰动出现。阵风
a
5
恒速恒频风力发电系统并网运行仿真
Tm
A m
B
C
Asynchronous Machine
由上文描述的鼠笼式 风力机的数学模型 可以得到 MATLAB/Simulink 中的异步电机的仿 真模型。Tm为转 子转矩的输入;A、 B、C为三相电压 得输出;m为异步 电机的工作时变量 的输出端口,由此 端口可以得到异步 电机运行时的仿真
Generator speed (pu) Pitch angle (deg) Tm (pu) Wind speed (m/s)
Wind Turbine
2.风力机的仿真
根据风力机运行特性,风 力机模型如图所示,Pitch angle(deg)为桨距角输 入端口单位为度,本文采 用变桨距角控制;Wind speed(m/s)为风速输入 端口,单位为米/秒; Generator speed(pu)为 电机转速的输入,为标幺 值。Tm(pu)为风力机 的输出机械转矩,也为标 幺值。
a
6
恒速恒频风力发电系统并网运行仿真
A
N
B
C
220 kV
a
A
a
B
b
C
c
220 kV/35 kV 47 MVA
Three-Phase Source
A
B
C
100km line
aA bB cC
B35 (35 kV)
A
a
B
b c
C n2
35 kV/ 690 V 2 MVA
66ohms
T hree-Phase Series RLC Load A
B
C
7
A B C
200 kvar
恒速恒频风力发电系统并网运行仿真
本文是通过单机容量1.5MW,出口电压690V的风力发 电机,经机端变压器升压至35KV,通过长度为100km、 电抗为x=0.41Ω/km的架空输电线路传输,再经变压器升 压至220KV,之后与无穷大系统相连。如图。
其中,无功补偿设备采用固定电容器,其无功功率为 200kVar;690V到35KV升压变压器的额定容量为2000KVA, 其它参数不变;100km输电电路用简化的等效模型,即阻 抗为41Ω的三相电抗来模拟;35KV到220KV的升压变压器 的额定容量设为47000KVA,其它参数不变。无穷大系统 使用两个额定电压为220KV的电源和额定电压为220KV的 负载来等效。
a
8
恒速恒频风力发电系统并网运行仿真
系统仿真图如下:
A
N
B
C
A B C
A B C
a
A
a
B
b
C
c
aA A
a
bB B
b c
c C C n2
Wi n d 0
Constant1
aA bB cC
A B C
Vabc_B35 P_B35 Q_B35 V_B35 I_B35
200 kvar m
wi n d
Wwiinndd ((mm//ss))