人教版八年级上册数学期末试卷(附答案详析)

合集下载

人教版数学八年级上册期末考试试题含答案解析

人教版数学八年级上册期末考试试题含答案解析

人教版数学八年级上册期末考试试卷一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤32.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、83.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.44.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.65.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形8.如果=3,则=()A.B.xy C.4D.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为.12.三角形三边的长分别为8、19、a,则边a的取值范围是.13.已知x2+mx+9是完全平方式,则常数m等于.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.分解因式:3a3﹣12a=.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.先化简,再求值:÷(1+),其中x=﹣1.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?参考答案与试题解析一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤3【考点】分式有意义的条件.【专题】压轴题.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、8【考点】三角形三边关系.【专题】探究型.【分析】根据三角形两边之和大于第三边和两边之差小于第三边可以判断选项中的数据是否能组成三角形,本题得以解决.【解答】解:∵1+2<3.5,∴选项A中的数据不能组成三角形;∵4+5=9,∴选项B中的数据不能组成三角形;∵5+8<15∴选项C中的数据不能组成三角形;∵15+8>20∴选项D中的数据能组成三角形;故选D.【点评】本题考查三角形三边的关系,解题的关键是明确三角形两边之和大于第三边和两边之差小于第三边.3.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.4【考点】全等三角形的判定.【分析】先根据SSS推出△ABC≌△ADC,推出∠1=∠2,∠3=∠4,再根据SAS即可推出△ABO≌△ADO,△CBO≌△CDO.【解答】解:全等三角形有△ABC≌△ADC,△ABO≌△ADO,△CBO≌△CDO,共3对,故选C.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理是:SAS,ASA,AAS,SSS.4.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.6【考点】含30度角的直角三角形.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故选A.【点评】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,含30度角的直角三角形性质的应用,关键是求出BD的长和得出CD=BD.5.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】根据幂的乘方、单项式的乘方、除法法则以及负指数次幂的意义即可判断.【解答】解:A、(x3)2=x6,选项错误;B、2a﹣5•a3=2a﹣2=,选项错误;C、6x3÷(﹣3x2)=﹣2x,选项错误;D、3﹣2==,选项正确.故选D.【点评】本题考查了单项式除单项式,用整式乘除解决实际问题时要注意分清量与量之间存在的数量关系.6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.【解答】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.【点评】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念容易得出结果.【解答】解:B、C、D都是轴对称图形;A、不一定是轴对称图形,若三角形不是等腰直角三角形就不是轴对称图形.故选:A.【点评】本题考查了轴对称图形的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.如果=3,则=()A.B.xy C.4D.【考点】分式的基本性质.【专题】计算题.【分析】由=3,得x=3y,再代入所求的式子化简即可.【解答】解:由=3,得x=3y,把x=3y代入==4,故选C.【点评】找出x、y的关系,代入所求式进行约分.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为3.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣3=0且x+3≠0,解得x=3.故答案为:3.【点评】本题主要考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.三角形三边的长分别为8、19、a,则边a的取值范围是11<a<27.【考点】三角形三边关系.【专题】推理填空题.【分析】根据三角形中的两边之和大于第三边和两边之差小于第三边进行计算即可解答本题.【解答】解:∵三角形三边的长分别为8、19、a,∴19﹣8<a<19+8,∴11<a<27,故答案为:11<a<27.【点评】本题考查三角形的三边关系,解题的关键是明确两边之和大于第三边和两边之差小于第三边.13.已知x2+mx+9是完全平方式,则常数m等于±6.【考点】完全平方式.【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据已知得出mx=±2•x•3,求出即可.【解答】解:x2+mx+9=x2+mx+32,∵x2+mx+9是完全平方式,∴mx=±2•x•3,解得:m=±6,故答案为:±6.【点评】本题考查了对完全平方式的应用,能求出符合的两个值是解此题的关键,注意:完全平方式有a2+2ab+b2和a2﹣2ab+b2两个.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,根据1的任何次幂都是1,可得答案.【解答】解:由点A(a,1)和B(2,b)关于x轴对称,得a=2,b=﹣1.(a+b)2015=1,故答案为:1.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.分解因式:3a3﹣12a=3a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=70°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线的概念得到∠AED=90°,求出∠A=40°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∠ADE=50°,∴∠A=40°,又AB=AC,∴∠B=∠C=70°,故答案为:70°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是8cm.【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,再根据“HL”证明△ACD和△AED 全等,根据全等三角形对应边相等可得AC=AE,然后求出△BED的周长=AB,即可得解.【解答】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴△BED的周长=DE+BD+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=8cm,∴△BED的周长是8cm.故答案为:8cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣8﹣3x=0,解得:x=8,经检验x=8是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据n边形的内角和的计算公式(n﹣2)•180°列出方程,解方程即可.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)×180°=360°×4,解得:n=10.答:这个多边形的边数为10.【点评】本题考查的是多边形的内角和和外角和的计算,掌握n边形的内角和的计算公式:(n﹣2)•180°是解题的关键.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.22.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.。

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列关于x 的方程是分式方程的是()A .2356x x ++=B .323x x -=C .137x x -=+D .351x =2.下面四个图形中,是轴对称图形的是()A .B .C .D .3.下列运算错误的是()A .()23924b b =B .235a a a ⋅=C .()ax ay a x y +=+D .32a a a ÷=(a≠0)4.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中91nm 10m -=),用科学记数法表示这个最小刻度(单位:m ),结果是()A .8210m -⨯B .9210m -⨯C .10210m-⨯D .11210m -⨯5.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠C B .BE =CD C .AD =AED .BD =CE 6.已知等腰三角形的两条边长分别为4和9,则它的周长为()A .17B .22C .23D .17或227.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A .32°B .33°C .34°D .38°8.如图,M 、N 分别是正五边形ABCDE 的边BC 、CD 上的点,且BM=CN ,AM 交BN 于点P ,则∠APN 的度数是()A .120°B .118°C .110°D .108°9.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点,连结AD ,AE 是∠BAD 的平分线,DF ∥AB 交AE 的延长线于点F ,若EF=3,则AE 的长是()A .3B .6C .9D .1210.如图,点E 是BC 的中点,AB BC ⊥,DC BC ⊥,AE 平分BAD ∠,下列结论:①90AED ∠= ;②ADE CDE ∠=∠;③DE BE =;④AD AB CD =+.其中正确的是()A .①②④B .①②③④C .②③④D .①③11.如图,已知∠BAC=∠DAE=90°,AB=AD ,下列条件能使△ABC ≌△ADE 的是()A .∠E=∠CB .AE=AC C .BC=DED .ABC 三个答案都是12.(-2)2011×22012的计算结果是()A .0B .-24023C .24023D .-4402313.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC二、填空题14.分解因式:29x y y -=_______.15.若210m =,23n =,则22m n +=______________.16.若一个多边形的外角和是内角和的13,则这个多边形的边数是_____.17.若点M (32,a )关于y 轴的对称点是点N (b ,12),则()2022a b +=________.18.若关于x 的分式方程1233a x x-=--有增根,则a 的值为_____.19.如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .若AD=3cm ,BE=1cm ,则DE=_________.20.如图,在平面直角坐标系中,已知(0,5),(2,0)A B ,在第一象限内的点C ,使ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为_____.三、解答题21.计算:()()()222x y y x y x +-+-.22.解分式方程:2321212141x x x x +-=+--.23.先化简,再求值:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a ,其中()02022a π=-,13b =.24.如图,在△ABC 中,∠ABC=30°,∠C=80°,AD 是△ABC 的角平分线,BE 是△ABD 中AD 边上的高,求∠ABE的度数.25.如图,已知点A (-2,4),B (4,2),C (2,-1).(1)先画出△ABC ,再作出△ABC 关于x 轴对称的图形△111A B C ,则点1C 的坐标为________;(2)P 为x 轴上一动点,请在图中画出使△PAB 的周长最小时的点P ,并直接写出此时点P 的坐标(保留作图痕迹).26.如图,ABD ,AEC 都是等边三角形,BE ,CD 相交于点O .(1)求证:BE DC =;(2)求BOC ∠的度数.27.某单位准备购买A 、B 两种型号的分类垃圾桶,购买时发现,A 种型号的单价比B 种型号的单价少50元,用2000元购买A 种垃圾桶的个数与用2200元购买B 种垃圾桶的个数相同.(1)求A 、B 两种型号垃圾桶的单价各是多少元?(2)若单位需要购买分类垃圾桶6个,总费用不超过3100元,求出所有不同的购买方式?28.阅读材料:若满足()()863x x --=-,求()()2286x x -+-的值.解:设8x a -=,6x b -=,则()()863x x ab --==-,862a b x x +=-+-=,所以()()()()22222286222310x x a b a b ab -+-=+=+-=-⨯-=请仿照上例解决下面的问题:(1)问题发现:若x 满足()()3210x x --=-,求()()2232x x -+-的值;(2)类比探究:若x 满足()()22202220212020x x -+-=.求()()20222021x x --的值;(3)拓展延伸:如图,正方形ABCD 和正方形和MFNP 重叠,其重叠部分是一个长方形,分别延长AD 、CD ,交NP 和MP 于H 、Q 两点,构成的四边形NGDH 和MEDQ 都是正方形,四边形PQDH 是长方形.若正方形ABCD 的边长为x ,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).29.在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.参考答案1.C2.D3.A4.C5.B6.B7.A8.D9.B10.A11.D12.B13.C14.y(x+3)(x-3)15.9016.817.118.119.2cm20.(7,2)或(5,7)【分析】分别从当∠ABC=90°,AB=BC时,当∠BAC=90°,AB=AC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】如图①,当∠ABC=90°,AB=BC时,过点C作CD⊥x轴于点D,∴∠CDB=∠AOB=90°,∵∠OAB+∠ABO=90°,∠ABO+∠CBD=90°,∴∠OAB=∠CBD,在△AOB 和△BDC 中,AOB BDCOAB CBD AB BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△BDC (AAS ),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C 的坐标为(7,2);如图②,当∠BAC=90°,AB=AC 时,过点C 作CD ⊥y 轴于点D ,同理可证得:△OAB ≌△DCA ,∴AD=OB=2,CD=OA=5,∴OA=OA+AD=7,∴点C 的坐标为(5,7);综上所述点,点C 的坐标为(7,2)或(5,7).21.252x xy+【分析】先运用乘法公式进行计算,再合并同类项即可.【详解】解:()()()222x y y x y x +-+-,=()222224x xy y y x ++--,=222224x xy y y x ++-+,=252x xy +.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算.22.x=6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】等式两边同时乘241x -得:3(21)2(21)1x x x --+=+整理得:63421x x x ---=+,解得:x =6,经检验x =6是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.13b a ,.【分析】将括号内利用平方差公式和完全平方式通分化简,再将除法改为乘法,最后约分即可化简.根据零指数幂计算出a 的值,再将a 、b 的值代入化简后的式子求值即可.【详解】解:2222222⎫⎛-÷+⎪ --+-⎝⎭b a b a a ab a ab b b a 222()()()()()()b a b a b a a b a a b a b a b ⎡⎤-+-=÷-⎢⎥---⎣⎦22()()()()b a b a b a a a b a b -+-=÷--2()()b a b a a b b-=⨯-ba=∵()020221a π=-=,13b =,∴11313a b ==.24.55°【分析】先根据三角形内角和定理及角平分线的性质求出∠BAD 度数,由AE ⊥BE 可求出∠AEB=90°,再由三角形的内角和定理即可解答.【详解】解:∵∠ABC=30°,∠C=80°,∴∠BAC=180°-30°-80°=70°,∵AD 是∠BAC 的平分线,∴∠BAD=12×70°=35°,∵AE ⊥BE ,∴∠AEB=90°,∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.25.(1)作图见解析,(2,1);(2)作图见解析,(2,0).【分析】(1)在坐标系中标出A 、B 、C 三点,再顺次连接,即为ABC ;根据轴对称的性质找到A 、B 、C 三点关于x 轴的对应点1A 、1B 、1C ,再顺次连接,即为111A B C △,最后写出1C 的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接1A B ,即1A B 与x 轴的交点为点P ,再直接写出点P 坐标即可.【详解】(1)ABC 和111A B C △如图所示,根据图可知1(21)C ,.故答案为:(2,1).(2)∵AB 长度不变,PAB 的周长PA PB AB =++,∴只要PA PB +最小即可.如图,连结1A B 交x 轴于点P ,∵两点之间线段最短,∴11PA PB PA PB A B +=+≥,设1A B 解析式为y kx b =+,过1A (-2,-4),B(4,2),代入得,4224k b k b-=-+⎧⎨=+⎩解得:12k b =⎧⎨=-⎩,∴1A B 的解析式为2y x =-,当0y =时,即02x =-,解得:2x =.∴点P 坐标为(2,0).当点P 坐标为(2,0)时,APB △周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.26.(1)见解析;(2)120°.【分析】(1)由条件可证明△ADC ≌△ABE ,可证得BE=DC ;(2)由(1)可得出∠ADC=∠ABE ,根据三角形的内角和定理求出∠BOD=180°-∠ODB-∠DBA-∠ABE=60°,最后求出BOC ∠的度数.【详解】(1)证明:∵△ABD 与△AEC 都是等边三角形,∴AD=AB ,AE=AC ,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC ,∴∠DAC=∠BAE ,在△DAC 和△BAE 中AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE (SAS ),∴BE=DC ;(2)由(1)可得出∠ADC=∠ABE ,∵∠BOD=180°-∠ODB-∠DBA-∠ABE=180°-∠ODB-60°-∠ADC=120°-(∠ODB+∠ADC )=120°-60°=60°,∴∠BOC=180°-∠BOD=180°-60°=120°.27.(1)A 、B 两种型号垃圾桶的单价是500元和550元;(2)购买A 种型号垃圾桶为4个,B 种型号垃圾桶为2个;A 种型号垃圾桶为5个,B 种型号垃圾桶为1个;A 种型号垃圾桶为6个,B 种型号垃圾桶为0个.【分析】(1)设A 、B 两种型号垃圾桶的单价分别为x 元,y 元,由题意列方程2000220050x x =+,求出x 的值即为A 种型号垃圾桶的单价,再由50x +求出B 种型号垃圾桶的单价.(2)设购买A 种型号垃圾桶a 个,则由题意,列式()50055063100a a +-≤,解出a 的范围,分类讨论即可.【详解】(1)设A 、B 两种型号垃圾桶的单价分别为x 元,y 元,由题意列方程:2000220050x x =+解得:500x =经检验知:500x =是原方程的解,符合题意∴50550x +=即A 、B 两种型号垃圾桶的单价是500元和550元.(2)设购买A 种型号垃圾桶为a 个,则:()50055063100a a +-≤解得:4a ≥,又∵单位需要购买分类垃圾桶6个∵46a ≤≤且a 为整数,∴4,5,6a =所以购买A 种型号垃圾桶为4个,B 种型号垃圾桶为642-=个;A 种型号垃圾桶为5个,B 种型号垃圾桶为651-=个;A 种型号垃圾桶为6个,B 种型号垃圾桶为660-=.综上所述,共有三种购买方式,即购买A 种型号垃圾桶为4个,B 种型号垃圾桶为2个;A 种型号垃圾桶为5个,B 种型号垃圾桶为1个;A 种型号垃圾桶为6个,B 种型号垃圾桶为0个.【点睛】本题考查分式方程的应用,以及一元一次不等式的应用,根据相关知识点列出关系式是解题关键.28.(1)21;(2)1009.5;(3)900【分析】(1)令a=3-x ,b=x-2,整体代入后利用完全平方和公式求解;(2)令a=2021-x ,b=2020-x ,再利用完全平方差公式求代数式的值;(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP 的面积.【详解】解:(1)设a=3-x ,b=x-2,∴ab=-10,a+b=1,∴(3-x )2+(x-2)2,=a 2+b 2=(a+b )2-2ab=12-2×(-10)=21;(2)设a=2022-x ,b=2021-x ,∴a-b=1,a 2+b 2=2020,∴()()20222021x x --=ab =−12[(a−b)2−(a 2+b 2)]=−12×(12−2020)=1009.5;(3)∵EF=DG=x-20,ED=FG=x-10,∵四边形MEDQ 与NGDH 为正方形,四边形QDHP 为长方形,∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD ,∴FN=(x-10)+(x-20),∴MF=NF ,∴四边形MFNP 为正方形,设a=x-20,b=x-10,∴a-b=-10,∵S EFGD =200,∴ab=200,∴S MFNP =(a+b)2=(a-b )2+4ab=(-10)2+4×200=900.29.(1)见详解;(2)见详解;(3【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,先证明△ABG≌△CAR,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB-∠DEA=45°+α-α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,CE∴RC=2∵DE∥AC,∴∠CAR=∠DEA,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°-∠AEB=45°,即∠GBE=∠AEB,∴∠ABG=∠ABC-∠GBE=∠DEB-∠AEB=∠DEA=∠CAR,又∵AB=AC,∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),∴AG=.。

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。

7. 下列函数中,其图像是抛物线的是__________。

8. 下列图形中,属于中心对称图形的是__________。

9. 下列关于圆的命题中,错误的是__________。

10. 下列关于角的命题中,错误的是__________。

三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。

12. 解不等式:3x 2 < 2x + 5。

13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

14. 解圆的方程:x² + y² 6x 8y + 9 = 0。

四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。

16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共10小题,每小题3分,计30分)1.下列长度的线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.6,10,42.下列图案中不是轴对称图形的是()A.B.C.D.3.分式有意义的条件是()A.x≠﹣4B.x≠6C.x≠﹣4且x≠6D.x=44.甲、乙、丙、丁4名运动员参加射击训练,他们10次射击的平均成绩都是8.5环,方差分别是S甲2=3,S乙2=4,S丙2=6,S丁2=2,则这4名运动员10次射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×3+①C.①﹣②×3D.①×(﹣2)+②6.下列各组线段不能构成直角三角形的是()A.2,3,4B.3,4,5C.1,1,D.6,8,107.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<10.关于x的分式方程有整数解,关于x的不等式组无解,所有满足条件的整数a的和为()A.2B.﹣6C.﹣3D.4二、填空题(共8小题,每空3分,计24分)11.(3分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为.12.(3分)计算:(﹣1)2019+(﹣)﹣2﹣(π﹣)0=.13.(3分)如图,若AB∥CD,∠A=110°,则∠1=°.14.(3分)一次函数y=2x+1的图象不经过第象限.15.(3分)将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.16.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为.18.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.三、计算题(共3小题,计16分)19.(6分)化简:(1)(3x+2y)(x﹣3y)﹣6xy(2)(a+2b)2+(2a3b+8ab3)÷(2ab)20.(4分)解方程组.21.(6分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2(2)解方程:=﹣1四、操作题(5分)22.(5分)在平面直角坐标系中,已知点A(1,3),B(3,1),C(4,3).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1.连接A1B并直接写出线段A1B的长.五、解答题(共3小题,计25分)23.(8分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(8分)如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.25.(9分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.人教版八年级(上)数学期末试卷参考答案与试题解析一、选择题1.【解答】解:A、3+4<8,不能构成三角形,故此选项不符合题意;B、5+6<11,不能构成三角形,故此选项不符合题意;C、6+5>10,能构成三角形,故此选项符合题意;D、6+4=10,不能构成三角形,故此选项不符合题意.故选:C.2.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:要使分式有意义,必须x+4≠0,解得,x≠﹣4,故选:A.4.【解答】解:∵S甲2=3,S乙2=4,S丙2=6,S丁2=2,∴S丁2<S甲2<S乙2<S丙2,∴这4名运动员10次射击成绩最稳定的是丁,故选:D.5.【解答】解:A.,①×2﹣②,得7y=7,能消元,故本选项不符合题意;B.,②×3+①,得7x=7,能消元,故本选项不符合题意;C.,①﹣②×3,得﹣5x+6y=1,不能消元,故本选项符合题意;D.,①×(﹣2)+②,得﹣7y=﹣7,能消元,故本选项不符合题意;故选:C.6.【解答】解:A、∵22+32≠42,∴三角形不是直角三角形,故本选项正确;B、∵32+42=52,∴三角形是直角三角形,故本选项错误;C、∵12+12=()2,∴三角形是直角三角形,故本选项错误;D、∵62+82=102,∴三角形不是直角三角形,故本选项错误.故选:A.7.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.10.【解答】解:将不等式组整理得:,由不等式组无解,得到﹣1≥,解得:a≤3,分式方程去分母得:1﹣ax+4(x﹣3)=﹣5,去括号得:1﹣ax+4x﹣12=﹣5,移项合并得:(4﹣a)x=6,解得:x=,∵x﹣3≠0,当a=﹣2、1、3时,符合题意;∴所有满足条件的a的值之和为:﹣2+1+3=2,故选:A.二、填空题11.【解答】解:0.000002275=2.275×10﹣6.故答案是:2.275×10﹣6.12.【解答】解:原式=﹣1+9﹣1=7.故答案为:7.13.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.16.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.18.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、计算题19.【解答】解:(1)(3x+2y)(x﹣3y)﹣6xy =3x2﹣9xy+2xy﹣6y2﹣6xy=3x2﹣13xy﹣6y2;(2)(a+2b)2+(2a3b+8ab3)÷(2ab)=a2+4ab+4b2+a2+4b2=2a2+4ab+8b2.20.【解答】解:①×3﹣②得:2x=4,解得:x=2,把x=2代入①得:4+y=2,解得:y=﹣2,所以原方程组的解为.21.【解答】解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.四、操作题22.【解答】解:(1)如图,△ABC为所作;(2)如图,△A1B1C1为所作;A1B==2.五、解答题23.【解答】解:(1)设该旅行社去年有x人前来观看赛事,根据题意,得:,解得:x=30,经检验:x=30是原方程的解,所以原方程的解为x=30,∴(1+50%)x=45,答:该旅行社今年的有45人前来观看赛事;(2)今年该旅行社本次费用中,人均交通费为x元,由题意得:9600+3900﹣45x≥2×45x,解得:x≤100,答:人均交通费最多为100元.24.【解答】解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.25.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。

人教版数学八年级上册期末考试试卷含答案

人教版数学八年级上册期末考试试题一、选择题(每小题3分,共8小题,满分24分)1.分式25-+x x 的值是零,则x 的值为()A.2B.5C.-2D.-52.下列计算正确的是()A.(a 2)4=a 6B.a 8÷a 4=a 2C.(ab 2)3=ab 6D.a 2·a 3=a 53.已知一个多边形的内角和是1260°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.如图,已知直线l 1∥l 2,点A ,D 和点B ,C ,E ,F 分别在直线l 1,l 2上,△ABC 和△DEF 的面积之比为1∶4,边EF 比边BC 长27cm ,则BC 等于()A.3cmB.9cmC.12cmD.18cm5.如图,D 是AB 上一点,DF 交AC 于点E ,FC ∥AB ,则下列结论错误的是()A.若AE=CE ,则DE=FE B.若DE=FE ,则AE=CE C.若BC=CF ,则AD=CFD.若AD=CF ,则DE=FE6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是()A.40×1.25x-40x=800B.x 800-x25.2800=40C.x 800-x25.1800=40 D.x 25.1800-x800=407.如图,I 为△ABC 角平分线的交点,AB=8,AC=6,BC=4,将∠ACB 平移使其顶点C 与I 重合,则图中阴影部分的周长为()A.9B.8C.6D.48.如图,是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm 时,这个六边形的周长为()A.30cmB.40cmC.50cmD.60cm二、填空题(每小题3分,共6小题,满分18分)9.甲骨文是我国的一种古代文字,是汉字的早期形式,下表给出了部分现代汉字与甲骨文字的对应关系.其中属于轴对称的甲骨文字个数是个.10.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学计数法表示为.11.因式分解:9x 3-4x=.12.已知a 1-b 1=3,则32322ba ab b a =.13.如图,BD ∥CE ,∠1=80°,∠2=40°,则∠A=.14.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =.三、解答题(共9小题,满分58分)15.(5分)解方程23-x x +x-24=1.16.(5分)计算:(2+1)(22+1)(24+1)…(216+1)+1.17.(6分)先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x x x ,其中x=2.18.(6分)如图,在△ABD 和△ACD 中,已知AB=AC ,∠B=∠C.求证:AD 是∠BAC 的平分线.19.(6分)请在网格中完成下列问题:(1)如图1,网格中的△ABC 与△DEF 为轴对称图形,请用所学轴对称的知识作出△ABC 与△DEF 的对称轴l ;(2)如图2,请在图中作出△ABC 关于直线MN 轴对称的图形△A′B′C′.20.(6分)如图所示,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE交AC于点F,求证:AF=EF.21.(7分)如图,在四边形ABCD中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A点作AE⊥BD于点E,交BC于点F,求证:AD=BF.22.(8分)开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元.(1)求每支钢笔和每本笔记本各是多少元;(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?23.(9分)如图,△COB是由△AOB经过某种变换得到,观察点A与点C坐标之间的关系,回答下列问题:(1)若点M的坐标为(x,y),则它的对应点N的坐标为(x,-y);(2)若点P(a ,2)与点Q(-3,b)关于x 轴对称,求ab 1+()()111--b a +()()221--b a +…+()()10101--b a 的值.参考答案一、选择题(每小题3分,共8小题,满分24分)1.分式25-+x x 的值是零,则x 的值为(D )A.2B.5C.-2D.-52.下列计算正确的是(D )A.(a 2)4=a 6B.a 8÷a 4=a 2C.(ab 2)3=ab 6D.a 2·a 3=a 53.已知一个多边形的内角和是1260°,则这个多边形是(C)A.七边形B.八边形C.九边形D.十边形4.如图,已知直线l 1∥l 2,点A ,D 和点B ,C ,E ,F 分别在直线l 1,l 2上,△ABC 和△DEF 的面积之比为1∶4,边EF 比边BC 长27cm ,则BC 等于(B)A.3cmB.9cmC.12cmD.18cm5.如图,D 是AB 上一点,DF 交AC 于点E ,FC ∥AB ,则下列结论错误的是(C )A.若AE=CE ,则DE=FEB.若DE=FE ,则AE=CEC.若BC=CF ,则AD=CFD.若AD=CF ,则DE=FE6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是(C)A.40×1.25x-40x=800B.x 800-x25.2800=40C.x 800-x25.1800=40 D.x 25.1800-x800=407.如图,I 为△ABC 角平分线的交点,AB=8,AC=6,BC=4,将∠ACB 平移使其顶点C 与I 重合,则图中阴影部分的周长为(B)A.9B.8C.6D.48.如图,是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm 时,这个六边形的周长为(D )A.30cmB.40cmC.50cmD.60cm二、填空题(每小题3分,共6小题,满分18分)9.甲骨文是我国的一种古代文字,是汉字的早期形式,下表给出了部分现代汉字与甲骨文字的对应关系.其中属于轴对称的甲骨文字个数是7个.10.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学计数法表示为3.26×10-4.11.因式分解:9x 3-4x=x(3x+2)(3x-2).12.已知a 1-b 1=3,则32322b a ab b a -=-3.13.如图,BD ∥CE ,∠1=80°,∠2=40°,则∠A=40°.14.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =50°.三、解答题(共9小题,满分58分)15.(5分)解方程23-x x +x-24=1.解:方程两边乘(x-2),得3x-4=x-2.解得x=1.检验:当x=1时,x-2≠0.∴x=1是原分式方程的解.16.(5分)计算:(2+1)(22+1)(24+1)…(216+1)+1.解:原式=(22-1)(22+1)(24+1)…(216+1)+1=(24-1)(24+1)…(216+1)+1=232-1+1=232.17.(6分)先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x x x ,其中x=2.解:原式=()⎪⎭⎫ ⎝⎛--+-÷-111112x x x x x=()xx x x112-⨯-=11-x .当x=2时,原式=1.18.(6分)如图,在△ABD 和△ACD 中,已知AB=AC ,∠B=∠C.求证:AD 是∠BAC 的平分线.证明:如图,连接BC.∵AB=AC ,∴∠ABC=∠ACB.∵∠ABD=∠ACD ,∴∠ABC -∠ABD=∠ACB -∠ACD ,即∠DBC=∠DCB.∴BD=CD.在△ADB 和△ADC 中,⎪⎩⎪⎨⎧===,,,AD AD AC AB CD BD ∴△ADB ≌△ADC (SSS ).∴∠BAD=∠CAD ,即AD 是∠BAC 的平分线.19.(6分)请在网格中完成下列问题:(1)如图1,网格中的△ABC与△DEF为轴对称图形,请用所学轴对称的知识作出△ABC与△DEF的对称轴l;(2)如图2,请在图中作出△ABC关于直线MN轴对称的图形△A′B′C′.解:(1)如图1,直线l即为所求;(2)如图2,△A′B′C′即为所求.20.(6分)如图所示,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F,求证:AF=EF.解:如图,延长AD至点G,使DG=AD,连接BG.∵AD是BC边上的中线,∴BD=CD.在△ADC 和△GDB 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD CD GDB ADC GD AD ∴△ADC ≌△GDB (SAS ).∴AC=GB ,∠G=∠CAD.∵BE=AC ,∴BE=BG.∴∠BED=∠G.又∵∠BED=∠AEF ,∴∠AEF=∠G=∠CAD.∴AF=EF.21.(7分)如图,在四边形ABCD 中,∠C=90°,连接BD,∠ABD=45°,且∠ADB=∠CDB,过A 点作AE ⊥BD 于点E,交BC 于点F,求证:AD =BF.证明:∵AE ⊥BD,∴∠AEB =∠AED =∠BEF =90°.∴∠DAE +∠ADE=90°.∵∠ABD =45°,∴∠BAE=90°-∠ABD=45°=∠ABE.∴AE=BE.∵∠C=90°,∴∠BDC+∠DBC=90°.∵∠BDC=∠ADB,∴∠DBC=∠DAE.在△AED 和△BEF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,FBE DAE BE AE BEF AED ∴△AED ≌△BEF(ASA).∴AD=BF.22.(8分)开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元.(1)求每支钢笔和每本笔记本各是多少元;(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?解:(1)设每支钢笔x 元,则每本笔记本(x+2)元.根据题意,得x 30=2×225+x .解得x=3.经检验,x=3是所列分式方程的解,且符合题意,∴x+2=5.答:每支钢笔3元,每本笔记本5元;(2)设要买m 支钢笔,则要买(50-m )本笔记本.根据题意,得3m+5(50-m )≤200.解得m≥25.答:至少要买25支钢笔.23.(9分)如图,△COB 是由△AOB 经过某种变换得到,观察点A 与点C 坐标之间的关系,回答下列问题:(1)若点M 的坐标为(x ,y),则它的对应点N 的坐标为(x ,-y );(2)若点P(a ,2)与点Q(-3,b)关于x 轴对称,求ab 1+()()111--b a +()()221--b a +…+()()10101--b a 的值.(2)解:∵点P(a ,2)与点Q(-3,b)关于x 轴对称,∴a=-3,b=-2,∴ab 1+()()111--b a +()()221--b a +…+()()10101--b a =()231-⨯-+()341-⨯-+()451-⨯-+…+()12131-⨯-=231⨯+341⨯+451⨯+…+12131⨯=21-31+31-41+41-51+…+121-131=21-131=2611.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014八年级(上)数学期末试题
一、选择题:(共12个小题,每小题2分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内. 1.(2分)9的算术平方根是( )
A . 3
B . ±3
C . 9
D .
±9 2.(2分)(2008•烟台)下列交通标志中,不是轴对称图形的是( )
A .
B .
C .
D .
3.(2分)若分式的值为0,则x 的值是( )
A . ﹣3
B . 3
C . ±3
D .
4.(2分)如图1,点B 、E 、C 、F 在同一条直线上,△ABC ≌△DEF ,∠B=45°,∠F=65°,则∠COE 的度数为( )
A . 40°
B .
60° C . 70° D . 100°
6.(2分)下列变形正确的是( )
A .
B .
C .
D .
8.(2分)如图2,在Rt △ABC 中,∠C=90°,∠A=30°,AB ﹣BC=2,则AC 等于( )
A .
3 B .
4 C . D .
9.(2分)(2001•昆明)若三角形的一个外角等于和它相邻的内角,则这个三角形是()
A.锐角三角形B.直角三角形C.钝角三角形D.都有可能
11.(2分)京通高速东起通州区北苑,西至朝阳区大望桥,全长18.4千米.京通公交快速通道开通后,为通州区市民出行带来了很大的便利.某一时段乘坐快速公交的平均速度比自驾汽车的平均速度提高了40%,因此可以提前15分钟走完这段路,若设这一时段自驾汽车的平均速度为x千米/时,则根据题意,得()
A.B.
C.D.
12.(2分)如图,D为△ABC外一点,BD⊥AD,BD平分△ABC的一个外角,∠C=∠CAD,若AB=5,BC=3,则BD的长为()
A.1B.1.5 C.2D.3
二、填空题:(共8个小题,每小题4分,共32分)
13.(4分)若=3,则x=_________.
14.(4分)若二次根式有意义,则x的取值范围是_________.
15.(4分)在,,,,这五个实数中,无理数是_________.
16.(4分)若一个三角形两边长分别为2、5,则此三角形的周长c的取值范围为_________.
17.(4分)如图,已知AF=CD,∠B=∠E,那么要得到△ABC≌△DEF,可以添加一个条件是
_________.
18.(4分)如图,点D、B、E在同一直线上,E为AC中点,若AB=BC,∠C=33°,则∠D+∠DAB= _________.
19.(4分)观察分析下列数据,按规律填空:1,2,,,…,第n(n为正整数)个数可以表示为_________.
20.(4分)如图有一块直角三角形纸片,∠A=30°,BC=cm,现将三角形ABC沿直线EF折叠,使点A落在直角边BC的中点D上,则CF=_________cm.
三、解答题:(共8个小题,第21、22每小题各5分,第23-25每小题各6分,第26-28每小题各8分,共52分)
21.(5分)计算:﹣.
22.(5分)(2012•海淀区二模)解方程:.
23.(6分)已知2m+n=0,其中m≠0,求的值.
24.(6分)已知:如图,点C是AE的中点,∠B=∠D,BC∥DE,求证:BC=DE.
25.(6分)(2013•沈阳一模)列方程或方程组解应用题:
某市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各铺设多少米?
26.(8分)已知:如图,某汽车探险队要从A城穿越沙漠去B城,途中需要到河流l边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?
(1)请你在图上画出这一点.(保留作图痕迹)
(2)根据图示,求出最短路程.
27.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.
28.(8分)已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD,BE,交于点P.
(1)观察度量,∠BPC的度数为_________.(直接写出结果)
(2)若绕点A将△ACE旋转,使得∠BAC=180°,请你画出变化后的图形.(示意图)
(3)在(2)的条件下,求出∠BPC的度数.。

相关文档
最新文档