第七章CC复合材料
《CC复合材料》PPT课件

才能成为真正的结构致密、 性能
优良的碳/碳复合材料 ,此即致密
化过程.传统的致密化工艺大பைடு நூலகம்分
为液相浸渍和化学气相沉积(CVI)
两种.
整理ppt
7
3.3
液相浸渍工艺
液相浸渍工艺一般在常压或减压下进行.
重复浸渍 — — — 炭化 — — — 石墨化 ,达 到致密预制体.此工艺存在问题是:
(1) 工艺繁复、 周期长、 效率低;
整理ppt
10
整理ppt
11
四 发展趋势及应用
(1) 因其良好的生物相容性 ,在生物医学方面 ,可作人体骨 骼的替代材料 ,比如人工髋关节、 膝关 节、 牙根等.
(2) 汽车、 赛车的制动系统. (3) 在核反应堆中制造无线电频率限幅器. (4) 利用其高导电率和很高尺寸稳定性 ,制造卫星通讯抛物 面无线电天线反射器. (5) 用碳/碳复合材料代替石棉制造熔融玻璃的滑道 ,其寿命 可提高100倍以上. (6) 制作高温紧固件.在700 ℃ 以上 ,金属紧固件强度很低 , 而碳/碳复合材料在高温下呈现优异承 载能力 ,可作高温下使用的螺栓、 螺母、 垫片等.
性及热、电传导特性等特点.而
且 ,其质轻 ,比强度和比弹性模量
都很高 ,更重要的是这种材料随
着温度的升高(可达2 200 ℃)其
强度不降低 ,甚至比室温条件下
还高。
整理ppt
4
三 制备工艺
制备碳/碳复合材料主要步骤为: 预制体成型 → 致密化处理 →
最终高温热处理
整理ppt
5
3.1
预制体成型
• 在进行预制体成型前,根据所设计复合材 料的应用和工作环境来选择纤维种类和编 织方式.例如 ,对重要的结构选用高强度、 高模量纤维.对要求导热系数低的则选用低 模量炭纤维 ,如粘胶基炭纤维
(整理)CC复合材料的制备及方法.

C/C复合材料的制备及方法地点:山西大同大学炭研究所时间:5.31——6.3学习内容:一、C/C复合材料简述C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术化学气相沉积法气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法温度梯度法工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:三、预制体的制备碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯三维编织物:改善层间和垂直面方向性能;如热解炭四、C/C的基体的获得C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂五、预制体和碳基体的复合碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
CC复合材料PPT优秀资料

成型方法很多,其工艺过程大致归纳为以下几种方法: 2 C/C复合为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树
脂或沥青经碳化或石墨化制得。
C/C复合材料且质量小、刚性好,并且是极耐高温的材料,其强度随温度升高而增加,在2500℃达到最大值,同时它有良好的抗烧蚀
性能和抗热震性能,是宇航中非常重要的材料,例如作为导弹的鼻锥体。
C树/脂C复浸合渍材碳料是的经纤基高体温维前生与驱成体的树,脂通常预产浸碳率料较高,但难以石墨化热,压且电制阻坯率高,热导率差,最终碳生成化的石墨为各向异C性/的C。复合材料
基体材料分为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树
热解碳原料来源丰富,质量可靠,品种多,且成本低, 选材范围广。
9.2 C/C复合材料的制备
成型方法很多,其工艺过程大致归纳为以下几种
方法: 树脂浸渍碳是经高温生成的,通常产碳率较高,但难以石墨化,且电阻率高,热导率差,最终生成的石墨为各向异性的。
沥青浸渍碳通常于低压或常压下残余碳,因而产碳率较低,但易于石墨化,最终生成的石墨为各向同性的,其电阻率低,热导性好,
模量高。
碳纤维成型物(碳毡、碳布、碳纤维缠绕、碳纤维多向编织物)
热解碳原料来碳源丰纤富维,质成量型可靠物,(品种碳多毡,且、成本低,选材范围广。
CVD渗透
碳但纤是维 C/C成复型合物材碳(料碳布不毡能、、在碳碳氧布化纤、性碳维气纤氛缠维中缠绕耐绕受、、高碳温纤,维因多此向关编于织C物/C)复合材料的抗氧化研究是一个重点内容。 热解碳原料来碳源丰纤富维,质多量向可靠编,织品种物多),且成本低,选材范围广。
cc复合材料

cc复合材料
CC复合材料。
CC复合材料是一种由两种或两种以上不同性质的材料组合而成的新型材料,
具有优异的综合性能,被广泛应用于航空航天、汽车制造、建筑工程等领域。
它的出现不仅提高了产品的性能和质量,还大大降低了生产成本,具有广阔的发展前景。
首先,CC复合材料具有优异的机械性能。
相比于传统材料,CC复合材料的强
度和刚度更高,同时具有较低的密度,因此在航空航天领域得到了广泛应用。
它不仅可以减轻飞机、火箭等载具的重量,还能够提高其飞行速度和燃油效率,降低运行成本,为航空航天事业的发展做出了重要贡献。
其次,CC复合材料具有优异的耐腐蚀性能。
在海洋工程、化工设备等领域,
材料常常需要长期暴露在潮湿、腐蚀性环境中,传统材料容易受到腐蚀而失效,而CC复合材料能够很好地抵抗腐蚀,保持稳定的性能,因此在这些领域有着广泛的
应用前景。
另外,CC复合材料还具有优异的导热性能和电磁性能。
在电子产品、通信设
备等领域,要求材料具有良好的导热和屏蔽性能,以保证设备的正常运行和通信质量,而CC复合材料能够满足这些要求,因此在这些领域也有着广泛的应用。
总的来说,CC复合材料具有优异的综合性能,被广泛应用于各个领域,为相
关行业的发展带来了巨大的推动力。
随着科技的不断进步和材料工艺的不断改进,相信CC复合材料的应用领域会越来越广,性能会越来越优越,为人类创造出更多
的奇迹。
cc复合材料

(3)涂层与基体碳之间要能良好结合,形 成较高的结合强度,对多层涂层来说, 各层之间也要有良好的结合强度,以免 分层或脱落;
(4)涂层与基体、涂层的各层之间的热膨 胀系数要尽可能接近,避免在较大的热 应力作用下涂层出现裂纹或剥落;
碳/碳复合材料
碳/碳复合材料的端头帽 碳/碳复合材料加工件
1.碳碳复合材料特性及性能
1.1碳碳复合材料特性 C/C复合材料是新材料领域中重点研究和开发 的一种新型超高温材料,它具有以下显著特 点:
(1)密度小(<2.0 g/cm ),仅为镍基高温合金的 1/4,陶瓷材料的1/2,这一许多结构或装备 要求轻型化至关重要。
3.1内部抗氧化技术 该化技术是从两方面来解决C/C 复合材料的
抗氧化问题。 (1)改进纤维的抗氧化问题。纤维抗氧化性能 的提高手段有两种,一是提高纤维的石墨化度, 从而提高纤维的抗氧化性;另一种方法是在纤 维的表面进行涂层,使纤维得到保护。
(2)提高C/C 材料基体的抗氧化性。可以通过 加入氧化抑制剂的方法来提高C/C 材料基体的 抗氧化性,如加入含磷化合物等,通过磷与氧 的作用,使氧失去氧化活性,从而达到抗氧化 的目的,但效果并不理想。另外一种方法是在 基体中加入抗氧化组分,如重金属、陶瓷等可 以提高C/C 复合材料的抗氧化性;还可以在基 体中加入有机硅、有机钛等,使基体C被SiC和 TiC取代,也可达到抗氧化的目的。
2.1.2 热梯度式(差温式)CVD技术 将热梯度式CVD技术应用于碳刹车盘的制备, 其基本思路是在碳盘工件的径向(而不是厚度
方向)形成温度梯度,并通过压差使碳源气逆 温度梯度定向流动,从而提高了增密速度。并 研究了温度、气氛压力及其流量等参数对CVD 增密过程的影响。发现当温度、气氛压力搭配 合理时,热梯度式CVD增密效果大大优于均温 式,总致密时间仅为相应均温式的1/3。若在差 温式CVD基础上实现差温-差压式CVD可进一步 改善CVD增密效果。
CC复合材料

用于叶片和活塞, 可明显减轻重量, 提高燃烧室的温度, 大幅度提高热效率。
涡轮发动机
4.内燃发动机
发动机活塞和活塞环; 高性能密封材料
C/C复合材料因其密度低、优异的摩 擦性能、热膨胀率低,从而有利于控 制活塞与汽缸之间的空隙,目前正在 研究开发用其制活塞。
浸渍热固 性树脂
碳化、 墨化
通入HC化 合物气体
加热分解、 沉积
化学气相沉积法
C/C复 合材料
立式化学气相沉积炉
C/C复合材料的展望
今后将以结构C/C复合材料为主,向功能和多功能C/C复 合材料发展;
在编制技术方面:由单向朝多向发展; 机械针织技术方面:由简单机械向高度机械化、微机化
和计算机程控全自动化发展; 应用方面:由先进飞行器向普通航空和汽车、非航天高
C/C复合材料的用途
1.刹车领域的应用
C/C复合材料刹车盘的实验性研究于上世纪1973年第一次用于飞 机刹车。一半以上的C/C复合材料用做飞机刹车装置。
1.重量轻、耐温高 2.比热容比钢高2. 5 倍 3.同金属刹车相比可节省40 % 的结构重量 4.碳刹车盘的使用寿命是金属的5~7倍 5.刹车力矩平稳,刹车时噪声小
C/C复合材料在偏光下 的三种基本显微结构
C/C复合材料的性能
1.高温性能好:耐烧蚀 (3000℃ );耐高温(升华温度 3800℃);强度随温度的升高不降反升的独特性能,使其作为 高性能发动机热端部件和使用于高超声速飞行器热防护系统。 2.低比重、高比强、高比模、低热膨胀系数。 3.耐热冲击、耐烧蚀、耐含固体微粒燃气的冲刷。 4.质量轻,密度为1.65-2.0g/cm3,仅为钢的四分之一。
CC复合材料的制备及方法

C/C复合材料的制备及方法地点:山西大同大学炭研究所时间:5.31——6.3学习内容:一、C/C复合材料简述C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术化学气相沉积法气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法温度梯度法工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:三、预制体的制备碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯三维编织物:改善层间和垂直面方向性能;如热解炭四、C/C的基体的获得C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂五、预制体和碳基体的复合碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
cc复合材料

沉积碳
沉积碳是含碳的烷,烯, 炔类有机化合物前驱体,经 热解后沉积在预制体碳纤维 上的碳。 在C-C复合材料中采用 CVD/CVI工艺时,多采用 的CVD碳的前驱体多为甲烷 丙烷,乙烯,丙烯或乙炔,有 的还采用天然气作为前驱体。 在液相气化CVD(CLVD) 则采用煤油等含碳前驱体。
沉积碳
沉积碳是通过CVD/CVI将热解碳沉积在预制体碳纤维表面,并不断沉 积增厚。CVD/CVI工艺原理可有以下过程:
* 预制体(preform,或预成型体)是采用编织方式成 2维,3 维或多维,带30%~70%孔隙的碳纤维层,板,体等形状。 也可以用浸渍树脂或沥青的碳纤维直接进行编织。有些是 采用编织好的层状(2维)或碳毡迭层,并在Z向进行穿刺 制成碳纤维预制体。
总之,C-C复合材料的性能,形状取决于预制体的形状和 碳纤维的分布方式。
压力梯度工艺:
压力梯度 CVD工艺是利用反应气体通过预制体时的强制流动,预制体对流动 气体产生阻力,在预制体上下,内外形成压力梯度。
工艺特点: 随着反应气体压力的增加,扩散速度及反应速度加快,沉积速度加快
孔隙开口端由于气体流动加快后,不易密封,并随着孔隙沉积碳的不断沉积 填充,预制体上下,内外的压力梯度增大
应用及发展
碳/碳复合材料由于其独特的性能,已广泛应用于 航空航天、汽车工业、医学等领域,碳碳复合材 料的发展主要受宇航工业发展的影响。它具有高 的灼烧热,低的烧蚀率抗热冲击和超热环境下具 有高强度等一系列优点,被认为是一种高性能的 的烧蚀材料。 除此之外,还广泛应用于汽车工业,医学等领域。
碳碳复合材料坩埚
等温法 压力梯度法 温度梯度法 化学液气相沉积法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 C/C复合材料的特性
C/C复合材料的性能与纤维的类型、增强方 向、制造条件以及基体碳的微观结构等密 切相关。
力学性能 热物理性能 烧蚀性能 化学稳定性
6.2.1 力学性能
➢ C/C复合材料强度与组分材料性质、增强材料的 方向、含量以及纤维与基体界面结合程度有关;
室温强度和模量
一般C/C:拉伸强度>270GPa、弹性模量>69GPa 先进C/C:强度>349MPa,其中单向高强度C/C可 达700MPa。(通用钢材强度500~600MPa) 高温力学性能:室温强度可以保持到2500℃,在 1000℃以上时,强度最低的C/C的比强度也较耐热 合金和陶瓷材料的高,是当今在太空环境下使用 的高温力学性能最好的材料。
材料的发展与需求相联系
耐烧蚀材料需求:飞船返回舱和航天飞机 的鼻嘴最高温度分别为1800 ℃和1650℃。 C/C 具有高烧蚀热、低的烧蚀率、抗热冲击 和超热环境下具有高强度等优点。可耐受 10000℃的驻点温度,在非氧化环境下可保 持在2000℃以上。是再入环境中高性能的 理想烧蚀材料。
高温耐磨材料需求:C/C是唯一能在极高温 度下使用的摩阻材料,且密度仅为1.7~1.9。
碳的氧化催化剂;
当C/C用来制造飞行器烧蚀部件时,飞行器飞行过 程中由于热烧蚀而在尾部形成含钠离子流,易被 探测和跟踪,突防和生存能力受到威胁。
制造C/C的碳纤维碱金属含量要求<100mg/kg,目 前黏胶基碳纤维和PAV基碳纤维(特别是石墨纤 维)碱金属含量均满足要求。碱金属含量 <50mg/kg的超纯碳纤维的研制也正在进行中。
烧蚀性能:在高温高压气流冲刷下,通过材 料发生的热解、气化、融化、升华、辐射等 物理和化学过程,将材料表面的质量迁移带 走大量的热量,达到耐高温的目的。
C/C的升华温度高达3600℃,在这样的高温 度下,通过表面升华、辐射除去大量热量, 使传递到材料内部的热量相应地减少。
表6-1 不同材料的有效烧蚀热的比较
对热应力不敏感:一旦产生裂纹,不会像石墨和 陶瓷那样严重的力学性能损失。
6.2.2 物理性能
热膨胀性能低:常温下为-0.4~1.8×10-6/K,仅 为金属材料的1/5~1/10;
导热系数高:室温时约为0.38~0.45 cal/cm·s·℃ (铁:0.13),当温度为1650℃时,降为0.103 cal/cm·s·℃。
第六章 C/C复合材料
定义:C/C复合材料是以碳(或石墨)纤维 及其织物为增强材料,以碳(或石墨)为 基体,通过加工处理和碳化处理制成的全 碳质复合材料。
C/C复合材料发展; C/C复合材料的特性; C/C复合材料的原材料; C/C复合材料成型加工方法; C/C复合材料应用。
6.1 C/C复合材料的发展
T-50-221-44
X-y向
Z向
1.9
ATJ-5 结晶向 ⊥结晶向
1.83
Байду номын сангаас拉伸强度 24
140
126
39.6
30.5
/MPa
2500
280
231
54.3
43.4
抗拉模量 24
59.4
52.4
11.7
7.8
/GPa
2500 40.9
30.5
11.2
7.4
断裂延伸率 24
0.18
0.2
0.45
0.54
/%
2500
0.2
0.21
2.0
2.2
抗弯强度 /MPa
24 2500
142
42.7
38.2
190
70.4
68.5
•T-50-221-44为三向正交细编C/C复合材料
6.3 C/C用组分材料选择
C/C用碳纤维选择 C/C的基体前驱体
6.3.1 C/C用碳纤维选择
1)碳纤维碱金属等杂质含量越低越好 C/C的一个重要用途是耐烧蚀材料,钠等碱金属是
6.2.4 化学稳定性
C/C除含有少量的氢、氮和微量金属元素外, 几乎99%以上都是元素C,因此它具有和C 一样的化学稳定性。
耐腐蚀性:C/C像石墨一样具有耐酸、碱和 盐的化学稳定性;
氧化性能:C/C在常温下不与氧作用,开始 氧化温度为400℃,高于600℃会严重氧化。 提高其耐氧化性方法—成型时加入抗氧化 物质或表面加碳化硅涂层。
石墨:具有耐高温、抗热震、导热好、弹 性模量高、耐磨、化学惰性以及强度随温 度升高而增加等性能,是优异的适合于惰 性气体环境和烧蚀环境的高温材料。但韧 性差,对裂纹敏感。
C/C复合材料:以碳纤维增强碳基体的C/C 复合材料。它除能保持碳(石墨)原来的 优良性能外,又能克服它的缺点,大大提 高了韧性和强度,降低了热膨胀系数,尤 其是因为相对密度小,具有很高的比强度 和比模量。
比热高:其值随温度上升而增大,因而能储存大 量的热能,室温比能约为0.3 kcal/kg·℃(铁: 0.11),1930℃时为0.5 kcal/kg·℃。
密度:<1.7~1.9;
熔点:4100℃。
耐磨性:摩擦系数小,具有优异的耐磨擦磨损性 能,是各种耐磨和摩擦部件的最佳候选材料。
6.2.3 烧蚀性能
6.2.5 其他性能
生物相容性好:是人体骨骼、关节、颅盖 骨补块和牙床的优良替代材料;
安全性和可靠性高:若用于飞机,其可靠 性为传统材料的数十倍。飞机用铝合金构 件从产生裂纹至破断的时间是1mim,而 C/C是51mim。
表6-2 C/C与宇航级石墨ATJ-S性能比较
性能 密度
温度 ℃ 24
2)对性能要求
采用高模量中强或高强中模量碳纤维制造 C/C不仅强度和模量的利用率高,而且具有 优异的热性能。
例如:选用HM(高模量型)MP(中间相) 或MJ系列纤维由于发达的石墨层平面和较 好的择优取向,抗氧化性能不仅优于通用 的乱层石墨结构碳纤维,而且热膨胀系数 小,可减小浸渍碳化过程中产生的收缩以 及减少因收缩而产生的裂纹,使整体的综 合性能得到提高。
3)对碳纤维表面处理及界面特性的要求
➢ 碳纤维表面处理对C/C有显著的影响
未经表面处理的碳纤维,两相界面粘接薄 弱,基体的收缩使两相界面脱粘,纤维不 会损伤;当基体的裂纹传播到两相界面时, 薄弱界面层可缓冲裂纹传播速度或改变传 播方向,或界面剥离吸收掉集中的应力, 从而使碳纤维免受损伤而充分发挥其增强 作用,使C/C强度提高。