高速滚动轴承_转子系统动力学特性分析_张强
高速滚动轴承动力学分析模型与保持架动态性能研究

高速滚动轴承动力学分析模型与保持架动态性能研究摘要:高速滚动轴承是工业领域中一种常见的关键部件,其性能对机械设备的精度和寿命具有重要影响。
本文基于高速滚动轴承的动力学分析和保持架的动态性能研究,探讨了高速滚动轴承的工作原理、动力学特性以及保持架在工作过程中的影响。
通过建立合理的动力学模型,结合实验数据进行验证和分析,可以为高速滚动轴承的工程应用提供理论支持和指导。
1. 引言高速滚动轴承作为机械设备中的重要部件之一,广泛应用于航空航天、汽车、机床等领域。
其主要作用是支撑和传递机械设备的载荷,并保持良好的旋转精度。
然而,由于工作环境的复杂性和高速旋转的特点,高速滚动轴承往往面临着较大的动力学问题和疲劳寿命的挑战。
因此,深入研究高速滚动轴承的动力学特性和保持架的动态性能具有重要意义。
2. 高速滚动轴承的工作原理和动力学特性高速滚动轴承的工作原理可以简述为:当外界载荷作用于轴承时,滚动体将承受载荷并传递给滚道,进而使滚动轴承整体旋转。
在该过程中,存在摩擦、磨损和温升等现象,这些都会影响轴承的运动学和动力学性能。
具体来说,高速滚动轴承的动力学特性可以通过以下几个方面来研究:(1) 轴承刚度:轴承的刚度是指在给定载荷下轴承产生的滑动量。
高速滚动轴承的刚度对于维持其旋转精度至关重要,因此需要考虑滚道、滚珠形状的设计以及润滑方式的选择等因素。
(2) 动载荷:轴承在工作过程中承受来自机械设备的动载荷。
这些动载荷会产生往复力和转矩,并且随着时间的变化而变化。
因此,了解轴承在不同工作条件下的动载荷分布对于轴承的设计和选型至关重要。
(3) 摩擦和磨损:高速滚动轴承的摩擦和磨损问题不可忽视。
摩擦和磨损的存在会导致能量损耗和寿命减少。
因此,需要采取适当的润滑方式和材料选择来减少摩擦和磨损。
3. 保持架的动态性能研究保持架作为高速滚动轴承的支撑装置,具有很大的影响力。
保持架的稳定性和刚度对于轴承的运动学和动力学性能至关重要。
含故障滚动轴承-转子系统的非线性动力学分析

含故障滚动轴承-转子系统的非线性动力学分析含故障滚动轴承-转子系统的非线性动力学分析摘要:滚动轴承在转子系统中起着重要的支撑和传动作用。
然而,由于操作条件不良或材料疲劳等原因,滚动轴承可能出现故障,导致转子系统的性能下降甚至发生严重事故。
本文通过对含故障滚动轴承-转子系统的非线性动力学分析,探讨了故障对系统稳定性和振动响应的影响,并提出了相应的改进措施。
1. 引言滚动轴承是一种常见的机械传动元件,广泛应用于各种机械设备中。
在转子系统中,滚动轴承承担着支撑和传动的作用,对系统的性能和可靠性有着重要的影响。
然而,由于工作条件的变化和材料疲劳等原因,滚动轴承可能会出现故障,如疲劳裂纹、卡滞、磨损等,从而导致转子系统的性能下降。
2. 故障滚动轴承的动力学模型故障滚动轴承的动力学模型需要考虑轴承几何形状、材料特性和故障类型等因素。
在本文中,我们以单个滚动轴承为研究对象,将其建模为多自由度系统,考虑了转子和轴承的非线性特性。
3. 故障对转子系统稳定性的影响故障滚动轴承会引起转子系统的不稳定振动,影响系统的稳定性和可靠性。
通过分析系统的特征根和相平面图,可以得到故障滚动轴承的振动特性和稳定性边界。
4. 故障对转子系统振动响应的影响故障滚动轴承的存在将引起转子系统的非线性振动响应。
通过数值仿真和实验分析,可以研究故障滚动轴承对系统振动频谱、幅值和相位的影响。
5. 改进措施为了提高含故障滚动轴承-转子系统的稳定性和可靠性,可以采取以下改进措施:①改善润滑条件,减少摩擦和磨损;②使用可调节补偿机构,自动调整轴承间隙;③监测和检测系统的工作状态,及时发现和处理轴承故障。
6. 结论通过对含故障滚动轴承-转子系统的非线性动力学分析,可以得到故障对系统稳定性和振动响应的影响规律。
在实际应用中,我们应该重视滚动轴承的工作状态和健康监测,及时采取合理的预防和维护措施,以确保系统的安全稳定运行。
7.综上所述,故障滚动轴承对转子系统的稳定性和振动响应产生重要影响。
滚动轴承-转子系统动力学特性分析

T e r s l h w t a : h oai nfe u n y o oo l y x ssi h y tm ,te v r ig si n s e u n yo u ・ h e u t s o h t T e rt t q e c f trawa s e it te s se s o r r n h ay n t f e sf q e c fs p f r
i g g o t c p a tr n r i g c n i o so h y a c c a a trsiso e rn n e me r a mee s a d wo kn o d t n n te d n mi h ce t f ai g— r trs se a ea ay e . i r i r i c b oo y tm r n l z d
径 向载荷的增大而增强 ; 在一个最佳转速 区间 , 存 在此区 间内 , 系统的非线性特性较弱。 关键 词 : 滚动轴承 ; 转子系统 ; 动力学特性 ; 动频 率 ; 刚度振 动 转 变
中 图分 类 号 :H13 3 ;H17 1 T 3 .3 T 1 . 文 献 标 志码 : A 文 章 编 号 :00—36 ( 0 2 1 00 — 6 10 7 2 2 1 ) 0— 0 1 0
C N4l一1 4 / H 18 T
0 墨 Q 鱼 Be rn 0 2 No. 0 璺 = Z 轴承 g2 1年 1期 a i 21 0 2, 1
1—6. 2 4
●产 品设 计与 应 用
滚 动 轴 承 一转 子 系统 动 力 学 特 性 分析
魏彬 李建 华 邓 四二 , ,
b ain fe u n y c mp n n s e it g i e s se a e c n t n e a d e so e c a g f o v u v t r a i sC — r t r q e c o o e t x si n t y t m r o sa t g l s ft h n e o o ec r au e r du O o n h r r h r g efce t fi n ra d o trrn s t e n n i e r y o e s se i we k n d w t h n r a e o aln mb r n r ・ f in s o n e n u e g ;h o l a i f h y tm s a e e i t e i c e s fb l u e sa d p e i i n t t h la o c n n a c d w t ei c e s f a i o c ;h r n o t l oain s e d z n ,nwh c en n i e r o d f r ea d e h n e i t n r a e o d a f r e t e e i a p i hh r l s ma rt t p e o e i ih t o l a - o h n
机械工程中滚动轴承的动力学分析与优化设计

机械工程中滚动轴承的动力学分析与优化设计引言:滚动轴承在机械工程中扮演着重要的角色,广泛应用于各个领域,如汽车工业、飞机制造和工业设备等。
滚动轴承的性能对于机械设备的运行稳定性和效率具有重要影响。
本文将针对滚动轴承的动力学分析与优化设计展开讨论。
1. 滚动轴承的工作原理滚动轴承通过滚珠或滚柱在内外圈之间滚动,从而减小了摩擦和阻力,使机械设备的转动更为平稳。
滚动轴承的工作原理基于滚动接触而不是滑动摩擦,因此具有更低的摩擦损失和更高的效率。
2. 滚动轴承的动力学分析方法在滚动轴承的设计与分析过程中,动力学分析方法是至关重要的。
其中一种常用的方法是基于有限元分析,通过建立轴承的数学模型,分析其在不同工况下的应力和变形情况。
另外,还可以采用实验验证的方法,使用测试设备对滚动轴承进行动态载荷测试,以获取其在实际工作中的性能参数。
这些参数可以用于验证数值分析结果和评估轴承的可靠性。
3. 滚动轴承的优化设计滚动轴承的优化设计旨在提高其性能和寿命。
一种常见的优化方法是通过优化轴承结构和减小摩擦损失来提高轴承的效率。
在轴承结构优化方面,可以通过优化内、外圈的几何形状、滚珠或滚柱的数量和分布等参数来提高轴承的刚度和承载能力。
同时,减小摩擦损失也是提高轴承效率的关键。
例如,可以采用更好的润滑方式、改进润滑油的性能以及优化轴承材料的表面处理等方法来减小轴承的摩擦损失。
4. 滚动轴承的故障分析与预测在机械设备运行过程中,轴承故障是一个常见的问题,会导致设备停机和生产损失。
因此,进行轴承故障分析和预测具有重要意义。
通过对轴承运行状态的监测和振动信号的分析,可以判断轴承是否存在异常,并提前采取维护措施。
此外,还可以使用有限元分析和数值模拟方法,模拟轴承在不同故障模式下的动态响应,为故障诊断提供依据。
5. 结论滚动轴承在机械工程中具有重要地位,其动力学分析与优化设计对于提高机械设备的性能和可靠性起着关键作用。
通过动力学分析方法可以得到滚动轴承在不同工况下的应力和变形情况,为轴承结构的优化设计提供依据。
高速滚动轴承动态性能分析的研究进展探析

高速滚动轴承动态性能分析的研究进展探析摘要:本文基于高速滚动轴承动态性能分析理论基础,通过建立动力学有限元模型,对轴承动态等效应力、速度特性和振动特性等研究进展进行综合探析,分析目前研究中不足和进展,不断提升轴承产品质量,从而满足我国工业发展对高性能滚动轴承的高质量需求。
关键词:高速滚动轴承;动力学;动态特性分析;研究进展随着我国航空航天和装备制造业蓬勃发展,对其中关键零件滚动轴承的精度、性能、寿命、可靠性等提出了更高要求,尤其动态性能对保持架稳定性的控制,成为人们关注重点和主要研究方向。
在这其中,保持架不稳定或者断裂是高速滚动轴承动态性能失效的一个主要形式。
本文对高速滚动轴承动态性能分析的研究进展进行深入探析,了解润滑剂损失、保持架稳定涡动机理、磨损零件几何参数变化等因素造成的影响,探寻优化保持架动态性能措施。
1高速滚动轴承动态性能分析理论基础高速滚动轴承是机械装置中传递运动和承受负载重要支撑零件,主要通过滚动体和内外滚道之间的滚动接触支撑旋转部件,在我国航空航天、数控机床、国防技术等领域广泛应用[1]。
但同时,滚动轴承也是引发机械设备故障失效主要因素之一,有超过30%的机械设备故障原因为轴承故障,高速滚动轴承故障将进一步增加轴承振动频率,倘若不及时发现和排除故障,很有可能引发重大设备故障。
高速滚动轴承有轴承内/外圈、滚动体和保持架组成,整体结构看似简单,实际上包含复杂耦合关系和接触关系,且轴承工作条件和工作用途不同,轴承结构也会适当变化[2]。
滚动轴承性能指标主要有刚度、摩擦力矩、振动、最小油膜厚度、噪声、轴承发热等,均会因温升、磨损、润滑和摩擦等因素,导致高速滚动轴承出现磨损失效、接触疲劳失效、断裂失效、腐蚀失效、胶合失效、压痕失效、间隙变化失效故障,导致轴承性能退化。
由此可知,高速滚动轴承的失效与轴承发热状态、接触应力及润滑状态之间的关系,为后续分析高速滚动轴承动态性能提供理论依据。
2高速滚动轴承动态性能分析高速滚动轴承是我国高精度数控机床主轴传动系统重要组件,其性能及运行状态直接影响数控机床整体运行性能和工作效率,一旦主轴运转速度过高,就会引发轴承滚动体和滚道接触应力、形变的改变,继而对主轴运行状态造成影响。
高速滚动轴承动态性能分析的研究进展

拟静力学模型 、拟 动力学模 型和动力 学模 型。最早的滚动轴承静力 滚子轴承做 了一系列的动力学研究 ,建立 了全 自由度的轴承元件动
学模 型是 Stribeck应用 Hertz理论 建立 的球 轴承静 力分析 模型 ,由 力学模型嘲,系统地研究 了滚动轴承动力学 的时变性 能。1985年 P.
对滚 动体转速 引起 的离心力和 陀螺力矩进行 了考 虑存并 提 出了套 滚动轴承 的仿 真研 究是随着轴承力学模型 的发 展 同步前进 的。
圈控制理论 ,基于此建 立的球轴 承拟 静力学分析模型对滚动体 的载 A.B.Jonestsl于 1960年首 次编写计算机程序对轴承载荷分 布 、刚度 以
发展到拟动力学分析阶段 。随后 ,在近 3O年 的时间里 ,拟动力学分 不 断 完 善 ,拟 静 力 学 方 针 软 件 也 在 不 断 升 级 ,2002年 J.v.
析模 型不 断完善并获得 了广泛应用 ,但是 由于拟动力学将差 分代 替 Poplawski等开发出了 目前 为止 最完善 的拟静力学分析软件 COBRA
关键词:滚动轴承:动 态性 能;仿真分析
工作在高速重载工况 下的滚动轴承常出现提前失效 ,通过对其 学 问 题 。
失效形式 统计 发现轴 承承载性能 和动 态稳定性是 导致 轴承 提前失 为 了模拟轴承运转过程 中的时变性能 ,研 究轴承 的瞬态动力学
效的主要原因 。为准确预测轴承的动态性能 ,轴承动力学分析是必 行为 ,轴承 的拟动力学分析模型逐渐被完全动力学分析模 型替代。
预定 的方位 附 近检 测期 间获 得满 意 的通 信效 果 ,就不 需要 进 行 5结 论
360。 盘 旋 飞 行 试 验 。
本文依据 CCAR25与 AC25—7A的相关规定 ,及 甚高频系统 的
高速滚动轴承-转子系统非线性动力特性分析

球轴承中,滚动体与内圈和外圈滚道为点接触,以哈姆洛克
来稿日期:2019-02-17 基金项目:国家自然科学基金项目(E050402/51105187);辽宁省自然科学基金指导计划项目(2019ZD0277);
辽宁省教育厅项目(2017FWDF01);辽宁科技大学创新团队建设项目(601009830) 作者简介:李 昌,(1980-),男,辽宁凌源人,博士研究生,副教授,主要研究方向:机械可靠性工程;Fra bibliotek1 引言
随着高铁和航空航天等技术领域迅猛发展,滚动轴承作为关 键支承部件,对其研究也不断地深入。目前,对高速滚动轴承—转子 系统的非线性动力学特性研究已经取得了一定的成绩。文献[1]建立 了滚动轴承转子系统的不平衡—碰摩耦合故障动力模型,分析了 转速、轴承间隙、碰摩刚度等对系统动力响应的影响。文献[2]建立 了考虑径向内间隙的滚动轴承—平衡转子动力学方程,研究不同 间隙的分岔和混沌等特性。文献[3-4]以滚动轴承—Jeffcott 刚性转子 系统为研究对象,建立其动力学方程并研究系统的动力学特性。 文献[5]以陀螺仪滚动轴承—转子系统为研究对象,通过求解系统
粤遭泽贼则葬糟贼:A nonlinear dynamic equation is established for the high speed rolling bearing -rotor system,considering some nonlinear factors,such as oil film,radial clearance,nonlinear bearing force,and so on. A fter that,bifurcation diagrams,phase diagrams,axes contrails,Poincar佴 maps and frequency spectrum diagrams are gained at the different parameters by the RungeKutta algorithm. A t the same time,the influence of speed and damping on its nonlinear vibration displacement is analyzed. The results show that system vibration cycle increases or decreases in sequence,with the increase of speed. A nd there is no violent change. System has parametric vibration,forced vibration and coupling vibration. The small damping system occurs chaos phenomenon and is not stable. On the contrary,the big damping can restrain nonlinear vibration,and system occurs violent change and is relatively stable. The stability of system can effectively improved by selecting reasonable damping and speed. Key Words:Rolling Bearing;Rotor System;Oil Film;Nonlinear Dynamic Characteristics;Runge-Kutta Algorithm
迷宫密封-滚动轴承-悬臂转子系统非线性动力学特性分析

迷宫密封-滚动轴承-悬臂转子系统非线性动力学特性分析作者:罗跃纲王鹏飞王晨勇徐昊来源:《振动工程学报》2020年第02期摘要:對于带有迷宫密封的航空发动机转子系统气流激振问题,基于有限元理论,应用非线性滚动轴承支承力模型以及Muzynska密封力模型建立了两个滚动轴承支承的迷宫密封一悬臂转子系统动力学模型,并运用Newmark-β数值积分法求解得到系统在不同转速、偏心量和密封结构参数下的动力学响应特征。
研究结果表明,系统在一定转速范围内作周期一运动,随着转速的升高系统发生失稳并作拟周期运动;适当增大偏心量会导致转子在共振区出现偏心力所引起的短暂的混沌运动;增大密封间隙会使系统在高转速区重新回归周期一运动,而且失稳区域也随之减小;适当提高密封长度,系统仅表现为周期一运动,但继续增大密封长度,悬臂端承受密封圆盘的重量也将提高,失稳转速提前;另外还分析了失稳转速和密封力的影响因素及其影响规律,为转子系统的密封激振故障诊断及密封结构优化设计提供一定的理论依据。
关键词:非线性振动;悬臂转子系统;迷宫密封;密封力;有限元中图分类号:0322;0347.6文献标志码:A 文章编号:1004-4523(2020)02-0256-09DOI:10.16385/ki.issn.1004-4523.2020.02.005引言迷宫密封是普遍安装在现代航空发动机、汽轮机等旋转机械结构中的有效封严结构,它作为一种非接触式密封,具有结构简单、耗能小、使用寿命长、无需润滑等特点,其作用是减少轴端与各级问的流体泄漏损失。
对于带有迷宫密封的转子系统,由于工作转速的提高、转子柔性增大和高参数密封致使密封激振作用极易发生,并导致转子失稳。
因此,为加强该类系统的运行稳定性与工作安全性,研究含有密封激振力作用下的转子系统动力学特征并分析一些典型参数影响规律有着重要的意义。
多年以来,国内外许多专家学者在含有密封的转子动力学领域作了大量研究,比如在求解密封动力特性系数并分析其影响因素方面,wang等通过应用单控制体模型及摄动法对含有迷宫密封的转子系统进行动力学建模并对其进行计算;文献[2-3]利用cFX-TAscflow流体动力学软件计算了密封转子动力系数,并研究了它的影响因素等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学特性进行了分析,得到阻尼系数的变化对轴承-转子系统动力学特性的影响.通过分析得出转速越大,刚度
与阻尼值的变化周期越短,而轴承-转子系统的动力学特性随阻尼增大成非线性减弱.
关键词:高速滚动轴承;轴承-转子;刚度-阻尼;非线性;动力学特性
中图分类号:TH 133.33
文献标志码:A
文章编号:1008-0562(2016)06-0630-06
1 滚动体与轴承接触刚度-阻尼变化
机器运转时,滚动轴承-转子系统常常发生振 动.不同工况条件下滚动轴承的润滑状态会引起轴
钢球与轴承的内外圈同时接触时,钢球法向直 径方向的两端形成了两个点接触副,各个接触副都
收稿日期:2015-03-31 作者简介:张强(1980-),男,辽宁 岫岩人,博士,教授,主要从事采掘机械结构设计及可靠性分析等方面的研究. 本文编校:焦丽
辽宁工程技术大学(自然科学版)网址:http://202.199.224.158/ /
第6期
张 强,等:高速滚动轴承-转子系统动力学特性分析
631
可以表示成图 1 中所示的弹簧-阻尼模型,两个接触 副等效的刚度-阻尼系数通过串联的方式转换为钢 球与内外圈同时接触时的刚度-阻尼系数,见图 1.
高速滚动轴承-转子系统动力学特性分析
张 强,李子顺
(辽宁工程技术大学 机械工程学院,辽宁 阜新 123000)
摘 要:为研究高速滚动轴承-转子系统的非线性动力学特性,分析了高速滚动轴承刚度和阻尼参数的推导方式,
得到滚动轴承刚度-阻尼值的变化与轴承滚动体的位置角的关系,及其变化幅与转速的关系;并对轴承-转子系统
kj
(ω
→
0)
=
⎛ ⎜ ⎝
1 k1
+
1 k2
⎞−1 , ⎟ ⎠
(4)
c
j
(ω
→
0)
=
c1k22 + c2k12
(k1 + k2 )2
.
(5)
(2)激励频率很高时, (ω → ∞) ,则有
k
j
(ω
→
∞)
=
k1c22 + k2c12
(c1 + c2 )2
,
(6)
cj
(ω
→
∞)
=
⎛ ⎜ ⎝
1 c1
+
1 c2
对于运转的滚动轴承而言,同一个钢球在轴承 运转过程中与内外圈接触的刚度-阻尼随时间变化. 对于轴承中某一钢球来说,保持架旋转一圈,该钢 球分别经历了非承载区域和载荷随位置变化承载 区域,滚动体在轴承的位置见图 2,其中 Φ 为滚动 轴承在图中坐标系中承载滚动体的分布角度.
图 2 滚动轴承坐标
Fig.2 rolling bearing coordinates
如图 3 所示为单个钢球在滚动轴承运转过程 中在承载区域与内外圈接触时刚度-阻尼系数随滚 动体位置变化的曲线,图 3 中分别考虑了径向游隙 为 0 μm 和 25 μm 时,在径向载荷为 43 300 N、转 速为 419 rad/s 时的刚度-阻尼在承载区域的分布.图 中可以看出轴承中钢球不同位置角度时刚度-阻尼 系数不同,其中在 0°位置处,钢球与内外圈滚道接 触的刚度-阻尼系数最大.同时不同游隙下,刚度-阻 尼起始的位置不同,在游隙为零时,刚度-阻尼的起 始位置为正负 90°,而在径向游隙为 25 μm 时,刚 度-阻尼的起始位置减小,变为±85°.不同游隙下刚 度-阻尼在起始位置处的值均为最小.
Fig.3 along with change of rolling element position change
of stiffness damping coefficient
图 4 为径向游隙为 0 μm,径向载荷为 43 300 N 时,钢球 0°位置处的刚度阻尼随轴承转速的变化, 图中可以看出,随着轴承转速的增大,点接触刚度 -阻尼均在减小,其中刚度的减小近似为线性,而阻 尼则是随着转速的增大而逐渐减小.从图 3 中可知 在 0°位置处(即沿径向力的方向)的刚度和阻尼最 大,其主要原因是在该位置处,滚动体承受的载荷 最大,相应的变形也最大,导致接触面积最大,接 触面积增大引起了刚度和阻尼的增大.滚动体在不 同的位置,承受的载荷不同,相应的刚度阻尼也因 此不相同,在不考虑游隙及轴向载荷,轴承仅承受 径向力的情况下,轴承中承受载荷的滚动体仅仅为 下半圆周,即滚动体的方位角的取值范围为 180°. 在该范围内,滚动体的承载能力从小变大再由大变 小,刚度曲线的变化也反映出了滚动体承载能力随 位置角的变化情况.
Analysis of dynamic characteristics for high
speed rolling bearing- rotor system
ZHANG Qiang, LI Zishun (College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China) Abstract: In order to research the nonlinear dynamics characteristic of the high speed rolling bearing-rotor system, this paper firstly analyzed the derivation of high-speed rolling bearing stiffness and damping parameters, obtained the change of the rolling bearing stiffness-damping value relations with the position of the rolling element bearing angle, and stiffness-damping value amplitude relations with speed. Then a detailed analysis of the influence of roll bearing-damping on the dynamic characteristics of bearing-rotor system was performed, and the influence of damping coefficient for the bearing-rotor system dynamics characteristics were obtained. Through the analysis, this study concluded that the greater change of rotating speed, the shorter the stiffness and damping values cycle amplitude, and bearing-rotor system dynamic characteristics nonlinear is weakened with the increase of damping. Key words: high speed rolling bearing; bearing-rotor; stiffness-damping; nonlinear; dynamic characteristics
⎞2 ⎟ ⎠
阻尼系数为
c1 + c2
.(3)
cj
=
⎛ ⎜ ⎝
k12
k1 + ω2c12
+
k22
k12 + ω2c12 k22
k2 + ω2c22
⎞2 ⎟ ⎠
+ ω2
⎛ ⎜ ⎝
+ ω2c22
c1 k12 + ω2c12
+
k22
c2 + ω2c22
⎞2 ⎟ ⎠
对上述刚度—阻尼系数进行讨论可得
(1)激励频率很低时,(ω → 0) ,则有
3 2.205
2.200 2
2.195
0°位置处的刚度-阻尼值则随着径向游隙的增大而不 断近似成线性的增大.其主要原因是,随着滚动轴承径 向游隙的增大,轴承载荷的分布范围越来越小,在径 向载荷不变的情况下,意味着更少的滚动体承担相同 的载荷,则每个单独的钢球承载的载荷增大,导致最 大载荷随着游隙的增大而逐渐增大,最终 0°位置处的 刚度-阻尼值增大.
1 + iωc1
+
k2
1 + iωc2
⎤2 ⎥ ⎦
,(1)
将式右边展开整理得刚度为
k1 + k2
,(2)
kj
=
⎛ ⎜ ⎝
k12
k1 + ω2c12
+
k22
k12 + ω2c12 k22
k2 + ω2c22
⎞2 ⎟ ⎠
+
ω2
⎛ ⎜ ⎝
+ ω2c22
c1 k12 + ω2c12
+
k22
c2 + ω2c22
轴承-转子系统动研究大
多基于线性动力学理论,对轴承-转子系统的稳定性 和幅频特性进行研究.但旋转机械系统中许多非线 性因素的存在(如油膜反力,径向游隙等),常引 发诸多非线性动力学现象(如分岔、混沌和跳跃等). 因此需要研究润滑状态下刚度-阻尼的变化对滚动 轴承-转子系统非线性动力学特性的影响.
F
内圈 F
c1
k1
钢球
cj
kj
c2
k2
外圈
图 1 接触副刚度-阻尼模型
Fig.1 stiffness-damping model of contact pair
受简谐力 F 作用时,串联组合的刚度 kj 和阻尼系 数 cj 与角频率有关,并可根据复刚度方程式[2-3]求得