高速电机转子系统动力学特性分析
转子动力学培训 API 学习

叶轮等热套零件的惯性质量对于
转子系统的影响不能忽略,应该考虑
在内。
大部分的电机包括如下附加质量:
1 叶轮,盘; 2 联轴器; 3 轴套; 4 平衡盘; 5 推力头; 特殊的机器还包括:
转子建模的要求:
1 单元宽径比不应该大于1; 2 单元宽径比不应该小于0.1; 第一点为了保证计算精度,第二
点为了保证相邻轴端长度变化过大
引起计算问题。
如果对于某个小特征的建模,不 知道对计算结果是否有影响,则 可以采用两种方式建模计算结果。 如果细小的结构的变化对模型计算 结果有明显的影响,其实也就说明 了转子设计本身就存在缺陷。
无阻尼临界转速分析必须至少包 扩如下输出内容; 1 在运行转速范围内以及超过运行 转速的一阶模态振型图。 考虑高于运行转速临界转速的原因: A 可能存在突然超速; B 由于轴承间隙变大造成临界转速降低;
必须添加一定的不平衡质量 使探针处的振动幅值增加到 如下振动限值。
施加的不平衡量必须大于2倍 公式所示的残余不平衡量。
转子建模对于所有的 工程分析均至关重要。 如果模型建立与实际 存在差别那么再复杂 的分析也是无用的。 建模一般步骤: 1 建立质量弹性模型; 2计算轴承的静态工况参 数(包括齿轮载荷等其他 所有静态载荷); 3 计算油膜轴承的动态参数; 4计算浮环密封的动态参数(如果有) 5计算所有其他激振机理;
转子建模一般采用两周 元素组成,转轴块(圆柱 单元或者圆锥单元),圆盘 单元。 其中的转轴单元既对系统贡献 惯性又贡献刚度,圆盘单元仅 贡献惯性。
对于某些特征不好描叙的转子结构 的建模可以采用有限元分析方法来 考虑转子结构的刚度,再采用等效 刚度的方法建模。
高速永磁电机转子系统临界转速仿真研究

0 引 言
随着航 空、 航 天等领域对永磁 电机功率重量 比
采用 样机 振 动实验 验 证其 计算 方法 的正 确性 。文 献
[ 1 7 ] 建立 3 D有限元模型计算永磁无刷 电机转子系 统 的 固有 频率 , 并 考 虑 陶 瓷轴 承 刚度 对 高 速 电 机 固
有 频 率 的影 响 。
…
一
堕堕 妻 …… 2 0 1 3 . . 兰 兰 - 4 整 塑 ……………………
… … … … … … … … …
…
高速 永磁 电机 转 子 系统 临 界 转 速 仿 真 研 究
关 栋, 杨 小辉 , 刘 更 , 佟瑞庭 , 马 尚君
( 西北工业大学 , 陕西西安 7 1 0 0 7 2 ) 摘 要: 采 用有限元法建立永磁 电机轴承 一 转子系统动力学模 型 , 在考虑转子离心力 和不 平衡磁拉 力 的基 础上
Ke y wo r d s : h i g h - s p e e d P M mo t o r s ; in f i t e e l e me n t me t h o d; c i r t i c a l s p e e d ; g y r o s c o p i c e f f e c t ; b e a r i n g s t i f f n e s s ; s i mu l a t i o n
G U A N D o n g, Y A N G X i a o - h u i , L I U G e , T O N G R u i - t i n g , M A S h a n g - j u n ( N o r t h e w e s t e r n P o l y t e c h n i c a l U n i v e r s i t y , X i " a n 7 1 0 0 7 2 , C h i n a )
基于ANSYS+Workbench的高速电主轴模态分析及其动特性实验

最高转速不能超过其一阶临界转速的75%6。本文研究电
主轴最高转速为l
2 000
将模型自动划分网格后得到主轴有限元模型,如图4
所示二
r/min,远小于一阶临界转速,故该
电主轴有效地避免了共振的发生,工作转速安全。
3模态实验
模态试验是为了确定振动系统的模态参数所进行的 振动试验,包括系统固有频率、阻尼比、振型等。模态试验 通过对给定激励的系统进行测量,得到响应信号,再应用 模态参数辨识方法得到系统的模态参数:本次实验是为了
本文所研究的电主轴为260xDJl2型车铣复合加T 中心用电主轴,如图1所示。该电主轴是新一代机、电、液 一体化的加工中心用高速精密主轴,主要由壳体、主轴、
轴承、定子和转子等零件组成,主轴材料为38CrMoAI.标 图2简化主轴转子模型 根据轴承型号口J.以查出轴承的轴向颁紧力,单个角
接触球轴承预紧后的径向刚度计算公式一为:
平压平模切机肘杆机构特性分析
张天轩,李梦群 (中北大学机械工程及自动化学院,太原030051)
摘要:用机械系统自动分析软件ADAMS建立模切机肘杆机构的虚拟样机并进行仿真分析,得出动平台的竖直方向 行程、速度、加速度以及水平方向的位移和摆动转角的特性曲线。为模切机的开发研究和设计制造提供有益的参考。 关键词:模切机;肘杆机构;ADAMS 中图分类号:TH 69 文献标志码:A
adams0引言adams软件使用交互式图形环境和零件库约束库?库创建完全参数化的机械系统几何模型其求解器采用多刚体系统动?学?论中的拉格朗日方程建立系统动?学方程对虚拟机械系统进?静?学运动我国模切机产品的技术和产业化已经达到较高的水平其主要标志体现在
制造业信息化
盔墨墨墨面墨田墨墨墨互置SZ墨仿■,毽疆,cAD,cAM,cAE,cAPP■■■■●■—●■■●■●■■■■■■■■■—————●■■■■■■—一
高速磁悬浮永磁电机多物理场分析及转子损耗优化

高速磁悬浮永磁电机多物理场分析及转子损耗优化韩邦成;薛庆昊;刘旭【摘要】为提高高速磁悬浮永磁电机的综合性能,得到最优的设计参数,针对一台30 kW,48 000 rpm的磁悬浮电机进行了电磁场、转子动力学以及转子强度分析,提出一种基于多物理场分析结果的电机尺寸优化方法.使用ANSYS以及ANSOFT 对电机进行建模和有限元分析,并用ISIGHT软件进行集成优化设计.以转子损耗最小为优化目标,电机几何尺寸为设计变量,在优化过程中考虑尺寸变化对电机转子模态以及强度的影响,以尺寸、电机电磁性能、力学性能等为约束条件.经过优化后,电机的转子损耗减小16.7%,其余性能均符合设计要求.根据优化设计结果加工了样机并进行电机对拖与温升实验,结果证明了优化设计的合理性,验证了本文提出方法的正确性.%To improve the overall performance of high-speed magnetic suspension PM machine and obtain the optimal design parameters,an electromagnetic filed,rotor dynamics and rotor strength analysis was conducted on a magnetic suspension machine (30 kW,48 000 rpm),and a size optimization method based on such multi-physics analysis was put ed ANSYS and ANSOFT to carry out modeling and finite element analysis on the motor,and then completed the integrated optimization designed by adopting the ISIGHT software,taking the impact of dimensional change on the rotor model and rotor strength into consideration,with the minimum rotor loss as the optimizationgoal,geometric dimension of the motor as the design variable,and dimension,magnetic performance and mechanical performance as the constraint conditions.After such optimization,rotor loss of the motor wasdecreased by 16.7%,with other performances in compliance with the design requirements.Then a back-to-back test and temperature rise test were carried out in the model machine based on the optimization design results.The test results verify the reasonability of such optimization design and correctness of the method put forward in this paper.【期刊名称】《光学精密工程》【年(卷),期】2017(025)003【总页数】9页(P680-688)【关键词】电磁分析;多物理场;高速磁悬浮电机;永磁电机;有限元【作者】韩邦成;薛庆昊;刘旭【作者单位】北京航空航天大学惯性技术重点实验室,北京100191;北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京100191;北京市高速磁悬浮电机技术及应用工程技术研究中心,北京100191;北京航空航天大学惯性技术重点实验室,北京100191;北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京100191;北京市高速磁悬浮电机技术及应用工程技术研究中心,北京100191;北京航空航天大学惯性技术重点实验室,北京100191;北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京100191;北京市高速磁悬浮电机技术及应用工程技术研究中心,北京100191【正文语种】中文【中图分类】TB853.29随着现代工业的发展,对高速永磁电机的应用越来越多,在国防领域有飞轮、控制力矩陀螺,民用领域有空调压缩机[1]、数控机床和高速离心设备等。
转子动力学基本理论

在转速为25%一85%的工作转速范围内, 即3000r/min机组在750—2550r∕min区间,轴系 各轴颈的响应峰峰值应小于0.229mm;
在转速为85%一125%的工作转速范围内, 即3000r∕min机组在2550—3750r/min区间,轴 系各轴颈的响应峰峰值应小于0.076mm。
Wst Wk
A3
A12 A2
1 2
C0
A1
A3
A32 A0 A1 A2 A12 A4
式中 Wst——失稳转速 Wk——转子的临界转速
由此可知,失稳转速比与轴承型式、承载系数和转 子相对挠度有关,若已知转子轴系的临界转速WK,就可 计算失稳转速Wst。 转子失稳表现为下列特点;
(1)振动频率为次同步或超同步; (2)自激振动的频率以转子本身的固有频率为主; (3)振幅可能发生突然急剧增加; (4)振幅的变化与转速或负荷关系密切;
不平衡响应特性决定了转子对已经存在的不平衡量或 运转过程中突然出现的不平衡的响应程度。ห้องสมุดไป่ตู้轴系安全 角度出发,希望这个响应越小越好。α小意味着同样的 不平衡量所造成的转子的振动小,小的不平衡响应,可
以减小动平衡的次数,减少运行中意外事故对设备带来 的不良后果。
和临界转速一样,不平衡响应可以用计算的 方法得到,也可以在现场实测得到。
一,单圆盘转子的临界转速 单圆盘转子加速过程中,当 o c 的时
m
候,转子动挠度S随 的增加而增加。当 接近
c
c
m 的时候,挠度S急剧加大。但是当
高速电主轴的动力学特性研究

0 引言
高速 电主轴 也称 为 电机 内装式 主 轴单 元 ,它具 有 结 构 紧凑 、惯 性小 、转 速高 、动态 特 性好 等诸多 优 点 ,因
足条 件 ( 如结 构 的平衡 条 件)的解 。这 个 解 不是 准 确解 ,
而是近 似解 。由于 大多 数 实际 问题 难 以得 到准确 解 , 而有
V 1 0No 1 o. 。 . 2
J n. 0 a , 07 2
高速 电主轴的动力学特性研究
宋春 明 ,赵 宁 ,张士勇 (西北工业 1 . 大学 机电 学院, 陕西 西安 707; .西理工学院 机械工程学院, 1 22 0 陕 陕西 汉中 73 3 20 ) 0
摘 要 :通过 对 HCB 4 D1 T 0 5型 电主轴进 行 结 构分 析 ,在 A ss中建 立 了相 应 的轴 承~ 主 轴 系统 三 维有 ny 限元模 型 ,采 用 Bo k L n z s 态提取 法计算 了电主轴 的前 5阶 固有频 率和振 型 ,验 证 了该款 lc aco 模
收 稿 日期 :2 0 - 9 2 060—9 作 者 简 介 : 宋眷 明 (9 1 , 男 , 陡 西 汉 中人 ,讲 师 ,在 17 一) 读 硕 士研 究 生 。研 究 方 向 :机 械 系 统 的 计 算 机 辅 助 设 计 ;
承 ,忽 略其 角 刚度 和 轴 向刚度 ,只考 虑 其径 向刚度 ;② 忽略 轴 承负 荷 及转 速 对轴 承 刚度 的影 响 ,视轴 承 刚度 为 定 值 ;③ 将 电 机 的转 子 及 过 盈 套 等效 为 同密度 轴 材料 ,
1 轴 承 一 轴 系统 有 限元 模 型 的建 立 主
11 主轴 部件 的 结构 分析 .
HC T O 5型铣 用 电主轴 的主轴 是一 种 阶梯 轴 ,具 B 4 D1 有 中空 、多支 承 的 特 点 ,如 图 1 同时 ,主轴 承 受 多 种 。 载荷 :主轴 前端 承 受 切削 力 和弯 矩 ,内装 电机转 子 传 递 给 主轴 的转 矩 等 。主 轴在 三组 轴 承支 承 下 高速旋 转 ,因 此 ,该 主轴 是一 个较 复 杂的超 静定梁 结构 。 对 电主 轴来 说 ,其 径 向振 动是 影 响其 动 态性 能 的主 要 因素 。为 了计 算 方 便 ,将其 作 为空 间 弹性 梁处 理 ,并
基于ANSYS的转子动力学分析

Modeling
l
引言
旋转机械被广泛地应用于燃气轮机、航空发动机、工业压缩机以及各种电动机等装置
中,研究转子系统的动力学特性对旋转机械设计、制造、故障诊断、延寿等具有重要的意 义。 在进行转子动力学分析时,人们期望建立分析对象的高保真模型,减少计算模型与实际 问题的差异,获得原物理问题的准确结果。长期以来,转子动力特性计算的解析法、传递矩 阵法、基于梁单元的有限元法¨.21等分析方法,在建立计算模型时均对实际转子系统做出相 当程度的简化,这导致计算模型与实际问题产生较大的差异,并且其分析对象和分析能力有 限,无法对复杂转子结构进行有效的分析;而利用实体单元建模的有限元法则可以对多种复 杂转子结构进行高保真模拟,并考虑各结构间的动力影响,分析计算更加接近实际。 通用有限元程序ANSYS在其1I.0版本中推出了转子动力学计算的功能模块,可以对转 子系统进行实体建模,并考虑实体模型在转动状态下产生陀螺力矩时的动力特性。 本文通过对ANSYS
否
ANSYS粱单元与实体单元转子动力学分析能力
粱
否
实体 是 是 是 是 小 大 大 是 是
是
3应用实例
(1)验证性算例
对参考文献[5]中的简单转子模型进行计算分析,图l所示为建立的实体模型,转子
模型采用sofid45单元建立,端部约束所有自由度,中间支撑处约束径向和周向自由度。材
料属性由参考文献[5]给定。
嘲2转于结构州意罔
现代振动与噪声技术(第8卷 图3是本文建立的转子实体有限元模型。对该转子振动特性的讨论可参见参考文献 6]。
图3转子系统的有限兀模型
4结论
本文对ANSYS中的实体单元转子动力学分析功能及其理论基础进行了介绍,并对AN- SYS中基于梁单元和实体单元的转子动力学分析能力进行了对比。本文中的验证性算例说明 了采用实体单元对转于建模计算的准确性和有效性;扩展性算例则说明了实体单元建模在转
偏心转子的动力学分析和优化设计

偏心转子的动力学分析和优化设计偏心转子是一种重要的机械结构,在机械传动、工具加工、风力发电等领域有广泛的应用。
然而,由于其复杂的结构和动态特性,偏心转子的动力学分析和优化设计一直是一个重要的研究领域。
一、偏心转子的结构偏心转子是由转子和偏振环组成的,偏振环在装配时将转子偏心,从而使得转子相对于轴线产生旋转。
偏心转子的结构如图1所示:图1 偏心转子结构示意图图1中,O为旋转轴,CE为转子长度,DF为偏振环半径,AD为转子直径,BG为偏心量。
二、偏心转子的运动特性偏心转子的运动特性主要包括偏心量、转速、转矩和振动等参数。
1. 偏心量偏心量是偏心转子的一个重要参数,它表示转子相对于轴线的偏移量。
偏心量越大,则转子产生的离心力和振动力也越大,极易产生机械失效。
2. 转速偏心转子的转速是指转子每分钟旋转的圈数,对转子的动态特性有重要影响。
转速过高,会导致转子产生很大的离心力和振动力,从而使得转子产生旋转不稳定和脱落等问题。
3. 转矩偏心转子的转矩是指转子所受的扭矩,它与偏心量、转速、转子质量和惯性等因素有关。
转矩越大,则转子的承载能力和稳定性越差,易产生机械失效。
4. 振动偏心转子的振动是指转子在运转中发生的动态振动,它与偏心量、转速、转子质量和惯性等因素有关。
振动过大,会导致传动系统的噪声、磨损和疲劳损伤等问题,严重影响机械设备的稳定性和安全性。
三、偏心转子的动力学分析为了更好地研究偏心转子的动态特性和稳定性,必须对其进行动力学分析。
偏心转子的动力学分析主要包括以下几个方面:1. 动力学模型建立偏心转子的动力学模型是研究其动态特性和稳定性的基础。
根据传动系统的结构和运动特性,可以建立偏心转子的运动学和动力学方程,进而求解偏心转子的稳定运动状态和振动响应。
2. 稳定性分析偏心转子的稳定性分析是指对偏心转子的稳态转动和失稳状态进行研究。
通过计算偏心转子稳态转动的关键参数,如稳态转速、阻尼和刚度等,判断其是否产生失稳运动,并分析失稳的原因和条件。