乳糖操纵子简介
乳糖操纵子lacoperon

组成型突变: lacOc
目录
组成型突变: lacI-
目录
二 色氨酸操纵子
(一) 色氨酸操纵子的结构与功能 (二) 色氨酸操纵子的阻遏调节系统 (三)色氨酸操纵子的弱化机制
目录
(一) 色氨酸操纵子的结构与功能
1.色氨酸操纵子模型: 由雅各布(Jacob F.)和莫诺(Monod J.)
(Catabolite Activator Protein site)
CAP 变构
CAP变构激活
CAP: 代谢物激活蛋白 目 录
(三)乳糖操纵子调控区的突变效应
已经分离在有诱导物或没有诱导物的情况 下都能产生lacmRNA的突变体,这种失去 调节能力的突变体称为永久型突变体,为 分两类:I型和O型。 I型:野生型为I+,突变型为IO型:野生型为O+,突变型为Oc。
原核生物调控
操纵子是原核生物转录调控的主要形式
操纵子:是基因表达的协调单位, 由启动子、操纵基因及其所控制的一组 功能上相关的结构基因所组成。操纵基 因受调节基因产物的控制。
目录
原核生物 —— 操纵子(operon)
启动子 (promoter)
结构基因
调节基因
操纵基因 (operator)
(1)结构基因:产生mRNA并作为模板合成蛋白质
目录
Trp 操纵子----产物阻遏常规酶的合成
调节基因
操纵基因
结构基因
阻遏蛋白
酶代谢产物一旦大量积累
阻遏蛋白不能与操纵基因结合,所以结构基因表达。 阻遏蛋白被产物激活,结构基因不表达。
mRNA 酶蛋白
目录
二 色氨酸操纵子的阻遏调节系统
调节区
trpR RNA聚P合酶O
乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵基因、一个启动子和一个调节基因。
结构基因能产生一定的酶系统和结构蛋白。
操纵基因控制结构基因的转录速度,位于结构基因和启动子之间,本身不能转录成mRNA。
启动基因也不能转录成mRNA。
调节基因可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白或调节蛋白。
2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
3、CAP的正性调节:CRP是cAMP受体蛋白(cAMP receptor protein),cAMP(环腺苷酸)是细胞内广泛存在的第二信使。
细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解供给能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。
cAMP浓度低,CRP未与cAMP结合,CRP不能被活化,当cAMP浓度升高时,CRP 与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。
CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。
在启动子上游有CAP结合位点(CAP binding site),当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,增强RNA聚合酶的转录活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
乳糖操纵子概述课件

它能够根据环境中乳糖的存在与 合成。
结构
乳糖操纵子包括三个结构基因Z、Y、A,分别编码半乳糖苷酶、半乳糖 苷透酶和半乳糖苷乙酰转移酶。
调节基因I编码一种阻遏蛋白,当阻遏蛋白与乳糖或其类似物结合时,会 阻止RNA聚合酶对结构基因的转录。
药物研发
乳糖操纵子的调控机制为药物研发提供了新的思路,通过研究乳糖操纵子相关 基因的功能和调控机制,有助于发现新的药物靶点,为开发新型药物提供支持。
05
乳糖操纵子的未来展望
乳糖操纵子在生物工程领域的发展前景
生物制药
利用乳糖操纵子构建高表达的基 因工程菌,提高生物制药的产量
和效率。
生物能源
通过优化乳糖操纵子提高微生物对 生物燃料的产量和效率,降低生产 成本。
技术改进
随着基因敲除技术的不断改进,科学 家们能够更精确地研究乳糖操纵子中 单个基因的功能,为深入了解乳糖操 纵子的调控机制提供了有力支持。
乳糖操纵子在基因表达调控中的研究进展
转录水平调控
乳糖操纵子在基因表达调控中发挥着重要作用,通过转录水 平调控,可以调节乳糖操纵子相关基因的表达,进而影响细 菌对乳糖的代谢。
生物肥料
利用乳糖操纵子改良微生物,生产 出具有高效固氮能力的生物肥料。
乳糖操纵子在基因表达调控研究中的发展前景
01
02
03
基因表达机制研究
深入探究乳糖操纵子的工 作机制,为基因表达调控 研究提供更多理论支持。
基因治疗
利用乳糖操纵子实现对特 定基因的表达调控,为基 因治疗提供新的手段。
合成生物学
在合成生物学领域,乳糖 操纵子作为基因表达调控 元件,为构建人工生物系 统提供有力工具。
当环境中没有乳糖存在时,阻遏蛋白会与乳糖操纵子结合,抑制结构基 因的表达。当环境中存在乳糖时,乳糖会与阻遏蛋白结合,使其从操纵 子上解离,从而允许结构基因的表达。
乳糖操纵子名词解释

乳糖操纵子名词解释乳糖操纵子(lactose operation)能合成和分泌乳糖的一类重要细胞,它们分布在不同类型的细胞内。
乳糖操纵子中的酶系有的是糖苷酶,有的是羧酸酯酶,还有一些是复合酶。
目前已发现的操纵子有七种类型,但只有两个编码,不论是催化水解乳糖还是释放乳糖的酶均是如此。
乳糖操纵子分布在所有高等动物组织中,哺乳类有两种:insulin- like autoantibody-抗胰岛素样蛋白4;一种乳糖操纵子,由四个区域组成,分别编码降血糖蛋白4(hypoglycemic-like autoantibody-抗胰岛素样蛋白4),降血糖蛋白5(hypoglycemic-like albumin-抗胰淀粉样蛋白)和乳糖操纵子自身。
此外尚有由insulin- like autoantibody-抗胰岛素样蛋白4(抗-4)与血浆蛋白G、铁蛋白、转铁蛋白结合的复合体,即乳糖操纵子复合体(oligosaccharide-like autoantibody complex-球蛋白操纵子复合体),也可能存在于不同细胞。
其中抗-4分子量为50万,具有与抗-4同源的抗胰岛素样蛋白4抗原决定簇,不受胰岛素影响,当它和其它球蛋白合成后,会结合于巨噬细胞膜上,并被膜内的锌粒子中和,再与巨噬细胞内的受体结合,从而阻断胰岛素与受体结合,进入细胞内的胰岛素失去降血糖作用。
至今只发现一种能降低血糖的操纵子,此种操纵子也称为受体型操纵子。
此种操纵子是位于酪氨酸磷酸酶基因上游,酪氨酸激酶基因下游,有关的其他基因几乎均已克隆。
当激活后,位于上游的酪氨酸磷酸酶基因激活使细胞内游离的酪氨酸浓度增加,酪氨酸水解成磷酸肌醇和磷酸胆碱释放入血液循环中,这将使血糖降低;而酪氨酸磷酸酶则与血清白蛋白结合,阻止白蛋白转运氨基酸,抑制氨基酸通过白蛋白进入血液,也可以抑制外周组织对氨基酸的利用。
该操纵子中的受体称为“受体酪氨酸磷酸酶”。
该操纵子也可能参与葡萄糖和脂肪酸的代谢。
基因调控-乳糖操纵子

乳糖操纵子在生物工程中的优化与应用
乳糖操纵子在生物工程领域具有潜在的应用价值,例如用于构建基因表达调控系统。通过优化乳糖操 纵子的元件和调控机制,可以开发出更高效、更精确的基因表达调控工具。
研究可以探索将乳糖操纵子与其他基因调控机制结合,以实现更复杂的基因表达模式。这种结合可以 为生物工程领域提供更多创新性的解决方案,例如用于生产生物药物、工业酶或改良作物品种等应用 。
特点
乳糖操纵子具有高度的可诱导性,当环境中乳糖浓度升高时,相 关基因的表达水平也随之升高,当乳糖浓度降低时,相关基因的 表达水平也随之降低。
乳糖操纵子的结构与组成
结构基因Z、Y、A
分别编码β-半乳糖苷酶、β-半乳糖苷 透酶和半乳糖苷乙酰转移酶,这些酶 在乳糖代谢中起关键作用。
调节基因I
编码阻遏蛋白,该蛋白可与乳糖操纵 子上的O序列结合,抑制结构基因的 表达。
适应性进化研究
乳糖操纵子可应用于适应性进化研究中,通过研究乳糖操纵子在不同环境下的适应性变化,揭示生物对环境的适 应机制。
05
未来展望与研究方向
乳糖操纵子与其他基因调控机制的关系
乳糖操纵子是原核生物中一种典型的基因调控机制,通过与 阻遏蛋白的相互作用来调节基因的表达。未来研究可以探索 乳糖操纵子与其他基因调控机制之间的相互作用和关系,以 更全面地理解基因表达的复杂性。
乳糖操纵子的功能与作用机制
功能
乳糖操纵子在乳糖存在时表达相关酶, 将乳糖转化为葡萄糖和半乳糖,供细 胞代谢利用。
作用机制
当环境中乳糖浓度升高时,乳糖通过 与阻遏蛋白结合,使阻遏蛋白失去活 性,从而解除对结构基因表达的抑制 作用,使相关酶得以表达。
02
基因调控的原理
基因表达的调控
乳糖操纵子的调控机制及其生理意义500字

乳糖操纵子的调控机制及其生理意义500字乳糖操纵子是一种具有调节功能的序列,位于大肠杆菌及其他一些革兰氏阴性菌的基因组中。
乳糖操纵子包括结构基因lacZYA和调控基因lacI,它们编码乳糖水解酶(lacZ和lacY)和乳糖再press酶(lacA)以及乳糖重pressor蛋白(LacI)。
乳糖操纵子的调控机制主要通过LacI蛋白实现。
当乳糖操纵子中没有乳糖时,LacI蛋白与操纵子区域上的运算子结合,阻止结构基因的转录。
当乳糖存在于环境中时,乳糖会结合到LacI蛋白上,改变其构象,使其无法结合到运算子上,从而释放结构基因的转录抑制,使结构基因lacZYA得以转录和翻译,从而将乳糖水解为葡萄糖和半乳糖,进一步为细胞提供能量和碳源。
乳糖操纵子的生理意义在于适应细菌对碳源的利用。
大肠杆菌等一些革兰氏阴性菌在肠道中生活,这里含有大量的乳糖。
当食物中的乳糖进入细菌细胞时,乳糖操纵子的调控机制可以快速响应并使结构基因lacZYA 转录,从而将乳糖水解为能够被细菌利用的葡萄糖和半乳糖。
这些产物可以作为能量和碳源供细菌生长和繁殖,增加其竞争优势。
此外,乳糖操纵子的调控机制也可通过“诱导剂适应”作用,使细菌能够适应不同浓度的乳糖,并在适宜的乳糖浓度范围内调节转录水平,使能量分配更加灵活和高效。
总的来说,乳糖操纵子的调控机制及其生理意义是适应细菌生活环境中乳糖碳源的利用,促进细菌生长和繁殖,增强其竞争优势。
这一调控机制的精细调节和高效能量利用是细菌生存和繁殖的重要适应策略。
乳糖操纵子

乳糖操纵子乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。
1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。
在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结构基因以LacZ(z),Lac Y(y),Lac A(a)的顺序分别排列在染色体上,在z的上游有操纵序列Lac O(o),更前面有启动子Lac P(p),这就是操纵子(乳糖操纵子)的结构模式。
编码乳糖操纵系统中阻遏物的调节基因Lac I(i)位于和p上游的临近位置。
细菌相关功能的结构基因常连在一起,形成一个基因簇。
它们编码同一个代谢途径中的不同的酶。
一个基因簇受到同一的调控,一开俱开,一闭俱闭。
也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。
乳糖分解代谢相关的三个基因,lacZ、Y、A就是很典型的是上述基因簇。
它们的产物可催化乳糖的分解,产生葡萄糖和半乳糖。
它们具有顺式作用调节元件和与之对应的反式作用调节因子。
三个结构基因图的功能是:lacZ编码β-半乳糖苷酶(β-galactosidase),此酶由500kd的四聚体构成,它可以切断乳糖的半乳糖苷键,而产生半乳糖和葡萄糖lacY编码β一半乳糖苷透性酶(galactoside permease),这种酶是一种分子量为30kDd膜结合蛋白,它构成转运系统,将半乳糖苷运入到细胞中。
lacA编码β-硫代半乳糖苷转乙酰基酶(thiogalactosidetransacetylase),其功能只将乙酰-辅酶A上的乙酰基转移到β-半乳糖苷上。
无论是lacZ发生突变还是lacY发生突变却可以产生lac-型表型,这种lac-表型的细胞不能利用乳糖。
乳糖操纵子简介

乳糖操纵子简介操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。
乳糖操纵子三个特异性序列:操纵序列O (operator): 阻遏蛋白结合位点。
启动子P (promoter): 位于结构基因的上游。
CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。
一个调节基因●lac I:编码阻遏蛋白,能结合于操纵序列位点。
操纵子的组成:----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。
阻遏物基因(inhibitor,I),产生阻遏物(repressor)。
结构基因Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。
当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。
多顺反子mRNA在细菌中是很普遍的。
多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。
lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。
由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。
它是能够分散到各处或结合到分散的DNA位点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。
乳糖操纵子
三个特异性序列:
操纵序列 O (operator): 阻遏蛋白结合位点。
启动子 P (promoter): 位于结构基因的上游。
CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。
一个调节基因
lac I:编码阻遏蛋白,能结合于操纵序列位点。
操纵子的组成:
----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因
----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA 序列。
阻遏物基因(inhibitor,I),产生阻遏物(repressor)。
结构基因
• Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
•Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。
•A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。
当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。
多顺反子mRNA在细菌中是很普遍的。
多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶
始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )
lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。
lacI 一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。
由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。
它是能够分散到各处或结合到分散的DNA位点上。
阻遏蛋白的负调节(negative control of repressor)
无乳糖(no lactose): lac操纵元处于阻遏状态(repression)
有乳糖(presence of lactose):lac操纵元即可被诱导
(derepression,induction)
诱导剂(inducer): 别乳糖、半乳糖、IPTG(异丙基硫代半乳糖苷)
为什么选用IPTG作诱导物
能诱导酶的合成,但又不被分解的分子,称为安慰诱导物(gratuitous inducer)。
由于乳糖虽可诱导酶的合成,但又随之分解,产生很多复杂的动力学问题,因此人们常用安慰诱导物来进行各种实验。
X-gal(5-溴-4-录-3-吲哚-β-半乳糖苷)也是一种人工化学合成的半乳糖苷,可被β-半乳糖苷酶水解产生兰色化合物,因此可以用作β-半乳糖苷酶活性的指示剂。
IPTG和X-gal都被广泛应用在分子生物学和基因工程的工作中。
某些诱导物与自然的β-半乳糖苷酶相似,且不能被酶分解,比如异丙基-β-D-硫代半乳糖苷,(isopropylthiogalactoside,IPTG)。
不被细菌分解性质稳定,它的浓度在实验中不会改变。
复杂的动力学问题,便于研究。
IPTG能在缺乏lacY基因下而有效地被运送。
半乳糖苷键中用硫代替了氧,失去了水解活性,但硫代半乳糖苷和同源的氧代化合物与酶位点的亲和力相同,IPTG虽不为β-半乳糖苷酶所识别,但它是lac 基因簇十分有效的诱导物。
乳糖操纵子的CAP正调控(Positive Control of CAP)
CAP(catabolite activator protein) ----分解代谢基因激活蛋白,又称为 CRP (cAMP receptor protein), lac operon高水平转录必需的一个激活蛋白。
CAP(同二聚体),含DNA结合区→以二聚体的方式与特定的DNA序列结合, cAMP结合区→与cAMP特异结合,并发生空间构象的变化,形成cAMP-CAP复合物(有活性)
当CAP与CAP结合位点这段序列结合时,可激活RNA转录酶活性,使之提高50X
葡萄糖→→→→→降解产物
ATP →→cAMP →→5’AMP
CRP(非活性状态)→→CAP(活性状态)
无葡萄糖,cAMP浓度高时促进转录, 有葡萄糖,cAMP浓度低时不促进转录葡萄糖效应:当细菌在含有葡萄糖套和乳糖的培养基中生长时,通常优先利用葡萄糖。
只有当葡萄糖消耗完,经过一段停滞期,在乳糖的诱导下半乳糖苷酶开始合成,细菌才能充分利用乳糖。
葡萄糖的降解物能抑制腺苷酸环化酶活性,并活化磷酸二脂酶,因而降低 cAMP的浓度。
所以葡萄糖存在时,cAMP浓度低;仅在葡萄糖消耗完毕时, cAMP浓度增高,CAP-cAMP 复合物形成(结合于lac operon CAP结合位点),才会促进转录。
乳糖操纵子的协调调控(coordinate regulation)
由于Plac是弱启动子,单纯因乳糖的存在发生去阻遏使lac操纵元转录开放,还不能使细菌很好利用乳糖,必需同时有CAP来加强转录活性,细菌才能合成足够的酶来利用乳糖。
关键条件:lac操纵元的强诱导既需要有乳糖的存在又需要没有葡萄糖可
供利用。
Lac操纵子基因表达受阻遏蛋白和CAP的双重调控
负调节与正调节协调合作
阻遏蛋白封闭转录时,CAP不发挥作用
如没有CAP加强转录,即使阻遏蛋白R从P上解聚仍无强大转录活性☆葡萄糖/乳糖共同存在时,细菌优先利用葡萄糖
葡萄糖可降低cAMP浓度,阻碍其与CAP结合从而抑制转录
本底表达
在细胞中透性酶等总是以最低量存在着,足以供给底物开始进入时的需要。
也就是说,操纵子有一个本底水平(basal level)的表达,即使没有诱导物的存在,也保持此表达水平(诱导水平的%);有的诱导物是通过其他吸收系统进入细胞的。
小结
Lac操纵子基因表达受阻遏蛋白和CAP的双重调控。
lac操纵子中的一组基因有两道控制开关,只有两道开关同时打开时,即满足缺乏葡萄糖并存在乳糖条件时,基因才能够转录。
2012年3月1日。