乳糖操纵子概述

合集下载

乳糖操纵子lacoperon

乳糖操纵子lacoperon
目录
组成型突变: lacOc
目录
组成型突变: lacI-
目录
二 色氨酸操纵子
(一) 色氨酸操纵子的结构与功能 (二) 色氨酸操纵子的阻遏调节系统 (三)色氨酸操纵子的弱化机制
目录
(一) 色氨酸操纵子的结构与功能
1.色氨酸操纵子模型: 由雅各布(Jacob F.)和莫诺(Monod J.)
(Catabolite Activator Protein site)
CAP 变构
CAP变构激活
CAP: 代谢物激活蛋白 目 录
(三)乳糖操纵子调控区的突变效应
已经分离在有诱导物或没有诱导物的情况 下都能产生lacmRNA的突变体,这种失去 调节能力的突变体称为永久型突变体,为 分两类:I型和O型。 I型:野生型为I+,突变型为IO型:野生型为O+,突变型为Oc。
原核生物调控
操纵子是原核生物转录调控的主要形式
操纵子:是基因表达的协调单位, 由启动子、操纵基因及其所控制的一组 功能上相关的结构基因所组成。操纵基 因受调节基因产物的控制。
目录
原核生物 —— 操纵子(operon)
启动子 (promoter)
结构基因
调节基因
操纵基因 (operator)
(1)结构基因:产生mRNA并作为模板合成蛋白质
目录
Trp 操纵子----产物阻遏常规酶的合成
调节基因
操纵基因
结构基因
阻遏蛋白
酶代谢产物一旦大量积累
阻遏蛋白不能与操纵基因结合,所以结构基因表达。 阻遏蛋白被产物激活,结构基因不表达。
mRNA 酶蛋白
目录
二 色氨酸操纵子的阻遏调节系统
调节区
trpR RNA聚P合酶O

乳糖操纵子

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵基因、一个启动子和一个调节基因。

结构基因能产生一定的酶系统和结构蛋白。

操纵基因控制结构基因的转录速度,位于结构基因和启动子之间,本身不能转录成mRNA。

启动基因也不能转录成mRNA。

调节基因可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白或调节蛋白。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:CRP是cAMP受体蛋白(cAMP receptor protein),cAMP(环腺苷酸)是细胞内广泛存在的第二信使。

细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解供给能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。

cAMP浓度低,CRP未与cAMP结合,CRP不能被活化,当cAMP浓度升高时,CRP 与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。

CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。

在启动子上游有CAP结合位点(CAP binding site),当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,增强RNA聚合酶的转录活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

乳糖操纵子概述课件

乳糖操纵子概述课件
02
它能够根据环境中乳糖的存在与 合成。
结构
乳糖操纵子包括三个结构基因Z、Y、A,分别编码半乳糖苷酶、半乳糖 苷透酶和半乳糖苷乙酰转移酶。
调节基因I编码一种阻遏蛋白,当阻遏蛋白与乳糖或其类似物结合时,会 阻止RNA聚合酶对结构基因的转录。
药物研发
乳糖操纵子的调控机制为药物研发提供了新的思路,通过研究乳糖操纵子相关 基因的功能和调控机制,有助于发现新的药物靶点,为开发新型药物提供支持。
05
乳糖操纵子的未来展望
乳糖操纵子在生物工程领域的发展前景
生物制药
利用乳糖操纵子构建高表达的基 因工程菌,提高生物制药的产量
和效率。
生物能源
通过优化乳糖操纵子提高微生物对 生物燃料的产量和效率,降低生产 成本。
技术改进
随着基因敲除技术的不断改进,科学 家们能够更精确地研究乳糖操纵子中 单个基因的功能,为深入了解乳糖操 纵子的调控机制提供了有力支持。
乳糖操纵子在基因表达调控中的研究进展
转录水平调控
乳糖操纵子在基因表达调控中发挥着重要作用,通过转录水 平调控,可以调节乳糖操纵子相关基因的表达,进而影响细 菌对乳糖的代谢。
生物肥料
利用乳糖操纵子改良微生物,生产 出具有高效固氮能力的生物肥料。
乳糖操纵子在基因表达调控研究中的发展前景
01
02
03
基因表达机制研究
深入探究乳糖操纵子的工 作机制,为基因表达调控 研究提供更多理论支持。
基因治疗
利用乳糖操纵子实现对特 定基因的表达调控,为基 因治疗提供新的手段。
合成生物学
在合成生物学领域,乳糖 操纵子作为基因表达调控 元件,为构建人工生物系 统提供有力工具。
当环境中没有乳糖存在时,阻遏蛋白会与乳糖操纵子结合,抑制结构基 因的表达。当环境中存在乳糖时,乳糖会与阻遏蛋白结合,使其从操纵 子上解离,从而允许结构基因的表达。

简述乳糖操纵子的基本结构

简述乳糖操纵子的基本结构

简述乳糖操纵子的基本结构
乳糖操纵子是一种普遍应用于乳制品行业的蛋白质结构,它的结构形式是一种固定的弯折模式,通常分为两个链乳清蛋白链和乳糖操纵子链构成一个紧密结合的二硫键桥状结构。

这种结构使它在乳制品行业中有着重要应用。

乳清蛋白链是由乳清蛋白(也称为钙乳清蛋白)异种多肽(例如β-乳清蛋白和α-乳清蛋白)组成,每个肽由170至250个氨基酸残基组成,被5个硫键桥相互结合,形成一种含有34层β折叠穹顶的
安全多肽结构。

由于乳清蛋白的穹顶层有一个硫键桥弯折的结构,因此,乳清蛋白链有一个可以控制乳清蛋白结构的潜在柔软的穹顶结构。

乳糖操纵子链由7个识别事件结构域(IDE)组成,每个IDE由
若干个残基组成,它们形成双螺旋结构,同时每个IDE都有一个显著的穹顶槽,其中包含深度低至4-5的穹顶结构,负责定位和结合乳清蛋白。

此外,IDE还有一个二硫键桥配体的底部结构,可以使乳清蛋白/乳糖操纵子链结合在一起,形成一个紧密结合的二硫键桥状结构。

乳糖操纵子链中的IDE内也含有多种交互,包括构象决定多肽不可逆结合、构象决定多糖醛酸结合、构象决定芋头素结合、构象决定乳蛋白结合以及构象决定酸化亚硝酸盐结合等。

当不同构象域结合,它们就可以形成乳糖操纵子。

总之,乳糖操纵子是一种普遍应用于乳制品行业的蛋白质结构,它的基本结构由一个由乳清蛋白异种多肽构成的乳清蛋白链和一个
由7个事件结构域构成的乳糖操纵子链结合的二硫键桥形式组成。


外,乳清蛋白链的穹顶层有着一个可以控制乳清蛋白结构的柔软结构,乳糖操纵子链中的识别事件结构域内也含有多种交互,它们可以形成乳糖操纵子,从而在乳制品行业中发挥着重要作用。

乳糖操纵子

乳糖操纵子

葡萄糖
cAMP
Lac操纵子被抑制 Lac操纵子被抑制
+ + + + 转录 DNA
CAP
P
O
Z
Y
A
CAP CAP CAP CAP
无葡萄糖, 无葡萄糖,cAMP浓度高时 浓度高时
CAP
有葡萄糖, 有葡萄糖,cAMP浓度低时 浓度低时
原核生物基因表达的一般情况 (乳糖操纵子) 乳糖操纵子)
基因表达的外界信号 基因表达的负调控 基因表达的负调控 基因表达的正调控 基因表达的正调控 正、负调控协同表达 葡萄糖、乳糖浓度的变化 葡萄糖、 Lac阻遏物 阻遏物与操纵基因 Lac阻遏物与操纵基因 cAMP+CAP与相应的DNA序列 与相应的DNA cAMP+CAP与相应的DNA序列
Order of controlling elements and genes: lacI: promoter-lacI-terminator operon: promoter-operator-lacZ-lacY-lacA-terminator
-47 — -84
-47 — -8
-3 — +21
-54 —-58 -65 —-69
说明: 说明: 合成特异的阻遏物,无诱导物时可阻止Z ◆ I+合成特异的阻遏物,无诱导物时可阻止Z基 因表达,诱导物可作为阻遏物的拮抗物, 因表达,诱导物可作为阻遏物的拮抗物,使阻 遏物失活 产生无活性阻遏物,因而无需诱导物Z ◆ I-产生无活性阻遏物,因而无需诱导物Z基因 就可表达 ◆ I+ 对I-显性
结构
调控基因 控制位点
I
结构基因
Y a DNA
阻 遏 蛋 白

乳糖操纵子名词解释

乳糖操纵子名词解释

乳糖操纵子名词解释乳糖操纵子(lactose operation)能合成和分泌乳糖的一类重要细胞,它们分布在不同类型的细胞内。

乳糖操纵子中的酶系有的是糖苷酶,有的是羧酸酯酶,还有一些是复合酶。

目前已发现的操纵子有七种类型,但只有两个编码,不论是催化水解乳糖还是释放乳糖的酶均是如此。

乳糖操纵子分布在所有高等动物组织中,哺乳类有两种:insulin- like autoantibody-抗胰岛素样蛋白4;一种乳糖操纵子,由四个区域组成,分别编码降血糖蛋白4(hypoglycemic-like autoantibody-抗胰岛素样蛋白4),降血糖蛋白5(hypoglycemic-like albumin-抗胰淀粉样蛋白)和乳糖操纵子自身。

此外尚有由insulin- like autoantibody-抗胰岛素样蛋白4(抗-4)与血浆蛋白G、铁蛋白、转铁蛋白结合的复合体,即乳糖操纵子复合体(oligosaccharide-like autoantibody complex-球蛋白操纵子复合体),也可能存在于不同细胞。

其中抗-4分子量为50万,具有与抗-4同源的抗胰岛素样蛋白4抗原决定簇,不受胰岛素影响,当它和其它球蛋白合成后,会结合于巨噬细胞膜上,并被膜内的锌粒子中和,再与巨噬细胞内的受体结合,从而阻断胰岛素与受体结合,进入细胞内的胰岛素失去降血糖作用。

至今只发现一种能降低血糖的操纵子,此种操纵子也称为受体型操纵子。

此种操纵子是位于酪氨酸磷酸酶基因上游,酪氨酸激酶基因下游,有关的其他基因几乎均已克隆。

当激活后,位于上游的酪氨酸磷酸酶基因激活使细胞内游离的酪氨酸浓度增加,酪氨酸水解成磷酸肌醇和磷酸胆碱释放入血液循环中,这将使血糖降低;而酪氨酸磷酸酶则与血清白蛋白结合,阻止白蛋白转运氨基酸,抑制氨基酸通过白蛋白进入血液,也可以抑制外周组织对氨基酸的利用。

该操纵子中的受体称为“受体酪氨酸磷酸酶”。

该操纵子也可能参与葡萄糖和脂肪酸的代谢。

基因调控-乳糖操纵子

基因调控-乳糖操纵子

乳糖操纵子在生物工程中的优化与应用
乳糖操纵子在生物工程领域具有潜在的应用价值,例如用于构建基因表达调控系统。通过优化乳糖操 纵子的元件和调控机制,可以开发出更高效、更精确的基因表达调控工具。
研究可以探索将乳糖操纵子与其他基因调控机制结合,以实现更复杂的基因表达模式。这种结合可以 为生物工程领域提供更多创新性的解决方案,例如用于生产生物药物、工业酶或改良作物品种等应用 。
特点
乳糖操纵子具有高度的可诱导性,当环境中乳糖浓度升高时,相 关基因的表达水平也随之升高,当乳糖浓度降低时,相关基因的 表达水平也随之降低。
乳糖操纵子的结构与组成
结构基因Z、Y、A
分别编码β-半乳糖苷酶、β-半乳糖苷 透酶和半乳糖苷乙酰转移酶,这些酶 在乳糖代谢中起关键作用。
调节基因I
编码阻遏蛋白,该蛋白可与乳糖操纵 子上的O序列结合,抑制结构基因的 表达。
适应性进化研究
乳糖操纵子可应用于适应性进化研究中,通过研究乳糖操纵子在不同环境下的适应性变化,揭示生物对环境的适 应机制。
05
未来展望与研究方向
乳糖操纵子与其他基因调控机制的关系
乳糖操纵子是原核生物中一种典型的基因调控机制,通过与 阻遏蛋白的相互作用来调节基因的表达。未来研究可以探索 乳糖操纵子与其他基因调控机制之间的相互作用和关系,以 更全面地理解基因表达的复杂性。
乳糖操纵子的功能与作用机制
功能
乳糖操纵子在乳糖存在时表达相关酶, 将乳糖转化为葡萄糖和半乳糖,供细 胞代谢利用。
作用机制
当环境中乳糖浓度升高时,乳糖通过 与阻遏蛋白结合,使阻遏蛋白失去活 性,从而解除对结构基因表达的抑制 作用,使相关酶得以表达。
02
基因调控的原理
基因表达的调控

乳糖操纵子

乳糖操纵子

乳糖操纵子乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。

1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。

在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结构基因以LacZ(z),Lac Y(y),Lac A(a)的顺序分别排列在染色体上,在z的上游有操纵序列Lac O(o),更前面有启动子Lac P(p),这就是操纵子(乳糖操纵子)的结构模式。

编码乳糖操纵系统中阻遏物的调节基因Lac I(i)位于和p上游的临近位置。

细菌相关功能的结构基因常连在一起,形成一个基因簇。

它们编码同一个代谢途径中的不同的酶。

一个基因簇受到同一的调控,一开俱开,一闭俱闭。

也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。

乳糖分解代谢相关的三个基因,lacZ、Y、A就是很典型的是上述基因簇。

它们的产物可催化乳糖的分解,产生葡萄糖和半乳糖。

它们具有顺式作用调节元件和与之对应的反式作用调节因子。

三个结构基因图的功能是:lacZ编码β-半乳糖苷酶(β-galactosidase),此酶由500kd的四聚体构成,它可以切断乳糖的半乳糖苷键,而产生半乳糖和葡萄糖lacY编码β一半乳糖苷透性酶(galactoside permease),这种酶是一种分子量为30kDd膜结合蛋白,它构成转运系统,将半乳糖苷运入到细胞中。

lacA编码β-硫代半乳糖苷转乙酰基酶(thiogalactosidetransacetylase),其功能只将乙酰-辅酶A上的乙酰基转移到β-半乳糖苷上。

无论是lacZ发生突变还是lacY发生突变却可以产生lac-型表型,这种lac-表型的细胞不能利用乳糖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乳糖分解所需酶(+)

1940年,Monod发现大肠杆菌在含有葡萄糖和乳糖的培养基 上生长时,细菌先利用葡萄糖,葡萄糖用完以后,才利用乳糖。
通透酶(lactose permease) 促使乳糖进入细菌
细 菌 生 长 曲 线
葡萄糖耗尽 乳糖存在
β -半乳糖苷酶
(β -galactosidase)
催化乳糖分解
基因前后相连成串,由一个共同的控制区进行转
录调控。包括结构基因及调节基因的整个DNA序 列,共同组成一个转录单位。

主要见于原核生物的转录调控,如乳糖操纵子、 色氨酸操纵子等。
操纵子(operon)
调节基因
结构基因 Structural genes
启动序列 Promoter(P)
操纵基因 Operator(O)
原核生物的转录和翻译相偶联 (coupled transcription and
translation),因此,转录水
平的调控是原核生物基因表达调 控的主要形式 真核生物基因表达的调控可 发生在基因表达的各个水平。
——原核生物基因表达调控的主要方式
操 纵 子(The Op操纵子的概念和结构特点; 2.熟悉乳糖操纵子的结构和负调控机制; 3.了解乳糖操纵子的三种调控方式。
一. 操纵子学说
二. 乳糖操纵子的结构
三. 乳糖诱导的负调控
一. 操纵子学说(operons)
长期饮酒可诱导乙 醇-P450单加氧酶的 表达,促进乙醇在 肝脏的生物转化
葡萄糖+乳糖
乳糖
乳糖分解所需酶(-)
小 结
1.
操纵子为原核生物主要转录调控模式;
2.
3.
操纵子由调节基因和结构基因构成;
乳糖操纵子可通过别乳糖抑制阻遏蛋白的 阻遏作用,从而诱导结构基因表达。
RNA P pol
阻遏 O 蛋白
LacZ
LacY
LacA
乙酰转移酶
通透酶 β -半乳糖甘酶
Lac(+);
G(+)
Lac(+);
G(-)
乳糖代谢所需酶(-)
DNA
I
pol P
O
Z
Y
A
mRNA
——基因关闭
阻遏蛋白
有乳糖存在时
DNA
——基因开放 pol P
I
O
Z
Y
A
mRNA
mRNA
启动转录
阻遏蛋白
别乳糖
乳糖
调节的结果:
单纯乳糖存在时,细菌利用乳糖作碳源; 若有葡萄糖或葡萄糖/乳糖共同存在时,细 菌首先利用葡萄糖。
---适应环境的变化,维持生长和繁殖
半 乳 糖 苷 酶 表 达 量
β-
操纵子的发现
1961年, Francois Jacob and Jacques Monod 提出细菌基因 表达调控的操纵子学说。
1965年,获得诺贝尔生理学与 医学奖。
Jacob, Monod & Lwoff
©
操纵子(operon):很多功能上相关的
promoter
二. 乳糖操纵子(lac operon)
调控基因 结构基因
操纵序列
通透酶 启动序列
乙酰转移酶
β -半乳糖苷酶
阻遏蛋白基因LacI
阻遏蛋白
启动序列 RNApol
阻遏蛋白 操纵序列
编码序列
三. 乳糖操纵子调节机制
乳糖诱导的负调控
CAP介导的正调控 协调调控
没有乳糖存在时
阻遏基因
乳糖代谢所需酶(+)
下次课的学习内容
乳糖诱导的负调控
CAP介导的正调控 协调调控
相关文档
最新文档