6.反比例函数综合
北师大九年级数学上第六章反比例函数单元综合检测题(含答案)

第六章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分) 1. 下列函数中,y 是x 的反比例函数的是(D )A .x(y -1)=1B .y =1x +1C .y =1x 2D .y =3x 2. 图象经过点(2,1)的反比例函数是(B )A .y =-2xB .y =2xC .y =-12xD .y =2x3. 在反比例函数y =m -7x 的图象的每一支上,y 随x 的增大而减小,则m 的取值范围是(A )A .m>7B .m<7C .m =7D .m ≠74. 已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I =UR ,当电压为定值时,I 关于R 的函数图象是(C )5. 一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系式是(B )A .v =320tB .v =320t C .v =20t D .v =20t6. 对于反比例函数y =-3x,下列说法不正确的是(D )A .图象经过点(1,-3)B .图象分布在第二、四象限C .当x >0时,y 随x 的增大而增大D .点A(x 1,y 1),B(x 2,y 2)都在反比例函数y =-3x的图象上,若x 1<x 2,则y 1<y 27. 一次函数y =ax +b 与反比例函数y =a -bx ,其中ab<0,a ,b 为常数,它们在同一坐标系中的图象可以是(C )8. 如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx (x>0)的图象经过顶点B ,则k 的值为(D )A .12B .20C .24D .32,第8题图) ,第9题图),第10题图)9. 一次函数y 1=kx +b 和反比例函数y 2=mx的图象如图,则使y 1>y 2的x 范围是(B )A .x <-2或x >3B .-2<x <0或x >3C .x <-2或0<x <3D .-2<x <310. 如图,在直角坐标系中,点A 在函数y =4x (x>0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x>0)的图象交于点D ,连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于(C )A .2B .23C .4D .4 3二、填空题(本大题6小题,每小题4分,共24分)11. 若反例函数y =kx 的图象经过点(-1,2),则k 的值是-2.12. 已知反比例函数y =2x,当x<-1时,y 的取值范围为-2<y<0.13. 已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为(1,-2).14. 如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为4.,第14题图) ,第15题图),第16题图)15. 如图,直线x =2与反比例函数y =2x ,y =-1x的图象分别交于A ,B 两点,若点P是y 轴上任意一点,则△PAB 的面积是32.16. 某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa )是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于150 kPa 时,气球会将爆炸,为了安全起见,气体的体积应不小于0.4m 3.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 已知反比例函数的图象与直线y =2x 相交于点A(1,a),求这个反比例函数的表达式.解:将点A(1,a)代入直线y =2x 得a =2×1=2.点A 的坐标为(1,2),代入y =kx 得k=2,∴反比例函数的表达式为y =2x18. 已知反比例函数的图象过点A(-2,3). (1)求这个反比例函数的表达式;(2)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?解:(1)y =-6x (2)分布在第二、四象限,在每个象限内y 随x 的增大而增大19. 如图,一辆汽车从甲地到乙地的行驶时间t(h )与行驶速度v(km /h )的函数关系如图所示,根据图象提供的信息,求:(1)t 与v 之间的函数关系式;(2)若要在3 h 内到达乙地,则汽车的速度应不低于多少?解:(1)t =300v (2)当t =3 h 时,v =100(km /h ).∵t 随v 地增大而减小,∴v ≥100,即汽车的速度应不低于100 km /h四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,一次函数y =2x -4的图象与反比例函数y =kx 的图象交于A ,B 两点,且点A的横坐标为3.(1)求反比例函数的表达式; (2)求点B 的坐标.解:(1)把x =3代入y =2x -4得y =6-4=2,则A 的坐标是(3,2).把(3,2)代入y =k x 得k =6,则反比例函数的表达式是y =6x (2)根据题意得2x -4=6x ,解得x =3或x =-1,把x =-1代入y =2x -4得y =-6,则B 的坐标是(-1,-6)21. 已知反比例函数y =kx (k≠0)的图象经过点B(3,2),点B 与点C 关于原点O 对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D.(1)求这个反比函数的表达式; (2)求△ACD 的面积.解:(1)将B 点坐标代入函数表达式,得k 3=2,解得k =6,反比例函数的表达式为y =6x(2)由B(3,2),点B 与点C 关于原点O 对称,得C(-3,-2).由BA⊥x 轴于点A ,CD ⊥x 轴于点D ,得A(3,0),D(-3,0).S △ACD =12AD·CD=12[3-(-3)]×|-2|=622. 如图,一次函数y =kx +b 的图象与坐标轴分别交于A ,B 两点,与反比例函数y =nx的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)直接写出当x>0时,kx +b -nx<0的解集.解:(1)∵S AOB =3,OB =3,∴OA =2,∴B(3,0),A(0,-2),代入y =kx +b 得⎩⎪⎨⎪⎧0=3k +b ,-2=b ,解得k =23,b =-2,∴一次函数的表达式为y =23x -2,∵OD =6,∴D(6,0),CD ⊥x 轴,当x =6时,y =23×6-2=2,∴C(6,2),∴n =6×2=12,∴反比例函数的表达式是y =12x(2)当x>0时,kx +b -nx<0的解集是0<x<6五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 保护生态环境,建设绿色社会已经从理念变为人们的行动,某化工厂1月的利润为200万元.设1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间的函数关系式; (2)治污改造工程顺利完工后经过几个月,该厂月利润才能达到200万元?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?解:(1)①当1≤x≤5时,y =200x ;②当x>5时,y =20x -60 (2)当y =200时,20x-60=200,解得x =13,13-5=8,所以治污改造工程顺利完工后经过8个月后,该厂利润达到200万元 (3)对于y =200x ,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2-1=5(个月)24. 如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数y =kx (k >0,x >0)的图象上点P(m ,n)是函数图象上任意一点,过点P 分别作x 轴y 轴的垂线,垂足分别为E ,F.并设矩形OEPF 和正方形OABC 不重合的部分的面积为S.(1)求k 的值;(2)当S =92时,求点P 的坐标;(3)写出S 关于m 的关系式.解:(1)k =9 (2)分两种情况:①当点P 在点B 的左侧时,∵P(m ,n)在函数y =kx 上,∴mn =9,∴S =m(n -3)=mn -3m =92,解得m =32,∴n =6,∴点P 的坐标是P(32,6);②当点P 在点B 的右侧时,∵P(m ,n)在函数y =k x 上,∴mn =9,∴S =n(m -3)=mn -3n =92,解得n =32,∴m =6,∴点P 的坐标是P(6,32),综上所述:P 点坐标为(6,32)或(32,6) (3)当0<m <3时,点P 在点B 的左边,此时S =9-3m ,当m≥3时,点P 在点B 的右边,此时S =9-3n =9-27m25. 如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,点A 与点B 关于y 轴对称.(1)求一次函数,反比例函数的表达式; (2)求证:点C 为线段AP 的中点;(3)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,说明理由并求出点D 的坐标;如果不存在,说明理由.解:(1)反比例函数表达式为y =8x ,一次函数表达式为y =14x +1 (2)∵点A 与点B 关于y 轴对称,∴OA =OB ,∵PB ⊥x 轴于点B ,∴∠PBA =∠COA=90°,∴PB ∥CO ,∴OA OB =ACPC =1,即AC =PC ,∴点C 为线段AP 的中点 (3)存在点D ,使四边形BCPD 为菱形.理由:∵点C 为线段AP 的中点,∴BC =12AP =PC ,∴BC 和PC 是菱形的两条边,由y =14x +1可得C(0,1),过点C 作CD∥x 轴,交PB 于点E ,交反比例函数图象于点D ,分别连接PD ,BD ,∴D(8,1),且PB⊥CD,∴PE =BE =1,CE =DE =4,∴PB 与CD 互相垂直平分,即四边形BCPD 为菱形,∴存在满足条件的点D ,其坐标为(8,1)。
初中数学反比例函数3篇

初中数学反比例函数3篇多少日你曾挥汗如水,多少日你曾身体疲惫,但是你的坚持,你的努力打动了自己,区区一个数学就能难倒你吗?加油!下面是小编给大家带来的初中数学反比例函数,欢迎大家阅读参考,我们一起来看看吧!初中数学反比例函数知识点总结知识点1反比例函数的定义一般地,形如y=k/x(k为常数,k,x≠0)的函数称为反比例函数,它可以从以下几个方面来理解:(1)x是自变量,y是x的反比例函数;(2)自变量x的取值范围是x≠0的一切实数,函数值的取值范围是y≠0;(3)比例系数k≠0是反比例函数定义的一个重要组成部分;(4)反比例函数有三种表达式:①y=k/x,②y=kx^-1,③x·y=k(定值)(k≠0)(5)函数y=k/x (k≠0 )与x=k/y(k≠0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。
(k为常数,k≠0)是反比例函数的一部分,当k=0 时,原式就不是反比例函数了。
由于反比例函数y=k/x(k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点2 用待定系数法求反比例函数的解析式由于反比例函数y=k/x (k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支。
两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交数学知识点:反比例函数概念形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。
浙教版八年级下册数学第六章 反比例函数含答案(综合知识)

浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数,当x<0时,y随x的增大而增大,则m的值是()A.-1B.3C.-1或3D.22、如图,已知点 A 、B分别在反比例函数的图象上,且OA ⊥OB ,则的值为()A. B.2 C. D.43、如图,直线y=x−2与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于( )A. B. C.2 D.34、下列各点中,在函数y=-的图象上的是( )A.(3,1)B.(-3,1)C.(,3)D.(3,-)5、如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣1,0),A点的横坐标是2,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为()A.12B.9C.6D.36、已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.7、如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B 两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤88、下列各点中,在函数的图象上的点是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)9、已知点A(m,4)在双曲线上,则m的值是()A.-4B.4C.1D.-110、如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣4B.﹣3C.﹣2D.﹣111、已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)12、若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.13、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定14、下列四个点,在反比例函数图象上的是()。
反比例函数的图象与性质综合问题(真题6道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题12反比例函数的图象与性质综合问题(北京真题6道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率反比例函数(大题)2011.2012.2014.2017.2018 12年5考1.反比例函数的图象及性质(1)双曲线kyx=与坐标轴没有交点,当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(2)对称性图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(3)k的几何意义如图1,设点P(a,b)是双曲线kyx=上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是12|k|).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.图1 图22.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【典例剖析】典例精讲,方法提炼,精准提分(x>0)的图象与直线y=x−2【例1】(2017·北京·中考真题)如图,在平面直角坐标系xOy中,函数y=kx交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,(x>0)的图象于点N.交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;①若PN≥PM,结合函数的图象,直接写出n的取值范围.【例2】(2018·北京·中考真题)在平面直角坐标系xOy中,函数y=k(x>0)的图象G经过点A(4,1),xx+b与图象G交于点B,与y轴交于点C.直线l∶y=14(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;①若区域W内恰有4个整点,结合函数图象,求b的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2011·北京·中考真题)如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC①x轴于点C. 若①OAC的面积为1,且tan①AOC=2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.2.(2012·北京·中考真题)如图,在平面直角坐标系xoy中,函数y=4x(x>0)的图象与一次函数y=kx-k 的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足①PAB的面积是4,直接写出点P的坐标.3.(2011·北京·中考真题)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=kx的图象的一个交点为A(﹣1,n).(1)求反比例函数y=k的解析式;x(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.4.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,求其边界值;(1)分别判断函数y=1x(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么≤t≤1范围时,满足34【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京市广渠门中学模拟预测)在平面直角坐标系xOy中,一次函数y=k(x−1)+4(k>0)的图象与反比(m≠0)的图象的一个交点的横坐标为1.例函数y=mx(1)求这个反比例函数的解析式;(2)当x<−4时,对于x的每一个值,反比例函数y=m的值大于一次函数y=k(x−1)+4(k>0)的值,直接x写出k的取值范围.2.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结合函数图象,直(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足m xp接写出OP长的取值范围.(k≠0)与一次函数y2=ax+4(a≠0) 3.(2022·北京·二模)图,在平面直角坐标系xOy中,反比例函数y1=kx的图像只有一个公共点A(2,2),直线y3=mx(m≠0)也过点A.(1)求k、a及m的值;(2)结合图像,写出y1>y2>y3时x的取值范围.(k≠0)经过点A(2,−1),直线l:4.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=kxy=−2x+b经过点B(2,−2).(1)求k,b的值;(k≠0)交于点C,与直线l交于点D.(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=kx①当n=2时,判断CD与CP的数量关系;①当CD≤CP时,结合图象,直接写出n的取值范围.(x>0)的图象交5.(2022·北京顺义·二模)在平面直角坐标系xOy中,直线l:y=kx−k+4与函数y=mx于点A(1,4).(1)求m的值;(x>0)的图象所围成的区域(不含边界)为W.点(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=mxB(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;①当区域W内恰有5个整点时,直接写出n和k的值.6.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,直线l1:y=−x+b与双曲线G:y=−12的x一个交点为A(−3,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=−12有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线xl1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.7.(2022·北京海淀·二模)在平面直角坐标系xOy中,一次函数y=k(x−1)+6(k>0)的图象与反比例函数y=mx(m≠0)的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数y=mx的值大于一次函数y=k(x−1)+6(k>0)的值,直接写出k的取值范围.8.(2022·北京东城·一模)在平面直角坐标系xOy中,一次函数y=x−2的图象与x轴交于点A,与反比例函数y=kx (k≠0)的图象交于点B(3,m),点P为反比例函数y=kx(k≠0)的图象上一点.(1)求m,k的值;(2)连接OP,AP.当S△OAP=2时,求点P的坐标.9.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.10.(2022·北京师大附中模拟预测)如图,一次函数y=-2x-2的图象分别交x轴、y轴于点B、A,与反比例函数y=mx(m≠0)的图象在第二象限交于点M,①OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.11.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;①当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.(k≠0)的两个交点分别为12.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kxA(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(k≠0)于点Q.当点Q位于点P的左侧时,(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=kx求点P的纵坐标n的取值范围.13.(2022·北京市第一六一中学分校一模)如图,在平面直角坐标系中,A(a,2)是直线l:y=x−1与函数(x>0)的图像G的交点.y=kx(1)①求a的值;(x>0)的解析式.①求函数y=kx(2)过点P(n,0)(n>0)且垂直于x轴的直线与直线l和图像G的交点分别为M,N,当S△OPM>S△OPN时,直接写出n的取值范围.(k>0)的图象交于A,B 14.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=kx两点.(1)当点A的坐标为(2,1)时.①求m,k的值;①当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值15.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线y=mx交于点Ax(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=k(xx>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;①若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.16.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线l:y=x﹣1的图象与反比例函数y=k(xx>0)的图象交于点A(3,m).(1)求m、k的值;(2)点P(xp,0)是x轴上的一点,过点P作x轴的垂线,交直线l于点M,交反比例函数y=k(x>0)的x(x>0)的图象在点A,N之间的部分与线段AM,图象于点N.横、纵坐标都是整数的点叫做整点.记y=kxMN围成的区域(不含边界)为W.①当xp=5时,直接写出区域W内的整点的坐标为_____;①若区域W内恰有6个整点,结合函数图象,求出xp的取值范围.−3的图象与性质.小17.(2022·北京·中国人民大学附属中学分校一模)有这样一个问题:探究函数y=2x−1−3的图象与性质进行了探究.下面是小亮的探究过程,请补充完亮根据学习函数的经验,对函数y=2x−1整:(1)函数y=2x−1−3中自变量x的取值范围是;(2)表格是y与x的几组对应值.x…−3−2−1012322345…y…−72−113−4−5−7m−1−2−73−52…直接写出m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.①请再写出此函数的一条性质:.(5)已知不等式kx+b<2x−1−3的解集为1<x<2或x>4,则k+b的值为.18.(2020·北京·模拟预测)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,4),双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边OC上一点,当△FBC~△DEB时,求直线FB的解析式.19.(2022·北京四中模拟预测)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=2x的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=2x有两个公共点,它们的横坐标分别为x1,x2(x1<x2),直线l1与直线l2的交点横坐标为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2022·北京朝阳·模拟预测)已知:一次函数y1=x﹣2﹣k与反比例函数y2=−2k(k≠0).x(1)当k=1时,①求出两个函数图象的交点坐标;①根据图象回答:x取何值时,y1<y2;(2)请说明:当k取任何不为0的值时,两个函数图象总有交点;(3)若两个函数图象有两个不同的交点A、B,且AB=5√2,求k值.21.(2022·北京·北理工附中模拟预测)在平面直角坐标系xOy中已知双曲线y=k过点A(1,1),与直线yx=4x交于B,C两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=k,交于点D(t,y1),与直线y=4x交于点E(t,y2).当y1<y2时,直接写出tx的取值范围.22.(2022·北京朝阳·模拟预测)如图,一次函数y=kx+b的图象交反比例函数y=m的图象于A(2,−4),xB(a,−1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求ΔOAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?23.(2022·北京·二模)一次函数y=kx+b(k≠0)的图像与反比例函数y=m的图象相交于A(2,3),B(6,n)x两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求PQ的值MN24.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)经过点A(0,-1)和点B(3,2).(1)求直线y=kx+b(k≠0)的表达式;(m≠0).(2)已知双曲线y=mx(m≠0)经过点B时,求m的值;①当双曲线y=mx①若当x>3时,总有kx+b>m直接写出m的取值范围.x(x>0)的图象上.25.(2021·北京·二模)如图,A、B两点在函数y=mx(1)求m的值及直线AB的解析式;(x>0)的图象(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数y=mx与直线AB围出的封闭图形中(不包括边界)所含格点的坐标.26.(2021·北京朝阳·二模)在平面直角坐标系xOy中,过点A(2,2)作x轴,y轴的垂线,与反比例函数y=k(k<4)的图象分别交于点B,C,直线AB与x轴相交于点D.x(1)当k=−4时,求线段AC,BD的长;(2)当AC<2BD时,直接写出k的取值范围.27.(2021·北京顺义·二模)在平面直角坐标系xOy中,反比例函数y=m与一次函数y=kx+b相交于A(3,x2)、B(-2,n)两点.(1)求反比例函数和一次函数的表达式;交于点C,与一次函数y=kx+b交于(2)过P(p,0)(P≠0)作垂直于x轴的直线,与反比例函数y=mx点D,若SΔCOP=3SΔDOP,直接写出p的值.28.(2021·北京门头沟·二模)在平面直角坐标系xOy中,反比例函数y=k的图象过点P(2 , 2 ).x(1)求k的值;(x > 0)的图象交于点N,过点M作x轴(2)一次函数y=x+a与y轴相交于点M,与反比例函数y=kx≤S△MNQ≤2时,通过画图,直接写出a的取的平行线,过点N作y轴的平行线,两平行线相交于点Q,当12值范围.(m≠0)的29.(2021·北京丰台·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与反比例函数y=mx图象交于点A(−1,n),B(2,−1)两点.(1)求m,n的值;(m≠0)(2)已知点P(a,0)(a>0),过点P作x轴的垂线,分别交直线y=kx+b(k≠0)和反比例函数y=mx的图象于点M,N,若线段MN的长随a的增大而增大,直接写出a的取值范围.(x>0)的30.(2021·北京西城·二模)在平面直角坐标系xOy中,直线l:y=kx−k+2(k>0),函数y=2kx图象为F.(x>0)的图象F上,求直线l对应的函数解析式:(1)若A(2,1)在函数y=2kx(2)横、纵坐标都是整数的点叫做整点.记直线l:y=kx−k+2(k>0),图象F和直线y=1围成的区域2(不含边界)为图形G.①在(1)的条件下,写出图形G内的整点的坐标;①若图形G内有三个整点,直接写出k的取值范围.。
2020年九年级数学中考压轴每日一练:《反比例函数综合》(解析版)

三轮压轴每日一练:《反比例函数综合》1.如图,直线y =mx +6与反比例函数y =(x >0)的图象交于点A (,n )与x 轴交于点B (﹣3,0),M 为该图象上任意一点,过M 点作x 轴的平行线交y 轴于点P ,交AB 于点N .(1)求m 、n 的值和反比例函数的表达式;(2)若点P 为MN 中点时,求△AMN 的面积.2.如图直线y 1=﹣x +4,y 2=x +b 都与双曲线y =交于点A (1,3),这两条直线分别与x 轴交于B ,C 两点.(1)求k 的值;(2)直接写出当x >0时,不等式x +b >的解集;(3)若点P 在x 轴上,连接AP ,且AP 把△ABC 的面积分成1:2两部分,则此时点P 的坐标是 .3.如图,直线l1:y=kx+b与双曲线y=(x>0)交于A,B两点,与x轴交于点C,与y 轴交于点E,已知点A(1,3),点C(4,0).(1)求直线l1和双曲线的解析式;(2)将△OCE沿直线l1翻折,点O落在第一象限内的点H处,求点H的坐标;(3)如图,过点E作直线l2:y=3x+4交x轴的负半轴于点F,在直线l2上是否存在点P,使得S△PBC =S△OBC?若存在,请直接写出所有符合条件的点P的坐标;如果不存在,请说明理由.4.如图,在平面直角坐标系中,菱形ABCD的对角线AC与BD交于点P(﹣2,3),AB⊥x 轴于点E,正比例函数y=(m﹣1)x的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求cos∠ABP的值.5.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出不等式的解集.6.如图,反比例函数y=经过点A,且点A的坐标为(1,2).(1)求反比例函数的解析式;(2)点C在y轴的正半轴上,点D在x轴的正半轴上,直线CD经过点A,直线CD交反比例函数图象于另一点B,若OC=OD,求点B的坐标.7.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于第二、四象限内的A、B两点,与y轴交于点C,过点A作AM⊥x轴,垂足为M,OA=4,cos∠AOM=,点B的横坐标为.(1)求该反比例函数和一次函数的解析式;(2)连接MC,在x轴上找一点P,使△PMC的面积与四边形AMCO的面积相等,求P的坐标.8.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于第二、四象限内的A、B两点,与x轴交于C点.点D为x轴负半轴上一点,连接AO,延长AO交反比例函数于点E,连接BE.已知AO=4,tan∠AOD=2,∠ACO=45°.(1)求反比例函数和直线AB的解析式;(2)求△ABE的面积.9.已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E.(1)记S=S△OEF ﹣S△ECF,当S取得最大值时,求k的值;(2)在(1)的条件下,若直线EF与x轴、y轴分别交于点M,N,求EM•FN的值.10.如图,在平面直角坐标系xOy中,次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?11.如图,一次函数y=kx+b的图象分别交x轴、y轴于C,D两点,交反比例函数y=图象于A(,4),B(3,m)两点.(1)求直线CD的表达式;(2)点E是线段OD上一点,若S△AEB=,求E点的坐标;(3)请你根据图象直接写出不等式kx+b≤的解集.12.九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数y=上任意一点,过点P作x轴、y 轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=.(2)如图(4),点P、Q在反比例函数y=图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG =8,则S△POH=,k=.(3)如图(5)点P、Q是第一象限的点,且在反比例函数y=图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.13.如图,在平面直角坐标系中,菱形ABOD的顶点O与坐标原点重合,点B在y轴的正半轴上,点A在反比例函数的图象上,点D的坐标为(8,6).(1)求反比例函数的表达式;(2)E是x轴正半轴上的动点,过点E作x轴的垂线交线段OA于点M,交双曲线于点P,在E点运动过程中,M点正好是线段EP中点时,求点E的坐标.14.小明在课外研究中,设计如下题目:直线y=kx+b过点A(6,0),B(0,3),直线y =kx+b与曲线y=交于点C(4,n).(1)求直线和曲线的关系式.(2)小明发现曲线y=关于直线y=x对称,他把曲线y=与直线y =x的交点P叫做曲线的顶点(图2),①直接写出P点的坐标.②若点D从P点出发向上运动,运动到PD=PC时停止,求此时△PCD的面积.15.如图,定义:若双曲线y=(k>0)与它的其中一条对称轴y=x相交于M,N两点,则线段MN的长度为双曲线y=(k>0)的对径.(1)双曲线y=的对径是.(2)若双曲线y=(k>0)的对径是4,求k的值.(3)正方形AOCB的边长为4,(2)中双曲线与线段BC交于点D,与线段AB相交于点E,直线y=﹣x+b过点D与线段AB相交于点F,连接OF、OE,探究∠AOF与∠EOC的数量关系,并证明.16.如图,在平面直角坐标系中,点A的坐标为(a,6),AB⊥x轴于点,反比例函数的图象的一支分别交AO,AB于点C,D,延长AO交反比例函数的图象的另一支于点E,已知D的纵坐标为.(1)求反比例函数的解析式及直线OA的解析式;(2)连接BC,已知E(﹣4,﹣3),求S△CEB(3)若在x轴上有两点M(m,0),N(﹣m,0),将直线OA绕点O旋转,仍与交于C,E,能否构成以E,M,C,N为顶点的四边形为菱形,如果能请求出m的值,如果不能说明理由.参考答案1.解:(1)将点B的坐标代入y=mx+6并解得:m=2;故直线的表达式为y=2x+6;将点A的坐标代入上式得:n=2×+6=+3,则点A(,)代入y=得,k=×(+3)=4,故反比例函数表达式为y=;(2)设点M在y=上,则点M(t,),点P为MN中点,点N在直线y=2x+6上,则点N(﹣t,6﹣2t),∵MN∥x轴,故=6﹣2t,解得:t=1或2,当t=1时,点M、N的坐标分别为(1,4)、(﹣1,4),则点P(0,4),则MN=1+1=2,△AMN的面积=×MN×(y A﹣y P)=×2×(+3﹣4)=﹣1,当t=2时,同理可得:△AMN的面积=2+2,故△AMN的面积为﹣1或2+2.2.解:(1)将点A的坐标代入y=得,k=xy=1×3=3;(2)从图象看,x>0,当不等式x+b>时,x>1;(3)将点A的坐标代入y2=x+b得,3=+b,解得:b=,y 2=x+,令y2=0,则x=﹣3,即点C(﹣3,0),y 1=﹣x+4,令y1=0,则x=4,即点B(4,0),则BC=7,AP把△ABC的面积分成1:2两部分,则点P把BC分成1:2两部分,即PB=BC或BC,即BP=或,设点P的横坐标为x,则4﹣x=或,解得:x=或﹣故点P的坐标为:(﹣,0)或(,0);故答案为:(﹣,0)或(,0).3.解:(1)将A(1,3),C(4,0)代入y=kx+b,得,解得:,∴直线l的解析式为y=﹣x+4.1将A(1,3)代入y=(x>0),得m=3,∴双曲线的解析式为y=(x>0);(2)将x=0代入y=﹣x+4,得y=4,∴E(0,4).∴△COE是等腰直角三角形.∴∠OCE=∠OEC=45°,OC=OE=4.由翻折得△CEH≌△CEO,∴∠COE=∠CHE=∠OCH=90°.∴四边形OCHE是正方形.∴H(4,4);(3)存在,理由:如图,过点O作直线m∥BC交直线l于点P′,2于点P,在x轴取点H,使OC=CH(即等间隔),过点H作直线n∥BC交直线l2S△PBC =S△OBC,根据同底等高的两个三角形面积相等,则点P(P′)为所求点.直线BC表达式中的k值为﹣1,则直线m、n表达式中的k值也为﹣1,故直线m的表达式为:y=﹣x①,直线l2的表达式为:y=3x+4②,联立①②并解得:x=﹣1,y=1,故点P′(﹣1,1);设直线n的表达式为:y=﹣x+s,而点H(8,0),将点H的坐标代入上式并解得:s=8,故直线n的表达式为:y=﹣x+8③,联立②③并解得:x=1,y=7,故点P的坐标为(1,7);综上,点P的坐标为(﹣1,1)或(1,7).4.解:(1)将点P的坐标代入正比例函数y=(m﹣1)x表达式得,3=﹣2(m﹣1),解得:m=﹣;将点P的坐标代入反比例函数y=得,n+1=﹣6,解得:n=﹣7;则正比例函数的表达式为:y=﹣x①,反比例函数表达式为:y=﹣②,联立①②并解得:x=±2(舍去2),故点A(2,﹣3);(2)∵点A(2,﹣3),∴OE=2,AE=3,则OA==,在△AOE中,sin∠EAO===,在Rt△ABP中,cos∠ABP=sin∠BAP=sin∠EAO=.5.解:(1)把A(2,﹣4)的坐标代入得:4﹣2m=﹣8,反比例函数的表达式是y=﹣;把B(n,﹣2)的坐标代入y=﹣得:﹣2=﹣,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b并解得:k=1,b=﹣6,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,0<x<2或x>4.6.解:(1)将点A的坐标代入函数表达式得:2=,解得:k=2,故反比例函数的解析式为:y=;(2)设直线CD的表达式为:y=ax+b,设OD=OC=m,则点C、D的坐标分别为:(0,m)、(m,0),将点C、D的坐标代入一次函数表达式得:,解得:,故直线CD的表达式为:y=﹣x+m,将点A的坐标代入上式得:2=﹣1+m,解得:m=3,故直线CD的表达式为:y=﹣x+3,联立直线CD和反比例函数表达式得:,解得:,,故点B(2,1).7.解:(1)cos∠AOM=,则∠AOM=30°,则点A(﹣2,2),则m=﹣4,故反比例函数的表达式为:y=﹣,点B的横坐标为,则点B(,﹣4),将点A、B的坐标代入一次函数表达式y=kx+b并解得:k=﹣,b=﹣2,故点C(0,﹣2),则一次函数的表达式为:y=﹣x﹣2;(2)AM=2=OC,且AM∥OC,则四边形AMCO为平行四边形,①当点P在x轴右侧时,OP=OM时,△PMC的面积与四边形AMCO的面积相等,故点P(2,0);②当点P在x轴左侧时,OP=2OM时,△PMC的面积与四边形AMCO的面积相等,故点P(﹣4,0);综上,点P(2,0)或(﹣4,0).8.解:(1)tan∠AOD=2,则sin∠AOD=,则AH =AO sin ∠AOD =×=8,同理OH =4,故点A (﹣4,8),则点E (4,﹣8) 故反比例函数表达式为:y =﹣…①;∵∠ACO =45°,则一次函数表达式为:y =﹣x +b , 将点A 的坐标代入上式并解得:b =4, 故直线AB 的表达式为:y =﹣x +4…②;(2)联立①②并解得:x =﹣4或8,故点B (8,﹣4), 令y =﹣x +4=0,则x =4,故点C (4,0),而点E (4,﹣8), 故CE ⊥x 轴,故△ABE 的面积=×CE ×(x B ﹣x A )=×8×(8+4)=48. 9.解:(1)∵OB =4,OA =3,且E 、F 为反比例函数图象上的两点, ∴E ,F 两点坐标分别为E (,3),F (4,), 如图,连接OE 、OF ,∴S △ECF =(3﹣),∴S △EOF =S 矩形AOBC ﹣S △AOE ﹣S △BOF ﹣S △ECF =3×4﹣××3﹣4×﹣S △ECF ,∴S △ECF =12﹣k ﹣S △ECF ,∴S =S △OEF ﹣S △ECF =12﹣k ﹣2S △ECF =12﹣k ﹣2×(3﹣),∴S =﹣k 2+k .当k =﹣=6时,S 有最大值,即S 取得最大值时k =6.(2)∵k=6,∴E(2,3),F(4,),∴EC=2,FC=,EF=,设∠CEF=α,则sinα==,cosα==,∴EM•FN=•=25.10.解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.11.(1)把点A(,4)代入中,得:,解得n=6∴反比例函数的解析式为,将点B(3,m)代入得m=2,∴B(3,2)设直线AB的表达式为y=kx+b,则有,解得∴直线CD的表达式为;(2)设E点的坐标为(0,b)令x=0,则y=6∴D点的坐标为(0,6)DE=6﹣b∵S△DEB ﹣S△DEA=S△AEB∴,解得:b=1,∴E点的坐标为(0,1);(3)不等式kx+b≤的解集是.12.解:(1)连接CF,∵四边形ABCD与四边形CEFG都是正方形,∴CF∥BD,△CBD与△FBD同底等高,∴S△BDF =S△BDC=S正方形ABCD=2;(2)设P(x,y),则k=xy,根据题意,得GQ=﹣2x,PG=2y,∴S△PQG=×GQ×PG=8,即•(﹣2x)•2y=8,解得xy=﹣4,即k=﹣4,S △POH =×OH ×PH =﹣xy =2;(3)PQ ∥MN .理由:作PA ⊥y 轴,QB ⊥x 轴,垂足为A ,B ,连接PN ,MQ , 根据双曲线的性质可知,S 矩形AOMP =S 矩形BONQ =k , ∴S 矩形ANCP =S 矩形BMCQ ,可知S △NCP =S △MCQ , ∴S △NPQ =S △MPQ , ∴PQ ∥MN .故本题答案为:(1)2,(2)2,﹣4. 13.解:(1)过点D 作x 轴的垂线,垂足为F , ∵点D 的坐标为(8,6), ∴OF =8,DF =6, ∴OD =10, ∴AD =10,∴点A 坐标为(8,16), ∴k =xy =8×16=128, ∴反比例函数表达式为;(2)∵点A 坐标为(8,16), ∴OA 的表达式为y =2x ,设E 点坐标为(m ,0),则M 点坐标(m ,2m ),F 点坐标,∵M 点正好是线段EP 中点, ∴P (m ,4m ), ∴,解得:,∴.14.解:(1)将点A、B的坐标代入直线表达式得:,解得:,故直线表达式为:y=﹣x+3,当x=4时,y=﹣x+3=﹣2+3=1=n,故点C(4,1);将点C的坐标代入曲线的表达式得:1=,解得:m=4,故曲线的表达式为:y=;(2)①联立曲线和直线y=x表达式得:解得:,(舍去),故点P(2,2);②设直线CD与y=x交于点H,如下图,曲线y=关于直线y=x对称,且PD=PC,则点C、D关于直线y=x对称,故CD⊥PH,∵直线y=x的倾斜角为45°,则直线CD与直线AO的夹角为45°,故设直线CD的表达式为:y=﹣x+t,将点C的坐标代入上式并解得:t=5,故直线CD的表达式为:y=﹣x+5,联立y=x和y=﹣x+5并解得:x=,y=,故点H(,),则PH==,同理可得:CH=,点C、D关于y=x对称,则CD=2CH=2DH,△PCD的面积=CD×PH=CH×PH=×=.15.解:(1)过A点作AC⊥x轴于C,如图1,解方程组,得:,,∴A点坐标为(1,1),B点坐标为(﹣1,﹣1),∴OC=AC=1,∴OA=OC=,∴AB=2OA=2,∴双曲线y=的对径是2;故答案为:;(2)∵双曲线与对称轴由y=x均关于原点对称,设点M坐标为M(a,a)(a>0),则点N坐标为N(﹣a,﹣a),∴MN=2OM=2a=4,∴a=2,∴点M坐标为.代入得,即k=12.(3)∵正方形ABCD,边长为4,∴A(0,4),C(4,0),B(4,4),∵双曲线与BC交于D,∴D(4,3),∵双曲线与AB交于E点,∴E(3,4),∴,BE=1,∵直线过点D(4,3),∴b=5,∴,∴F(2,4),取BC中点H,连接EH,并延长交x轴于G点,连接OH,在△EBH与△GCH中,∴△EHB≌△GHC(ASA),∴BE=CG=1,∴OE=OG=5,EH=HG,∴∠EOH=∠HOC,∵A(0,4),F(2,4),∴,∵HC=2,OC=4,∴,∴tan∠AOF=tan∠HOC,∴,即.16.解:(1)∵点A的坐标为(a,6),AB⊥x轴于B,∴AB=6,∵,∴OB=8,∴点D在反比例函数的图象上,∴,∴反比例函数的解析式为设直线OA的解析式y=bx,∴8b=6解得:;∴直线OA的解析式为;(2)由(1)知C(4,3),E(﹣4,﹣3),B(8,0)∴=;(3)因为CE所在直线OA不可能与x轴垂直,即CE不能与MN垂直所以E,M,N,C为顶点的四边形不能是菱形;。
北师大版数学九年级上册期末复习压轴专题:反比例函数综合(四)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(四)1.如图,点A 是反比例图数y =(x <0)图象上一点,AC ⊥x 轴于点C ,与反比例函数y =(x <0)图象交于点B ,AB =2BC ,连接OA 、OB ,若△OAB 的面积为2,则m +n =( )A .﹣3B .﹣4C .﹣6D .﹣82.如图,点A ,B 在反比例函数y =﹣(x <0)的图象上,连结OA ,AB ,以OA ,AB 为边作▱OABC ,若点C 恰好落在反比例函数y =(x >0)的图象上,此时▱OABC 的面积是( )A .3B .C .2D .63.如图,是反比例函数y 1=和y 2=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲于A 、B 两点,若S △AOB =3,则k 2﹣k 1的值是( )A.8 B.6 C.4 D.24.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.125.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2 B.1.5 C.4 D.66.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A 的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y =在第一象限图象经过点A,与BC交于点F.S=,则k=()△AOFA.15 B.13 C.12 D.58.正方形ABCD的顶点A(2,2),B(﹣2,2),C(﹣2,﹣2),反比例函数y=与y =﹣的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是()A.2 B.4 C.8 D.69.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB 上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数y=(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.210.双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2 C.3 D.411.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.412.如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x 上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.C.﹣1 D.+113.如图所示,正方形ABCD的边长为2,AB∥x轴,AD∥y轴,顶点A在双曲线y=上,边CD,BC分别交双曲线于E,F,线段AB,CD分别交y轴于G,H,且线段AE恰好经过原点,下列结论:=,其中①E是CD中点:②点F坐标为(,);③△AEF是直角三角形;④S△AEF 正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,平面直角坐标系中,O为原点,点A,B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,且点P在反比例函数y=的图象上.PA,PB的延长线分别交x轴、y轴于点C,D,连结CD.则△OCD的面积是()A.8 B.8C.16 D.1615.如图,平行四边形AOBC中,对角线交于点E,双曲线y=(k>0)经过A、E两点,若平行四边形AOBC的面积为12,则k的值是()A.2 B.4 C.6 D.816.如图,△AOB的内心在x轴上,顶点A在函数y=(k1>0,x>0)的图象上,顶点B在函数y=(k2<0,x>0)的图象上,若△AOB的面积为4,则k1•k2的值为()A.﹣8 B.﹣12 C.﹣14 D.﹣1617.如图,已知三角形的顶点C在反比例函数y=位于第一象限的图象上,顶点A在x的负半轴上,顶点B在反比例函数y=(k≠0)位于第四象限的图象上,BC边与x轴交于点D,CD=2BD,AC边与y轴交于点E,AE=CE,若△ABD面积为,则k=()A.﹣4 B.﹣C.﹣2D.318.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于x轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>419.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A.B.6 C.D.920.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S=8,则OC△OCE的长为()A.8 B.4 C.D.参考答案1.解:设B(a,),A(a,)∵AB=2BC,∴=,∴m=3n,∵△OAB的面积为2,∴根据反比例函数k的几何意义可知:△AOC的面积为﹣,△BOC的面积为﹣,∴△AOB的面积为﹣+=2,∴n﹣m=4,∴n﹣3n=4,∴n=﹣2,∴m=﹣6,∴m+n=﹣8故选:D.2.解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,﹣),点C(m,)(a<0,m>0)∵四边形ABCO是平行四边形∴AC与BO互相平分∴点E()∵点O坐标(0,0)∴点B[(a+m),(﹣)]∵点B在反比例函数y=﹣(x<0)的图象上,∴﹣+=﹣∴a=﹣2m,a=m(不合题意舍去)∴点A(﹣2m,)∴S=()(m+2m)﹣﹣1=△AOC=3∴▱OABC的面积=2×S△AOC故选:A.3.解:由反比例函数比例系数k的几何意义可知,S△BOC=S△AOC=∵S△BOC ﹣S△AOC=S△AOB=3∴﹣=3∴k2﹣k1=6故选:B.4.解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PO∴B为OA中点.∴S△PAB =S△POB由反比例函数比例系数k的性质,S△POB=3 ∴△POA的面积是6故选:B.5.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.6.解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD 的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),故选:C.7.解:过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM=a,∴点A的坐标为(a,a).=,∵四边形OACB是菱形,S△AOF∴OB×AM=,即×a×a=39,解得a=±,而a>0,∴a=,即A(,6),∵点A在反比例函数y=的图象上,∴k=×6=15.故选:A.8.解:根据对称性可知,阴影部分的面积=正方形ABCD的面积的=×4×4=8,故选:C.9.解:∵△OAB和△BCD都是等腰直角三角形,∴OA=AB,CD=BC.设OA=a,CD=b,则点D的坐标为(a+b,a﹣b),∵反比例函数y=在第一象限的图象经过点D,∴(a+b)(a﹣b)=a2﹣b2=6,∴△OAB与△BCD的面积之差=a2﹣b2=×6=3.故选:C.10.解:设直线AB与x轴交于点C.∵AB∥y轴,∴AC⊥x轴,BC⊥x轴.∵点A在双曲线y=的图象上,∴△AOC的面积=×5=.点B在双曲线y=的图象上,∴△COB的面积=×3=.∴△AOB的面积=△AOC的面积﹣△COB的面积=﹣=1.故选:A.11.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选:B.12.解:因为AO∥BC,上底边OA在直线y=x上,则可设BE的解析式为y=x+b,将E(2,0)代入上式得,b=﹣2,BE的解析式为y=x﹣2.把y=1代入y=x﹣2,得x=3,C点坐标为(3,1),则反比例函数解析式为y=,将它与y=x组成方程组得:,解得x=,x=﹣(负值舍去).代入y=x得,y=.A点坐标为(,),OA==,BC==3,∵B(0,﹣2),E(2,0),∴BE=2,∴BE边上的高为,∴梯形AOBC高为:,梯形AOBC面积为:×(3+)×=3+,△OBE的面积为:×2×2=2,则四边形AOEC的面积为3+﹣2=1+.故选:D.13.解:①∵线段AE过原点,且点A、E均在双曲线y=上,∴点A、E关于原点对称,∵正方形ABCD边长为2,∴点A的坐标为(﹣,﹣1),点E的坐标为(,1),∴AG=DH=EH=,∵CD=2,∴CE=DE=1,∴E是CD中点;故①正确;②∵CH=,∴F(,),故②正确;③∵点A的坐标为(﹣,﹣1),点E的坐标为(,1),F(,),∴AE2==5,AF2==,EF2==1,∴AE2+EF2≠AF2,∴△AEF不是直角三角形;故③不正确;=2×2﹣﹣﹣=,④∵S△AEF故④正确;故选:C.14.解:如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=16,∵m>0,∴m=4,∴P(4,4).设OA=a,OB=b,则AM=AH=4﹣a,BN=BH=4﹣b,∴AB=AH+BH=8﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(8﹣a﹣b)2,可得ab=8a+8b﹣32,∴4a+4b﹣16=ab,∵PM∥OC,∴,∴,∴OC=,同法可得OD=,=•OC•DO=•=•=•=16.∴S△COD故选:C.15.解:过A作AD⊥OB于D,过E作EF⊥OB于F,如图,设A(x,y=),B(a,0),∵四边形AOBC为平行四边形,∴AE=BE,∴EF为△BAD的中位线,∴EF=AD=,∴DF=(a﹣x),OF=OD+DF=,∴E(,),∵E点在双曲线上,∴•=k,∴a=3x,∵平行四边形的面积是12,∴AD•OB=12,即•a=12,∴•3x=12,∴k=4.故选:B.16.解:∵△AOB的内心在x轴上,∴∠AOE=∠BOE,∴∠AOC=∠BOD,过作AC⊥y轴于C,BD⊥y轴于D,∴△ACO∽△BDO,∴=,设A(a,b),B(c,d),∴AC=a,OC=b,BD=c,OD=﹣d,∴=,∴bc=﹣ad,∴S△AOB =S梯形ACDB﹣S△AOC﹣S△BDO=(BD+AC)(OC+OD)﹣AC•OC﹣BD•OD=(a+c)(b﹣d)﹣ab+cd=4,∴bc﹣ad=8,∴bc=4,∴c=,d=,∴点B(,),∴•=k2,∴k2•ab=﹣16又∵ab=k1,∴k2•k1=﹣16.故选:D.17.解:如图,过点C,点B分别作x轴的垂线,垂足分别为M,N,则EO∥CM,∴△AEO∽△ACM,∴,设AO=OM=a,OE=b,CM=2b,∴点C的坐标为(a,2b),∵顶点C在反比例函数y=位于第一象限的图象上,∴2ab=4,即ab=2,∵CM∥BN,∴△CMD∽△BND,∴,设DN=m,则MD=2m,BN=b,∴点B的坐标为(a+3m,﹣b),∵顶点B在反比例函数y=(k≠0)位于第四象限的图象上,∴﹣b(a+3m)=k,∵△ABD面积为,∴,即ab+mb=,∴mb=0.5,∴k=﹣b(a+3m)=﹣ab﹣3mb=﹣2﹣1.5=﹣3.5,故选:B.18.解:∵A ,B 是函数y =的图象上关于原点O 对称的任意两点,且AC 垂直于x 轴于点C ,BD 垂直于x 轴于点D ,∴S △AOC =S △BOD =×2=1,假设A 点坐标为(x ,y ),则B 点坐标为(﹣x ,﹣y ),则OC =OD =x ,∴S △AOD =S △AOC =1,S △BOC =S △BOD =1,∴四边形ADBC 面积=S △AOD +S △AOC +S △BOC +S △BOD =4.故选:C .19.解:∵点A (m ,m +3),点B (n ,n ﹣3)在反比例函数y =(k >0)第一象限的图象上,∴k =m (m +3)=n (n ﹣3),即:(m +n )(m ﹣n +3)=0,∵m +n >0,∴m ﹣n +3=0,即:m ﹣n =﹣3,过点A 、B 分别作x 轴、y 轴的平行线相交于点D ,∴BD =x B ﹣x A =n ﹣m =3,AD =y A ﹣y B =m +3﹣(n ﹣3)=m ﹣n +6=3,又∵直线l 是由直线AB 向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB =S△ADB=AD•BD=,故选:A.20.解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C 与点E 都在反比例函数y =的图象上,∴OD ×CD =OF ×EF ,∴OF ==2t , ∴OA =2t ﹣=t , ∴S 四边形OABC =2S △OCE ,∴t ×t =2×8,∴解得:t =(舍负), ∴OC =.故选:D .。
考点06 反比例函数应用(解析版)

考点六反比例函数应用知识点整合一、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例引领(1)请求出v与F之间的函数关系式;(2)当它所受牵引力为2400牛时,汽车的速度为多少米【答案】(1)60000 vF =;(2)当它所受牵引力为2400牛时,汽车的速度为x(1)求k的值.(2)求恒温系统在这一天内保持大棚内温度不低于k=【答案】(1)240(2)恒温系统在一天内保持大棚里温度不低于变式拓展(1)求反比例图数的表达式,并求点(2)张老师在一节课上从第10张老师讲完这道题时,学生的注意力指标值达到多少【答案】(1)反比例函数的表达式为(2)当张老师讲完这道题时,学生的注意力指标值达到(1)求y与x之间的函数关系式:(2)求w与x之间的函数关系式,并求出当日利润为(1)分别求出材料煅烧和锻造时y (2)根据工艺要求,当材料温度低于【答案】(1)燃烧时函数解析式为()48006y x x=≥(2)4min(1)根据函数图象直接写出:血液中酒精浓度上升阶段的函数表达式为达式为;(并写出x 的取值范围)(2)求血液中酒精浓度不低于200【答案】(1)y 10004x x ≤=(<)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数综合专题一反比例函数与一次函数
1.(2017四川省广元市)如图,一次函数y=ax+b的图象与反比例函数
k
y
x
=的图象交于C,D两点,与x,
y轴交于B,A两点,且tan∠ABO=1
2
,OB=4,OE=2.
(1)求一次函数的解析式和反比例函数的解析式;
(2)求△OCD的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
2.(2017四川省广安市)如图,一次函数y=kx+b的图象与反比例函数
m
y
x
=的图象在第一象限交于点A(4,
2),与y轴的负半轴交于点B,且OB=6.
(1)求函数
m
y
x
=和y=kx+b的解析式.
(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数
m
y
x
=的图象上一点P,使得9
POC
S
∆
=.
3.(2017广西玉林崇左市)如图,一次函数15y k x =+(10k <)的图象与坐标轴交于A ,B 两点,与反比例函数2k y x =(20k >)的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1. (1)求21k k -的值;
(2)若14
AM AN =,求反比例函数的解析式; (3)在(2)的条件下,设点P 是x 轴(除原点O 外)上一点,将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由.
4.(2016四川省泸州市)如图,一次函数y =kx +b (k <0)与反比例函数m y x
=
的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点A (4,1)
(1)求反比例函数的解析式;
(2)连接OB (O 是坐标原点),若△BOC 的面积为3,求该一次函数的解析式.
5.(2016四川省甘孜州)如图,在平面直角坐标系xOy 中,一次函数y =﹣ax +b 的图象与反比例函数k
y x
=
的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数和一次函数的表达式;
(2)求点C的坐标及△AOB的面积.
6.(2016四川省乐山市)如图,反比例函数
k
y
x
=与一次函数y=ax+b的图象交于点A(2,2)、B(
1
2
,
n).
(1)求这两个函数解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数
k
y
x
=的图象有且
只有一个交点,求m的值.
专题二反比例函数与几何综合
1.(2017内蒙古赤峰市)如图,一次函数13y x =-
+的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限作等边△ABC .
(1)若点C 在反比例函数k y x
=的图象上,求该反比例函数的解析式;
(2)点P (m )在第一象限,过点P 作x 轴的垂线,垂足为D ,当△P AD 与△OAB 相似时,P 点是否在(1)中反比例函数图象上?如果在,求出P 点坐标;如果不在,请加以说明.
2.(2017四川省德阳市)如图,函数2 (03)9 (3)
x x y x x ≤≤⎧=⎨
-+>⎩ 的图象与双曲线k y x =(k ≠0,x >0)相交于A (3,m )和点B .
(1)求双曲线的解析式及点B 的坐标;
(2)若点P 在y 轴上,连接P A 、PB ,求当P A +PB 的值最小时点P 的坐标.
3.(2017四川省攀枝花市)如图,在平面直角坐标系中,坐标原点O 是菱形ABCD 的对称中心.边AB 与x 轴平行,点B (1,-2),反比例函数k y x
=(k ≠0)的图象经过A ,C 两点. (1)求点C 的坐标及反比例函数的解析式.
(2)直线BC 与反比例函数图象的另一交点为E ,求以O ,C ,E 为顶点的三角形的面积.
4.(2017四川省遂宁市)如图,直线1(0)y mx n m =+≠与双曲线2(0)k y k x
=≠相交于A (-1,2)和B (2,
b)两点,与y轴交于点C,与x轴交于点D.
(1)求m,n的值;
(2)在y轴上是否存在一点P,是△BCP与△OCD相似,若存在求出点P的坐标,若不存在,请说明理由.
5.(2016四川省攀枝花市)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂
足为点B,反比例函数
k
y
x
=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.
(1)求反比例函数
k
y
x
=的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.
6.(2016内蒙古巴彦淖尔市)如图,一次函数y=ax+b的图象与反比例函数
k
y
x
=(x>0)的图象交于点P
(m,4),与x轴交于点A(﹣3,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.
(1)求反比例函数与一次函数的解析式;
(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
7.直线y=kx+b与反比例函数
6
y
x
=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别
交于点C和点D.
(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
8.如图,一次函数y=kx+b的图象与反比例函数
m
y
x
的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.。